
Interactive Extraction of Examples from Existing Code

Andrew Head, Elena L. Glassman, Björn Hartmann, Marti A. Hearst
UC Berkeley

Berkeley, CA, USA
{andrewhead, eglassman, bjoern, hearst}@berkeley.edu

d

Source Program Pane Example Pane

Fix the example by adding
suggested code from the
original source program...

Line 15

1

2a

... or by inserting literals captured
from the program trace.2b

Review additional suggestions of
code that may be missing.

3

Create an example by
selecting lines from a
source program.

Figure 1: Extracting example code from existing code with CodeScoop. With CodeScoop, (1) a programmer selects a few lines they want to share
from a source program, and CodeScoop helps them build them into a complete, compilable example. To help programmers make complete examples,
CodeScoop detects errors and recommends fixes by (2a) pointing to potentially missing code and (2b) suggesting literal values from the program trace that
can take the place of variables. (3) It also recommends code the programmer may have overlooked, like past variable uses and nearby control structures.

ABSTRACT
Programmers frequently learn from examples produced and
shared by other programmers. However, it can be challeng-
ing and time-consuming to produce concise, working code
examples. We conducted a formative study where 12 par-
ticipants made examples based on their own code. This re-
vealed a key hurdle: making meaningful simplifications with-
out introducing errors. Based on this insight, we designed a
mixed-initiative tool, CodeScoop, to help programmers extract
executable, simplified code from existing code. CodeScoop
enables programmers to “scoop” out a relevant subset of code.
Techniques include selectively including control structures and
recording an execution trace that allows authors to substitute
literal values for code and variables. In a controlled study
with 19 participants, CodeScoop helped programmers extract
executable code examples with the intended behavior more
easily than with a standard code editor.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 2018 April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5620-6/18/04.

DOI: https://doi.org/10.1145/3173574.3173659

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
programming support; example sharing

INTRODUCTION
Code examples are a key format for knowledge exchange be-
tween programmers. Examples provide an essential resource
to learn about tools, and a starting point for writing new code
[28, 29]. Examples can demonstrate best practices for using
particular APIs and confirm programmers’ hypotheses about
how things work [27]. As a result, HCI and software engi-
neering research has focused on how to support the life cycle
of working with examples, e.g., authoring multi-stage code
examples [10, 14], searching for examples [6, 12, 31], and
integrating examples into one’s own code [22, 38].

Yet examples are often missing or insufficient for many pro-
gramming tasks. Around 14% of how-to questions on popular
Q&A platforms may not receive answers [33]. Even for APIs
that appear well-documented in online Q&A platforms, high
coverage can take years to achieve and miss important top-
ics [23]. Even if examples are available, they may not be
self-explanatory: many lack important code required to run

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 1

https://doi.org/10.1145/3173574.3173659

or understand them [34]. While programmers can find usage
examples in existing code, like unit tests, looking for examples
in code takes time, and borrowing from incomplete examples
in documentation can be error-prone [18].

In this paper, we aim to improve the state of the art in code
example production. Good code examples are concise [19, 20,
28] and focused [19, 28]. Additionally, executable examples
allow programmers to re-run and re-mix them, i.e., learn from,
experiment with, and modify them for their own purposes.

A programmer’s own code project can be a source of good ex-
amples. However, when the programmer attempts to extract an
example from one of their projects, it may be time-consuming
to separate out extraneous dependencies and logic that are un-
related to the concise and focused example they envision [24].
To understand this authoring task better, we ran a formative
study in which 12 programmers each authored a code example
based on code they had previously written.

Observations from this formative study led to the design of
CodeScoop, a tool that helps a programmer make scoops–or
focused, executable examples—from existing code. We offer
the idea of a scoop as a refinement to program slices. With
program slicers [32], programmers point to specific lines of
code, and a slicer extracts a subset of lines required for those
lines to run correctly. With a code scooper, a programmer
and a tool work together in a mixed-initiative dialogue to
extract, simplify and clarify code. A slice is finished when
code has been extracted that computes the same result as the
full program. In contrast, a scoop is finished when the code
has the intended behavior, which could be different from the
original program, and is concise and readable.

To scoop code, a user selects an initial set of lines from a source
program. The user and tool work together to iteratively add
important code. CodeScoop flags errors, suggests potentially
relevant code, and offers fixes derived from static and dynamic
analysis of the source program (Figure 1). Scoops can be
tested like ordinary code, by compiling and running them with
the editor. Example code produced with CodeScoop can then
be shared in many of the ways already used by programmers:
it can be integrated into tutorials, answers on Q&A sites, or
published in a public repository.

We conducted a controlled study to gain insight into how
CodeScoop could support example extraction from existing
code, versus comparison tools. Participants were successful
at extracting example code: using CodeScoop, 16 out of 19
participants successfully extracted a code example in ten min-
utes or less (compared to 11 out of 19 with a standard text
editor). Participants created examples by making a median of
2 selections, replying to a median of 5 suggestions, resolving
a median of 2 errors with CodeScoop’s help, and accepting a
median of 12 automatic corrections.

Compared to text editors, CodeScoop was more enjoyable and
less difficult to use; however, participants found constraints
on the ability to make arbitrary direct edits to be both helpful
and restrictive. Compared to program slices, scoops were
often shorter and made program results more visible, though
sometimes participants omitted relevant content that a slice

would have included. CodeScoop also permitted multiple
approaches to building a correct code example, which reflects
varying viewpoints about what belongs in a code example. In
summary, the contributions include:

• A mixed-initiative interaction technique for helping pro-
grammers “scoop” concise, focused, executable code exam-
ples from existing code projects,

• a proof-of-concept system which illustrates this technique
for a subset of the Java language, and

• a controlled study that provides insight into how CodeScoop
supports the extraction of examples from existing code.

RELATED WORK

Tools for Authoring Example Code
Some tools help programmers author examples and tutorials.
Ginosar et al. create an IDE extension that helps authors create
multi-stage code examples by propagating changes (insertions,
deletions and modifications) to multiple saved versions of their
code [10]. JTourBus offers a tool for creating tour-structured
documentation of large amounts of Java code [21]. JTutor is
a software suite consisting of two Eclipse plug-ins that help
instructors package tutorials based on Java code and enable
students to replay these tutorials [14]. In contrast to these
tools, our tool aims to help programmers create executable
example code from their existing code.

Tools for Example-Centric Programming
More broadly, HCI and software engineering research has re-
cently focused on how to support the life cycle of working with
examples, including search engines for locating examples [6,
12, 31] and understanding alternatives within large corpuses of
examples [11], and development tools for integrating examples
into one’s code [6, 22, 38]. The Bing developer assistant [39]
is an editor extension that proactively recommends similar
examples. Our tools contributes to this ecosystem of tools
to support example-centric programming, providing a new
interaction technique to aide in the production of executable
code examples from programmers’ existing code.

Program Slicing
In the domains of program comprehension and software engi-
neering, program slicing techniques aim to help programmers
separate code that represents a single concern from a large,
tangled code base (for a review, see [32]). Program slicing
has been offered as a technique for helping programmers un-
derstand code and make derivative, simpler programs from
existing code, and has been included in both commercial and
experimental tools including Frama-C [9], CodeSurfer [3],
and Indus [13]. However, there is limited existing research
with human subjects that evaluates the usability of such tools
for the purpose of deriving simpler programs or supporting
program exploration (one exception being the program slicing
visualization techniques by Krinke et al. [15]). Our tool adapts
the techniques of program slicing by suggesting resolutions to
undefined variables by tracing dataflow dependencies through
the example author’s original code. Our work uniquely focuses
on supporting a mixed-initiative dialogue between an example

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 2

author and an editor as they search for a concise, executable
reduction of the original code.

Automatic Generation of Code Examples
Recent publications have shown that API usage examples can
be automatically mined or synthesized from existing code,
with little human input [7, 16, 17, 40]. These algorithms
demonstrate the production of both “abstract” [7, 16] exam-
ples that document an important programming pattern in read-
able, yet uncompilable snippets, and “concrete” [17] code
examples, which can be compiled and run. SpyREST [30]
generates REST API examples from an API server’s request
and response logs. Pradel et al. propose an approach to mining
patterns from existing code, using dynamic analysis to build
FSMs of call sequences [26]. These techniques do not, how-
ever, allow an example author to shape or influence the result,
as they might reasonably wish to, e.g., in order to answer a
particular question or tailor an example for a specific audience.

Intelligent Coding Assistance in IDEs
For years, integrated development environments have provided
tools for programmers to apply “quick fixes”, or automatic
resolutions that repair their code to overcome compiler er-
rors, and “quick assists”, suggestions for optional refactorings
that could clean or improve the quality of their source code.
Programmers use such tools to refactor their code [35], and
recent research has provided new quick fixes (e.g., [36]) and
redesigned quick fixes to encourage programmers to explore
the design space of error resolutions [4]. Quick fixes and quick
assists provide us with a motivating example for a familiar
interaction paradigm with which to structure a mixed initiative
dialogue between a programmer and a code editor. CodeScoop
adds breadth to the design space of quick fixes with resolutions
that integrate the runtime behavior of variables and objects,
and that address resolutions relevant to authors creating both
concise and executable example code.

FORMATIVE STUDY
We conducted a formative study to understand the process that
programmers follow when creating executable code examples
from their own code, and the obstacles they encounter along
the way. We observed 12 programmers as they created exam-
ple code. Participants were recruited from our professional
networks, local MeetUps, and computer science researchers
from a local university.

This study and a review of literature on code examples led to
design recommendations for improving the user experience of
extracting code examples from existing code (Figure 2). We
refer the reader to Section A1 of the auxiliary material for
protocol details and observations from the formative study.

THE CODESCOOP USER EXPERIENCE
The CodeScoop user interface aims to improve the example
authoring process with two unique affordances. First, it helps
authors replace lines of code that could contain distracting
complexity with meaningful literal values. Second, it infers
and recommends code inclusions that could enhance an ex-
ample’s adherence to the author’s intent, like missing control
structures and variable modifications. Here, we illustrate the

Authors made examples by... Tools should help authors...

Copying the original code and
pasting into example editor

• Create examples from text
selections

• Add lines from original code at
any time

Replacing variables with
meaningful literal values

• Review and insert literal values
that preserve program behavior

Tweaking comments and code
format for readability

• Directly edit code to add
comments, group lines, and add
print statements

Making examples could be  
time-consuming because... Better tools could...

Authors left out code

• Suggest lines of code that the
current example needs to run

• Add missing code automatically
when it's the only sensible fix

Authors introduced errors via
transcription or edits

• Constrain manual code edits
• Enable early and frequent testing

It took time to remove 
irrelevant code

• Start from a blank file
• Omit code except for explicit code

selections and necessary fixes

Figure 2: Tool recommendations for improving example extraction.
From a twelve-participant formative study, we found that making code
examples from existing code can be tedious and error-prone. Tools could
help programmers extract examples by constraining manual edits, and by
proposing fixes based on the source program.

user experience of CodeScoop with an example walkthrough.
We refer the reader to the video figure and artifact1 accompa-
nying this paper to see the full “scooping” process.

Problem Setting
Lou is a programmer working on a web application. She
needs to write code to query records from a database using an
archaic, poorly-documented API. After reading source code,
inspecting the runtime state of the database objects, and over-
coming numerous compiler errors, she develops the code that
she needs. The code is non-trivial, involving a query to a
database, iteration over query results, and catching connection
exceptions. After taking so long to figure out how to write the
code, Lou wants to make the task easier for others by writing
a short executable example that others can read and run.

First Step: Initial Text Selections
Instead of creating an executable code example from scratch,
Lou uses CodeScoop. From her code editor, she selects lines
from her program that must be in the code example, which
retrieve the data from the database cursor and save it to a data
structure. She right-clicks on the selected code and chooses
Extract example from a drop-down menu.

1See the project web page at https://codescoop.berkeley.edu

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 3

https://codescoop.berkeley.edu

The editor splits into two panes. The left pane shows the
unchanged source program , and the right pane shows the
work-in-progress code example (see Figure 1). At first, the
code example only contains the text selections wrapped in the
main function of a class that can eventually be compiled and
executed. The example is currently far from complete:

Mixed-Initiative Dialogue: Completing the Example
The CodeScoop editor starts a mixed-initiative dialogue with
Lou to interactively make the new code example both concise
and executable using the complete source program code and
execution trace. The execution trace is captured from the most
recent execution of the application.

Defining Variables by Adding Missing Code: CodeScoop
detects all undefined variables in the current example. Via
highlighting, it indicates variables that need to be defined by
highlighting the offending variable uses in red.

Lou hovers over the undefined titles variable and clicks
on the “Define” button that appears below it. CodeScoop
displays a menu composed of multiple methods for defining
this variable (for examples, see Figure 1.2a and Figure 1.2c).

In this case, the best option is to just add the line of code that
defined titles in the original program. Lou hovers over the
line number for the suggested definition (“Line 25”). Code-
Scoop highlights line 25 in the source program editor. If the
line is currently out of view, the source program editor scrolls
until the definition is within view.

Lou inspects the original code, verifies that she wants to in-
clude this definition, and clicks to include the line. CodeScoop
saves Lou’s choice, and immediately updates the example with
the line that provides the missing definition.

Defining Variables by Replacing Them with Literal Val-
ues: The second option for defining an undefined variable
is to insert a literal value from the source program’s ex-

ecution trace. Lou hovers over the options for defining
COLUMN_INDEX_TITLE: a sub-menu lists values the variable
took on when the source program last ran. Here, it’s just
one number—1—the column index for the title field. Lou
chooses this option, as it is more concise.

Checking for Omissions by Reviewing Previous Variable Uses:
Even if all of the variables in a program are defined, this
doesn’t mean that the program is correct—it might be miss-
ing important modifications on already-initialized objects. To
make sure Lou isn’t leaving out anything important, Code-
Scoop points out all previous uses of variables between a
variable use and the definition Lou has included.

In this case, Lou has added a line that uses the database cursor
(String title = cursor.getString(...)) and a line that
defines the cursor (Cursor cursor = ...). CodeScoop
discovers all previous uses of cursor, and highlights them all
for Lou’s review. Lou scans over the highlighted lines. . .

She realizes that her code example is missing two
important lines that modify the state of cursor:
cursor.execute(QUERY) and cursor.fetchone(). She
clicks on the line numbers in the left gutter for these two lines,
and the lines are immediately added to the example.

Including Important Control Logic and Skipping the Rest:
When Lou adds code both inside and outside of an if block,
CodeScoop asks her if she wants to include the if structure.

The if statement checks for a non-zero number of lines, but
Lou thinks this check is too verbose, so she rejects it. Code-
Scoop also highlights a try-catch that handles an important
exception. Lou accepts this, as she wants to show how to
handle the exception in the example.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 4

Definining Complex Data Types with “Stubs”: Few people
who reference Lou’s example code will have access to her
database’s data, but they will still want a runnable example
that shows how to make the call to the database and process the
results. Lou decides to “stub out” the database. CodeScoop
lets her resolve the database object by either including the line
with the instantiation, or by inserting a stub for the database
object. Lou chooses to replace the database instantiation with
a stub. CodeScoop generates a new class that returns exactly
the same values in the same call sequence as those from the
program’s execution, making it possible for anyone to run the
code example without access to her database.

· · ·

In this case, the stub looks too complex for Lou. She un-
does the stub insertion, and chooses to define the database by
including a line of code instead.

CodeScoop Fixes Trivial Bugs Automatically: Sometimes
there is only one way to fix up a problem with the exam-
ple code: for instance, a class has not been defined and there
is only one relevant import statement in the original code, or
a variable is missing a definition but the line has no literal
values from the execution trace. In circumstances like these,
CodeScoop makes the corrections automatically for Lou so
she can concentrate on more cognitively demanding decisions.

Verifying Intended Behavior by Running the Code: When the
code looks complete, Lou presses the “Run” button (see the
right panel of the editor in Figure 1). CodeScoop compiles
and runs the program, displaying the output in a bottom panel:

In this way, Lou verifies that all decisions up to this point have
preserved the intended behavior.

Writing Annotations to Improve Readability: At this point, the
code is complete, compilable, and executable. CodeScoop
“unlocks” the example, now allowing Lou to make direct edits
on it. Lou adds comments next to all variables and literals
where a future user will likely have to provide their own data.
Lou also adds some empty lines to call out which lines be-
long together conceptually. After she verifies again that the
code compiles and runs, she copies and pastes the thirty-line
executable example into an email and sends it to her coworker.

SUPPORTING THE “SCOOPING” INTERACTION
This section outlines key aspects of CodeScoop’s design that
follow from our formative study.

Anchor Interaction in the Code Example Itself: In the forma-
tive study, participants split attention and interaction between
a code editor and the text buffer in which they wrote example
code. Our tool was built to enable authors to focus primarily
on the code example. Errors and suggestions are overlaid
directly on the example code.

Ground Resolutions in the Original Code: Still, authors need
to refer to the original code to recall the context in which the
selected snippets were initially run. When they do, it should
be effortless to recall that context. CodeScoop’s suggestions,
when referring to specific code lines or structures, call out the
suggested code’s context in the source program by highlighting
and scrolling the source program’s editor.

Prioritize Resolutions to Core Logic First: Reasoning about
code can be cognitively demanding. For this reason, Code-
Scoop prioritizes one type of error—resolving missing vari-
able definitions—before others. Resolving definitions leads
authors through the program logic before interrupting them to
fix one-off errors like missing imports and declarations.

Find the Right Time to Suggest Optional Inclusions: Some
lines of code, while not necessary for compilation, may be nec-
essary to correctly demonstrate a usage pattern. CodeScoop
suggests three types of “extensions” based on an author’s
recent selections: (i) control structures (if and try-catch
blocks, and loops) when an author selects code outside of a
block after having selected code within that block; (ii) previ-
ous uses of a variable after the author has added both a use
and a definition of a variable; (iii) exceptions to throw when
the author adds an error-prone function call.

SYSTEM IMPLEMENTATION

Code Extraction with a Flag-Suggest-Resolve Workflow
The “scooping” process begins with a user providing a handful
of text selections of what belongs in an example. From this,
CodeScoop starts building the scoop. Internally, a scoop is
represented as a set of pointers to lines that have been included
from the source program, and a set of choices the user has
made about what to include in the code or not.

At a high level, CodeScoop interacts with a user by following
a Flag-Suggest-Resolve workflow (Figure 3). It flags errors
and opportunities to include code when it detects important
changes to the scoop. Then, it suggests resolutions by pre-
senting them in a dialogue to the user. Finally, it resolves any
problems by applying fixes to the scoop.

To flag errors, suggest resolutions, and apply resolutions, Code-
Scoop is built from a set of modules that analyze the program
source and its execution trace (Figure 4). We describe a subset
of these modules here, and refer readers to Section A2 of the
auxiliary material for details about the remaining modules.

Detecting errors and relevant code
CodeScoop figures out when to prompt a user by running a
suite of “detectors” on the scoop after every decision a user
makes. Such detectors detect several events:

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 5

Figure 3: Iterative correction of incorrect example code. The Code-
Scoop system flags opportunities to complete and expand the code, sug-
gests lists of valid resolutions for completing the code, and resolves com-
pletions by modifying an abstract example model called the scoop.

Missing definitions of variables and types
CodeScoop runs dataflow analysis to locate the character off-
sets of all definitions and uses of all variables in the source
program, using the Soot [37] SimpleDefUseAnalysis pro-
gram. Whenever the scoop updates with a new text selection,
CodeScoop makes a list of the variables used in the scoop. It
then scans all text selections in the scoop for definitions of
each variable. If multiple variables are missing definitions, it
highlights all undefined variables as a batch.

CodeScoop also runs an ANTLR-generated [25] parse tree
walker to find all uses of types in the source program. When
the user adds a text selection that uses a type (e.g., an object
declaration), CodeScoop scans the scoop for import state-
ments and internal classes that define the type, and flags an
error if no definition has been found.

Potentially relevant control structures
An ANTLR parser is run on the source program to find all
control structures. When a user adds a text selection both
inside and outside of a control structure without including that
control structure, CodeScoop asks if the user wants to include
that control structure in the scoop.

Suggesting fixes and code additions
Whenever a user chooses an error to fix, CodeScoop runs “re-
solvers” to make a list of potential fixes. Fixes can come from
either the source program’s code, or its execution trace (Fig-
ure 4). If the resolvers only find one potential fix, CodeScoop
applies the fix automatically.

Suggesting code that defines a variable
CodeScoop scans through all definitions of a variable within
the same scope as the variable that is missing a definition. It
recommends the line numbers of all such definitions.

Suggesting literal values for undefined variables
When CodeScoop launches, it executes the source program in
a debugger virtual machine, using the Java Debug Interface [1].
As it steps through the code, it builds a table that maps a file
name, variable name, and line number to a list of values each
variable holds on each line of each file. When a variable is
undefined in the scoop, CodeScoop looks for literal values this

variable took on this line, and proposes all such values. This
feature works for numbers, booleans, characters, and strings.

Fixing missing types with imports and internal classes
We use the Java Reflections API to determine the package
of all of the types used in the source program. When recom-
mending an import statement for the type, CodeScoop scans
the imports from the source program for one that matches the
fully-qualified name of the type, recommending all imports
that could have provided the type. It also recommends the
full text of any internal classes that define the type, as found
through an ANTLR parse tree traversal.

Applying Fixes to the Scoop
After the user makes their choice, the system enters the re-
solve state, converting any fixes to transformations that can
be applied to the scoop. All transformations are added to a
command stack, so users can reverse any fix.

Implementation Details and Technical Limitations
CodeScoop was implemented as a plugin for the GitHub Atom
code editor. It currently supports example extraction from Java
programs. The plugin was written in 4,200 lines of Coffee-
Script, and 1,400 lines of Java code. While IntelliJ/Eclipse
have many more features for Java development, we chose
Atom because it is easy to modify for prototyping novel edi-
tor interactions. Now that we have developed the interaction
paradigm, it could be reimplemented in other IDEs. Support-
ing a new language requires a parser, a def-use analyzer, vari-
able tracing, and reflection for methods and classes. Such tools
are readily available for other statically typed languages like
C#. For dynamic languages like Python, additional analysis
will have to be written, (e.g., leveraging bytecode analysis [8])
to perform def-use analysis for dynamic properties.

Currently, dataflow analysis is only enabled for Java 1.4 code.
The other analyses can run on Java 1.6 code and later. These
limitations are specific to the libraries we chose, and not fun-
damental limitations for example extraction tools.

EVALUATING CODESCOOP’S DESIGN
We designed a study to gain insight into how CodeScoop or
similar tools can support example extraction from existing
code. We were interested in four questions:

Can programmers extract examples with the intended be-
havior using CodeScoop? CodeScoop incorporates a new
pattern of interaction for extracting example code from exist-
ing code. Is it usable? Did it yield working examples?

How does CodeScoop compare to a standard code editor
for extracting example code? In the formative study, we ob-
served that many participants just opened an empty text editor
when creating example code. Compared to this baseline, what
do programmers report are the advantages and disadvantages
of a tool like CodeScoop?

Could scooping decisions be automated or do they funda-
mentally require explicit user choice? When CodeScoop
suggests code to include or literals to insert, do all program-
mers make the same choice? If programmers sometimes agree,
maybe CodeScoop should make such decisions automatically.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 6

Source
Program

Example
"Scoop"
public class… {
 … main {

 }
}Source Trace

Define

Object Traces

Line Var Value

61 title Stardust

61 author Gaiman

62 publisher Avon

62 year 1999

Primitive
Value Traces

Obj Member Value

nextBook title Stardust

nextBook author Gaiman

db cursor() cursor

cursor query()

Substitute

Error Fixes

Missing
definition

Missing type
Add import statement

Add inner class

Add definition

Sub in primitive value

Synthesize object stub

Add logic?

Add uses?

Throw
exceptions?

Add enclosing logic

Add previous use(s)

Add exceptions thrown

The user interacts with CodeScoop to complete the example. The user picks fixes
for errors and accepts or rejects optional inclusions.

Optional Inclusions

CodeScoop analyzes the source program and
its execution trace to detect when example
code is incomplete, and to suggest fixes.

Figure 4: Suggesting fixes and code that complete a “scoop.” Given a set of text selections, CodeScoop detects what’s missing from an example.
Whenever it detects an error with multiple resolutions, it prompts the user with a dialogue. A collection of static and dynamic analysis modules enable
CodeScoop to detect missing definitions and types, propose fixes to errors, and to suggest optional code that might belong in a scoop.

Do “scoops” offer value over program slices? There is a
rich literature on program slicing techniques that, given a line
in source code, extract the subset of the program that affects
it [32]. Do “scoops” offer advantages over such slices? Or do
they give work to humans that could be done by an algorithm?

The study comprised four main tasks:

Example extraction: Participants created one example with
CodeScoop and another with a standard text editor (GitHub
Atom). The text editor included syntax highlighting, a button
to compile and run the code, and a command to wrap a partic-
ipant’s initial selection in a class and main declaration. The
editor did not have any error-checking or code-fixing func-
tionality. While this made it more representative of the text
editors many participants used to create example code in the
formative study used, we note that for some participants, a
development environment with error-checking and code fixes
may have provided a more natural and suitable baseline.

For each example extraction task, participants were shown
one of three fabricated “Stack Overflow questions”, describing
something a programmer might want to do with Java. Par-
ticipants were asked to make an example that answered this
question. Specifically, the three tasks were to:

• Task 1: Fetch a row from a database
• Task 2: Scrape text from HTML elements of a certain type
• Task 3: Send an email over SMTP.

Participants were also given a program from which they should
extract an example that answered the question. Task 1 could
be answered with an example extracted from a program 94
lines long; Tasks 2 and 3 could be answered with an example
extracted from different sections of a program 135 lines long.
Detailed task instructions and source programs are included
in Sections A3 and A5 of the auxiliary material.

Participants were given 5 minutes to familiarize themselves
with code, and 10 minutes to extract an example.

After each task, participants reported how satisfied they were
with the example they made, how difficult they found example
extraction with that tool, and how useful they thought the

example would be for other programmers. They also rated the
usefulness of each type of suggestion CodeScoop made.

Annotation interview: After a participant made their scoop
with CodeScoop, we asked them to describe what code clean-
ups and annotations they would make before they would feel
comfortable posting it as an answer to Stack Overflow.

Follow-up questionnaire: After the two extraction tasks, par-
ticipants completed a questionnaire that asked them to com-
pare their experience with CodeScoop and the text editor.

Slice comparison: Finally, participants were asked to compare
the scoop they made with CodeScoop to a slice that could
have been extracted by a program slicing tool. We asked them
which one would be more useful to someone looking for an
answer on Stack Overflow and why.

Participants
We posted a study announcement to the social media page of
the UC Berkeley Computer Science department. We enrolled
19 participants, 7 of whom were female, and 16 of whom
were undergraduate students. Participants had a median of 3
years of programming experience, and 2 years of experience
programming with Java (all had at least some experience). The
order of tools and questions was counterbalanced to reduce
any confounds due to ordering effects. Each question was
answered roughly the same number of times with each tool
(between 5 and 8 times, for each tool-question pair).

CODESCOOP STUDY RESULTS

Successfully extracting examples with CodeScoop
Out of 19 participants, 16 (84%) finished creating an exe-
cutable example in under ten minutes when using CodeScoop.
Only 3 participants did not finish creating an example in the
time allotted; of these, 2 were close but encountered bugs that
prevented them from finishing.

Many participants reported it was not difficult to consider
CodeScoop’s suggestions (Figure 5). Difficulty varied based
on the type of suggestion. Deciding whether to throw an ex-
ception was not difficult—if the exception wasn’t handled,
the code just wouldn’t compile (P13). It was trickier to make
decisions about whether to include other uses of a variable,

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 7

Including a previous use of a variable
Replacing a variable with a literal value

Including a control structure
Throwing an exception for a line

Participants
0 10 20

4

1

19
10

12
11

5
6
6

1
1

Very difficult Somewhat difficult Not difficult No basis to answer

How difficult was it for you to decide whether to accept
these suggestions when you were making an example?

Figure 5: Not all choices in code extraction are easy. While some of
CodeScoop’s suggestions weren’t difficult to consider (throwing exceptions
for exception-prone lines of code), others required some thought (e.g.,
considering whether to include a previous use of a variable).

control structures, or literal values. Deciding whether to re-
place variable uses with values could be challenging as it
required a programmer to think critically about what code re-
ally belonged (P11). Including a value could go against coding
best practices of naming all the values used in the code (P13).

Scoops included a median of 1 manually-selected line (σ =
5.3) after the first selection. CodeScoop made a median of 12
automatic corrections on an author’s behalf (σ = 4.6). Most of
these were import statements (median = 8, σ = 3.3), though
CodeScoop also fixed undefined variables by adding code
(median = 3, σ = 3.2). CodeScoop automatically added one
missing declaration for three participants, and inserted literal
values for five participants completing task 1.

Comparing CodeScoop to a standard text editor
When asked to compare a text editor to CodeScoop, one par-
ticipant aptly described the trade-offs:

I had more freedom, but it came with a lot of pain (P14)

Participants finished extracting examples more often when
they used CodeScoop than with the text editor: with the text
editor, 8 of 19 participants (42%) did not finish, compared
to 3 of 19 (16%) for CodeScoop (though the effect is not
statistically significant using Fisher’s exact test).

The median time to extract an example with CodeScoop was
5.8 minutes (σ = 1.96), and 9.5 minutes with the baseline
text editor (σ = 1.52), including participants who were cut
off at the 10-minute time limit. Overall, participants finished
extracting examples more quickly with CodeScoop than with
the baseline (W = 76.5, p < 0.001, Wilcoxon signed rank test).
Participants who successfully extracted an example in both
conditions spent an average of 2.8 minutes less (σ = 2.64)
with CodeScoop than with the text editor.

On a 7-point Likert scale, extracting an example was easier
with CodeScoop than with the baseline text editor (∆ (me-
dian difference) = 3, W = 2, p < 0.01, Wilcoxon signed rank
test). It was also more enjoyable (∆ = 3, W = 4, p < 0.01).
Participants were more satisfied with the example they made
(∆ = 2, W = 8, p < 0.01), and reported the scoop would be
more useful to someone learning to use the API (∆ = 2, W = 3,
p < 0.01). All but one participant would prefer to use Code-
Scoop for creating code examples in the future.

When asked to describe the advantages of the text editor over
CodeScoop, 15 out of 19 participants pointed out that Code-
Scoop was missing the ability to make direct additions, edits,
and deletions to the scoop. We do note that it would be trivial
to enable direct edits for adding comments and white space.

Many participants encountered what P14 described as “pain”
using a text editor. They forgot to handle or throw exceptions
(P13, P15), import classes (P4, P5, P13, P14, P15, P16), and
declare or define variables (P12, P13, P14, P16). They intro-
duced errors when they moved or wrote code, like adding or
removing curly braces (P12, P14, P15), or defining strings
with single quotes (P12). These errors did not occur with
CodeScoop: the tool handles these operations automatically.
While an IDE without knowledge of a source program could
help fix many of these errors, programmers may have to decide
between many irrelevant options for resolving errors.

We observed one potential hazard of example extraction with
CodeScoop: going on “auto-pilot” (P11), or accepting correc-
tions without critically considering them. One participant told
us, “I didn’t really need to comprehend what was going on at
each step–I just clicked “accept” for suggestions, with the idea
that once [CodeScoop] was done, I’ll manually tweak it if I
need to” (P8). While reducing unnecessary program compre-
hension is desirable, it should not be too easy for programmers
to rush through decisions that could introduce errors into their
example code. This is a general tension with many tools that
make corrections on a programmer’s behalf.

Among the finished examples, those created with CodeScoop
were shorter than those created with the text editor for task
2 (median = 22.5 vs. 34.5 lines) and task 3 (36 vs. 44 lines).
Examples were about the same length for task 1 (21 vs. 20
lines). None of these differences are statistically significant.

CodeScoop allows different views of a “correct” example
CodeScoop enabled participants to choose what belonged in
an example. Participants made contrasting decisions about
what to include, based on differing opinions about what made
a usable, readable example (see Figure 6 for one case, and the
examples in Section A5 of the auxiliary material for all other
examples extracted with CodeScoop).

One case where authoring decisions diverged was in the choice
of whether to substitute variables with literals. For some, in-
cluding literals removed unnecessary logic from the example
code (P3, P11, P12, P14). For others, variable names con-
veyed important semantics (P1, P5), or hid otherwise private
information like passwords (P2).

For almost all variables, whenever more than two participants
had a choice to replace a variable with a literal, at least one
person chose to define the variable with the original code, and
at least one chose to replace it with a literal value; there was
almost never complete agreement (Figure 7). For this study, it
seems there is no “silver bullet” algorithm that could replicate
every participant’s extraction choices.

When CodeScoop asked a participant if they wanted to throw
an exception for a line, they always accepted the suggestion.
For other choices, participants’ decisions were mixed: in task

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 8

String QUERY = "SELECT id...";
Database database = new Database(...);
Cursor cursor = database.cursor();
try {

cursor.execute(QUERY);
if (cursor.rowCount() > 0) {

int rowCount = cursor.rowCount();
cursor.fetchone();

}
} catch (ConnectionException exception) {
}

(a) Scoop 1: Has try-catch block, and checks rowCount.

int COLUMN_INDEX_ID = 0;
int COLUMN_INDEX_TITLE = 1;
int COLUMN_INDEX_YEAR = 2;
int COLUMN_INDEX_NUM_PAGES = 3;
Database database = new Database(...);
Cursor cursor = database.cursor();
cursor.execute("SELECT id...");
cursor.fetchone();
int id = cursor.getInt(COLUMN_INDEX_ID);
String title = cursor.getString(COLUMN_INDEX_TITLE);
int year = cursor.getInt(COLUMN_INDEX_YEAR);
int num_pages = cursor.getInt(COLUMN_INDEX_NUM_PAGES);
Book book = new Book(id, title, year, num_pages);
System.out.println(title);

(b) Scoop 2: Wraps row in Book, defines column variables.

Figure 6: There’s more than one way to scoop code. Participants
didn’t always agree on what belonged in an example. Here are two
solutions to fetching a row from a database, created by two participants
working with CodeScoop.

1, participants rejected control structures a median of 3.5 times,
and accepted them a median of 1 time. There was no single
control structure all participants either accepted or rejected.

Comparing scoops to program slices
Of the twelve2 participants who compared their code to the
slices, 9 preferred the scoop they made, and 3 preferred the
slice. Participants often found that the scoops were more
concise than the slices. After a first look, one participant
laughed and told us that the slice “already looked gross” (P11).
A lot of the slice’s content didn’t appear relevant:

“I feel like there’s a lot of code that isn’t required to get the
use of the library, and it goes through it. . . creates the whole
HTML message, it pulls everything from Craigslist, it’s all this
unnecessary stuff. . . ” (P2).

Scoops also exposed results from the example that slices some-
times missed. Several participants pointed out that their scoop
collected results in a list or displayed a result with a println
statement (P4, P7, P16), while the slice did not.

Sometimes, the slice was more concise than the scoop. One
participant second-guessed their choices when they saw a slice
leave out code that they included (P17). Another participant
suggested the slice was more concise because some of their
initial selections in CodeScoop were difficult to reverse (P16).

2For this comparison, we exclude 7 of 19 participants because for one
task, the slice we created was incorrect. We retain the participants’
qualitative data but do not report their preference.

Variable
Add
Code

Insert
Literal

Add
Code

Insert
LiteralVariable

Task 1

COLUMN_INDEX_ID

COLUMN_INDEX_NUM_PAGES

COLUMN_INDEX_TITLE

COLUMN_INDEX_YEAR

num_pages

QUERY

arg0

priceInt

query

arg1

destination

messageHtml

password

sslFactoryClass

username

18

18

18

18

18

18

15

15

15

15

65

5

5

5

6

12

12

12

6

5

5 17

3 4 8 19

3 4

3 4 8 16 19

16

7 9

2 10

2 101 13 14

14

11

1

1

1

1

2 10 14 11 13

2 13 11 14

2 10 1411 13

2 13 11 14 Task 3

Task 2

Figure 7: Choices about resolving undefined variables are,
well. . . variable. When deciding whether define variables with additional
code or a literal value, some participants replaced them with literals, and
some defined it by adding lines from the original code. Each numbered
box in the diagram above represents a participant resolving a variable
with either code or a literal value, where decisions were often split. Al-
gorithms will require a nuanced understanding of author preference and
code semantics in order to replicate these differences.

Slices sometimes contained code that participants decided
they wanted in their scoop after seeing the slice. For task 1, 3
participants preferred the more realistic API use case in the
slice (P5, P17, P18). P5 appreciated seeing other relevant
API calls for iterating over a database. P17 and P18 realized
a reader may want more context than that provided by an
example that fetched only “one row” from a database.

Slices could seem more trustworthy than scoops. One partic-
ipant qualified their preference for the scoop with, “If mine
works, then. . . I’m not sure it does, but if it did. . . ” (P13).
Others questioned whether inserting literals would break the
program’s behavior (P9), and believed the slice would han-
dle edge cases their scoop would not (P1). We note however
that two of these participants (P1, P13) had encountered bugs
in the tool that prevented them from running and compiling
their code; another had not exposed any program results (e.g.,
through a println) (P9).

Scoops were shorter than slices for task 1 (median = 21 vs.
37 lines) and task 3 (36 vs. 101 lines), and about the same
length for task 2 (22.5 vs. 22 lines). Scoops varied from slices
in several ways. For task 1, almost all participants removed
loop code in order to fetch only one, not many, rows from the
database; most participants saved the queried row in a Book
object, and replaced variable names for column indexes with
literals. For task 2, most participants saved the scraped data to
a list. For task 3, all but one participant eliminated dozens of
lines initializing an email’s text by using literal substitutions,
or by simply leaving out code that built the message.

Suggestions for improving usability
Participants wanted to format finished code by adding white
space to group lines of code by their functionality (P1, P2,
P11, P13, P14, P16), and write comments to make code more
clear and easier to adapt (P1, P2, P4, P11, P13). Of course,
not all participants wanted to comment the code (P6).

Formatting the code as an executable main function of a new
class was not always seen as necessary. Some participants
wanted to create the code as a function that explicitly listed
any data dependencies as inputs to the function (P9). One par-

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 9

ticipant questioned why they would need to write compilable
code, telling us “they’re not going to be copied and pasted”
(P8), and another suggested they would remove import state-
ments and the class declaration when posting the example
(P12), which would cause the example to no longer compile.

Answers to Study Questions
Can programmers extract examples with the intended be-
havior using CodeScoop? Yes. 16 of 19 programmers suc-
cessfully extracted example code from existing code in under
ten minutes. In each of these cases, the code compiled, ran,
and had the behavior authors intended.

How does CodeScoop compare to a standard text editor
for extracting example code? Compared to a text editor
baseline, CodeScoop’s main advantage was its ease of use,
providing fixes and suggestions from the original code that
participants otherwise had to fix manually. The major feature
CodeScoop lacked was direct additions and edits to code.

What code-fixing decisions could CodeScoop make auto-
matically? When extracting code, programmers often re-
sponded to CodeScoop’s suggestions in different ways. This
variation suggests that different contexts and authors prescribe
different solutions. Further work is needed to know which
solutions are best (if any) for readers of examples.

Do “scoops” offer value over “program slices”? Yes,
though with some caveats. Scoops could be more concise
than slices. However, when programmers saw alternative sug-
gestions like slices, this caused them to notice other code they
wanted to include in the example.

DISCUSSION AND FUTURE WORK
From designing CodeScoop, we gained a deeper understanding
of what an example extraction tool can and should support.
This could provide a path to future work.

Supporting more example extraction choices
Besides throwing exceptions for error-prone function calls,
there were few choices about code extraction that participants
made the same way. Decisions about code simplification
involved trade-offs that balanced comprehensibility, coding
best practices, real-world use cases, and conciseness. At the
same time, there was more than one way to achieve such goals
as an author: for example, authors could add semantic meaning
with a thoughtful variable name or a descriptive comment. Our
study shows that these trade-offs play out in different ways for
different programmers. While CodeScoop can satisfy some
distinct ways of resolving code, what other decision points
does it not yet support? We expect one such class of decision
points is structural: participants told us they wanted to pull
code into parameterized methods, or insert literals as new
variables defined at the top of the scoop.

Revealing potentially relevant code from the source program
One participant described going on “auto-pilot” when they
interacted with CodeScoop. After comparing their scoop to
a program slice, several participants decided there was other
code they wanted to include in their scoop. Are revelations
about missing code inherent to code extraction? Or can these

revelations be avoided with interaction techniques that help
programmers discover code they might be missing?

Enabling direct edits while guaranteeing correctness
Almost every participant in the study wrote that one advantage
of extracting examples with the text editor is directly editing
the example code. This is no surprise—textual edits is a key
affordance of all code editors. However, the critique raises
an important question: What direct additions and edits should
example extraction tools support?

From the study, we believe programmers should at least be able
to delete arbitrary lines, add comments, and format whitespace.
For some of these edits, it’s not clear what the right interaction
technique is. Does deleting a line delete the line’s dependents?
The technology required to support such interactions quickly
becomes complex, and we believe there is a rich space of
design and engineering challenges waiting to be explored to
enable such mixed-initiative example extraction techniques.

Limitations
In the study, participants had only cursory familiarity of the
source program. In the intended use case, users will extract
examples from their own code, and not code that has been
given to them. It could be that participants find CodeScoop
easier to use when extracting from their own code. Still, for
large code bases, programmers may be just as unfamiliar with
the code they work with from day to day, as it could have been
written by other programmers or long ago.

The source programs in the study were short: 95 and 135 lines,
with all code in one method. We chose these programs be-
cause they worked well with the CodeScoop prototype, did not
require long comprehension time, and were based on real pro-
grams from our own projects. While these programs allowed
us to gain insight on how CodeScoop supported example ex-
traction, it’s not clear if larger or more complex code will
require additional interaction design. There are two hurdles
for scooping from larger programs: extending def-use analysis
to cover multiple scopes, and coming up with appropriate inter-
action techniques that can span multiple files while allowing an
author to maintain context. Possible solutions may include def-
use analysis with interprocedural dataflow (e.g., WALA [2]);
and “bubbles”-based code navigation paradigms [5].

CONCLUSION
We developed CodeScoop, a mixed-initiative interaction tech-
nique to enable programmers to extract executable code exam-
ples from existing code. Our study shows that programmers
can use such tools to successfully extract examples. Further-
more, the resulting “scoops” provide value over automatically
extracted slices. We believe tools like CodeScoop will ulti-
mately enable programmers to more quickly and effectively
share their knowledge through examples.

ACKNOWLEDGMENTS
We thank Jeremy Warner for creating the video figure. This
research was supported by the NSF CAREER award IIS
1149799, NSF Expeditions in Computing award CCF 1138996,
and an NDSEG fellowship.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 10

REFERENCES
1. Java Debug Interface.

https://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/

2. WALA: T. J. Watson Libraries for Analysis.
http://wala.sourceforge.net

3. Paul Anderson and Tim Teitelbaum. Software inspection
using CodeSurfer. In Workshop on Inspection in Software
Engineering (WISE) ’01. 4–11.

4. Titus Barik, Yoonki Song, Brittany Johnson, and
Emerson Murphy-Hill. From quick fixes to slow fixes:
Reimagining static analysis resolutions to enable design
space exploration. In ICSME ’16. 211–221.

5. Andrew Bragdon, Robert Zeleznik, Steven P. Reiss,
Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola Jr. Code bubbles: A working set-based interface
for code understanding and maintenance. In CHI ’10.
2503–2512.

6. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. Example-centric programming:
Integrating web search into the development environment.
In CHI ’10. 513–522.

7. Raymond P. L. Buse and Westley Weimer. Synthesizing
API usage examples. In ICSE ’12. 782–792.

8. Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu,
William C. Chu, and Baowen Xu. Dynamic slicing of
Python programs. In COMPSAC ’14. 219–228.

9. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov,
Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-C: A Software Analysis Perspective. In SEFM ’12.
233–247.

10. Shiry Ginosar, Luis Fernando De Pombo, Maneesh
Agrawala, and Björn Hartmann. Authoring multi-stage
code examples with editable code histories. In UIST ’13.
485–494.

11. Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and
Miryung Kim. Visualizing API Usage Examples at Scale.
In CHI ’18. To appear.

12. Raphael Hoffmann, James Fogarty, and Daniel S. Weld.
Assieme: Finding and leveraging implicit references in a
web search interface for programmers. In UIST ’07.
13–22.

13. Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and
John Hatcliff. Kaveri: Delivering the Indus Java program
slicer to Eclipse. In FASE ’05. 269–272.

14. Chris Kojouharov, Aleksey Solodovnik, and Gleb
Naumovich. JTutor: An Eclipse plug-in suite for creation
and replay of code-based tutorials. In OOPSLA ’04.
27–31.

15. Jens Krinke. Visualization of program dependence and
slices. In ICSM ’04. 168–177.

16. João Eduardo Montandon, Hudson Borges, Daniel Felix,
and Marco Tulio Valente. Documenting APIs with
examples: Lessons learned with the APIMiner platform.
In WCRE ’13. 401–408.

17. Laura Moreno, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, and Andrian Marcus. How Can I Use This
Method?. In ICSE ’15. 880–890.

18. Seyed Mehdi Nasehi and Frank Maurer. Unit tests as API
usage examples. In ICSM ’10. 1–10.

19. Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and
Chris Burns. What makes a good code example? A study
of programming Q&A in StackOverflow. In ICSM ’12.
25–34.

20. Janet Nykaza, Rhonda Messinger, Fran Boehme,
Cherie L. Norman, Matthew Mace, and Manuel Gordon.
2002. What programmers really want: Results of a needs
assessment for SDK documentation. In SIGDOC ’02.
133–141.

21. Christopher Oezbek and Lutz Prechelt. JTourBus:
Simplifying program understanding by documentation
that provides tours through the source code. In ICSM ’07.
64–73.

22. Stephen Oney and Joel Brandt. Codelets: Linking
interactive documentation and example code in the editor.
In CHI ’12. 2697–2706.

23. Chris Parnin, Christoph Treude, Lars Grammel, and
Margaret-Anne Storey. 2012. Crowd documentation:
Exploring the coverage and the dynamics of API
discussions on Stack Overflow. Technical Report.

24. Chris Parnin, Christoph Treude, and Margaret-Anne
Storey. Blogging developer knowledge: Motivations,
challenges, and future directions. In ICPC ’13. 211–214.

25. T. J. Parr and R. W. Quong. 1995. ANTLR: A
Predicated-LL(k) Parser Generator. Software - Practice
and Experience 25, 7 (1995), 789–810.

26. Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and
Thomas R. Gross. Statically checking API protocol
conformance with mined multi-object specifications. In
ICSE ’12. 925–935.

27. Martin P. Robillard. 2009. What makes APIs hard to
learn? Answers from developers. IEEE Software 26, 6
(Nov. 2009), 27–34.

28. Martin P. Robillard and Robert Deline. 2011. A field
study of API learning obstacles. Empirical Software
Engineering 16, 6 (Dec. 2011), 703–732.

29. Marc Sacks. 1994. On-the-Job Learning in the Software
Industry. Corporate Culture and the Acquisition of
Knowledge. Greenwood Publishing Group, Inc.

30. S M Sohan, Craig Anslow, and Frank Maurer. SpyREST:
Automated RESTful API documentation using an HTTP
proxy server. In ASE ’15. 271–276.

31. Jeffrey Stylos and Brad A. Myers. Mica: A web-search
tool for finding API components and examples. In
VL/HCC ’06. 195–202.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 11

https://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/
http://wala.sourceforge.net

32. Frank Tip. 1995. A survey of program slicing techniques.
Journal of Programming Languages 3, 3 (1995),
121–189.

33. Christoph Treude, Ohad Barzilay, and Margaret-Anne
Storey. 2011. How do programmers ask and answer
questions on the web?. In ICSE ’11 NIER track. 804–807.

34. Christoph Treude and Martin P. Robillard. Understanding
Stack Overflow code fragments. In ICSME ’17. 509–513.

35. Mohsen Vakilian, Nicholas Chen, Stas Negara,
Balaji Ambresh Rajkumar, Brian P. Bailey, and Ralph E.
Johnson. Use, disuse, and misuse of automated
refactorings. In ICSE ’12. 233–243.

36. Mohsen Vakilian, Stas Negara, Samira Tasharofi, and
Ralph E Johnson. Keshmesh: A tool for detecting and
fixing Java concurrency bug patterns. In SPLASH ’11.
39–40.

37. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot: A
Java bytecode optimization framework. In CASCON ’99.

38. Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal.
SnipMatch: Using source code context to enhance snippet
retrieval and parameterization. In UIST ’12. 219–228.

39. Hongyu Zhang, Anuj Jain, Gaurav Khandelwal,
Chandrashekhar Kaushik, Scott Ge, and Wenxiang Hu.
Bing Developer Assistant: Improving developer
productivity by recommending sample code. In FSE ’16.
956–961.

40. Zixiao Zhu, Yanzhen Zou, Bing Xie, Yong Jin, Zeqi Lin,
and Lu Zhang. Mining API usage examples from test
code. In ICSME ’14. 301–310.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 85 Page 12

	Introduction
	Related Work
	Tools for Authoring Example Code
	Tools for Example-Centric Programming
	Program Slicing
	Automatic Generation of Code Examples
	Intelligent Coding Assistance in IDEs

	Formative Study
	The CodeScoop User Experience
	Problem Setting
	First Step: Initial Text Selections
	Mixed-Initiative Dialogue: Completing the Example

	Supporting the ``Scooping'' Interaction
	System Implementation
	Code Extraction with a Flag-Suggest-Resolve Workflow
	Detecting errors and relevant code
	Missing definitions of variables and types
	Potentially relevant control structures

	Suggesting fixes and code additions
	Suggesting code that defines a variable
	Suggesting literal values for undefined variables

	Applying Fixes to the Scoop
	Implementation Details and Technical Limitations

	Evaluating CodeScoop's Design
	Participants

	CodeScoop Study Results
	Successfully extracting examples with CodeScoop
	Comparing CodeScoop to a standard text editor
	CodeScoop allows different views of a ``correct'' example
	Comparing scoops to program slices
	Suggestions for improving usability
	Answers to Study Questions

	Discussion and Future Work
	Supporting more example extraction choices
	Revealing potentially relevant code from the source program
	Enabling direct edits while guaranteeing correctness

	Limitations

	Conclusion
	Acknowledgments
	References

