
Tutorons: Generating Context-Relevant, On-Demand
Explanations and Demonstrations of Online Code

Andrew Head, Codanda Appachu, Marti A. Hearst, Björn Hartmann
Computer Science Division

UC Berkeley, Berkeley, CA 94720
{andrewhead, appachu, bjoern}@eecs.berkeley.edu, hearst@berkeley.edu

Abstract—Programmers frequently turn to the web to solve
problems and find example code. For the sake of brevity, the
snippets in online instructions often gloss over the syntax of
languages like CSS selectors and Unix commands. Programmers
must compensate by consulting external documentation. In this
paper, we propose language-specific routines called Tutorons
that automatically generate context-relevant, on-demand micro-
explanations of code. A Tutoron detects explainable code in a
web page, parses it, and generates in-situ natural language expla-
nations and demonstrations of code. We build Tutorons for CSS
selectors, regular expressions, and the Unix command “wget”.
We demonstrate techniques for generating natural language
explanations through template instantiation, synthesizing code
demonstrations by parse tree traversal, and building compound
explanations of co-occurring options. Through a qualitative study,
we show that Tutoron-generated explanations can reduce the need
for reference documentation in code modification tasks.

I. INTRODUCTION

Many programmers develop code by interleaving oppor-
tunistic information foraging with writing code [1], [2]. When
learning about unfamiliar technologies, programmers often
start by searching for tutorial web sites. Instead of examining
the prose, they experiment with code examples, using source
code from the pages to support learning by doing [1]. However,
programmers of all backgrounds struggle to leverage web
documentation to solve programming problems [3]–[5].

One source of confusion is that authors write teaching
materials with a certain audience in mind. This target audience
determines what information is included, and what is omitted.
For mixed language tutorials, guidance on the languages
‘embedded’ within a dominant language may be nonexistent.
An author of a web scraping tutorial may describe Python
libraries while assuming knowledge of the CSS selectors and
regular expressions used as arguments. The author’s audience
may have different skills. As a result, answers on Q&A
sites like StackOverflow can have insufficient explanation [6],
and tutorial blogs may lack scaffolding for readers seeking
clarification on unfamiliar or complex syntax.

To provide the missing scaffolding for unexplained code
in tutorials, Q&As, and other online programming help, we
propose routines called Tutorons that produce context-relevant,
on-demand descriptions of code. Tutorons automatically find
pieces of code in web pages and augment these with micro-
explanations: such explanations are context-relevant, describ-
ing only the syntactic elements that are present and important
within a snippet, using domain-specific terms. They are also

(a) A micro-explanation of a CSS selector with an automatically generated
natural language explanation and demonstration of an HTML element it
matches.

(b) A micro-explanation describing the high-level intent and low-level argument
values of a wget command.

Fig. 1. Tutoron-generated micro-explanations enable programmers to seek
in-situ help when reading and adapting code found in online tutorials and
Q&As. Programmers select the code they want clarification about, and view
natural language descriptions and demonstrations of what the code does.

on-demand — they can describe confusing code found any-
where to provide just-in-time understanding.

We have built Tutorons to explain single lines of code that
frequently occur in command lines and embedded languages
like CSS selectors and regular expressions (see Figure 1). In
our implementation, each language can be supported in several
hundred lines of code. Each one can be built as a standalone
server, accessible by an addon in the programmer’s browser to
provide explanations of code anywhere on the web.

We make three main contributions. First, we introduce
a framework for building Tutorons. Second, we describe
the processing pipeline, technical considerations, and design



guidelines involved in building Tutorons, providing details
about our efforts to implement them for CSS selectors, regular
expressions, and Unix commands. Finally, we show through
an in-lab study how Tutoron-generated micro-explanations can
help programmers modify existing code without referring to
external documentation.

II. DEFINITIONS

Throughout this paper, we refer to the following terms to
describe the system, and its input and output:

A Tutoron is a routine on a web server with language-
specific rules for detecting, parsing and explaining source code
written on a web page.

An explainable region is a substring of an online
code snippet that a Tutoron can parse and explain. For
example, the string div.klazz in the JavaScript code
$('div.klazz').text('foo') is an explainable region
for the CSS selector Tutoron.

A micro-explanation is the output of a Tutoron for an
explainable region of code. This can be a natural language
explanation or a domain-specific demonstration of what the
code does.

The Tutorons addon is a browser extension that queries
Tutorons for micro-explanations of code and displays them
on-demand for explainable regions. We use the addon to
demonstrate the advantages of context-relevant, on-demand in-
situ programming help.

III. RELATED WORK

Our work is related to research from two themes. In this
paper, we compare Tutorons to past work on the automatic
explanation of code and demonstration of code.

A. Automatic Explanation of Code

Most closely related to our work is Webcrystal [7], a tool
that assists web authors with low-level programming tasks
required to reuse and learn from examples. Webcrystal gener-
ates human-readable textual answers to user’s “how” questions
about how to recreate aspects of selected HTML elements as
well as customized code snippets for the users to recreate the
design. Similarly to Webcrystal, we generate human-readable
representations of code to help programmers reuse and learn
from online examples. In contrast to Webcrystal, we focus on
describing short, embedded languages like regular expressions
and Unix commands instead of HTML, and develop guidelines
for generating effective explanations for these languages.

In its technical approach, our work relates to recent efforts
to generate natural language explanations of code and software
engineering artifacts [8]–[14]. This body of work aims to re-
duce the cost of searching and understanding code and specifi-
cations by automatically summarizing blocks of code [8], class
diagrams [9], Java methods [10], unit test cases [11], method
context [12], parameters [13], and classes [14]. Similarly to
Sridhara et al., we consider how to detect explainable code
prior to generating descriptions [8], [10]. However, their code
detection process emphasizes summarization of methods and
blocks of code rather than locating instances of a language

Fig. 2. The Tutorons ecosystem and information flow. A programmer browses
for help in a web browser with the Tutorons addon. When they visit a
page, the addon queries a bank of Tutoron servers for different programming
languages. Each server detects explainable regions of code and produces
micro-explanations. The programmer can view these in-situ and on-demand
in tooltip overlays by clicking on the explained regions.

in potentially mixed-language code snippets. Our work is
also distinguished from this past work by examining several
frequently used languages from web-based programming help.

B. Automatic Demonstration of Code

Visual tools have been used to aid in programming instruc-
tion; Sorva [15] presents a good review. PythonTutor [16] is a
recent programming visualization tool for CS education. The
tutor is embeddable within a web page and supports simul-
taneous viewing of program source code, program execution,
visual representations of Python objects, and program output.
More recently, Ou et al. produced visualizations of pointer-
based data structures in the heap [17]. Beyond visualizations,
code can be represented by discrete structures. D’Antoni
et al. [18] created counterexamples of system behaviors to
provide helpful feedback for computer science students doing
automata design problems. We draw inspiration broadly from
this past work in visualization and example generation to
automatically produce demonstrations of regular expressions
and CSS selectors. We believe we are the first to produce
guidelines for generating effective micro-explanations of code
found in online programming help.

IV. AUTHORS AND READERS IN THE TUTORON
ECOSYSTEM

In the current incarnation of Tutorons, an author of pro-
gramming documentation writes a Tutoron to adaptively de-
scribe code that programmers find while they browse the
web. A Tutoron is a routine for generating explanations or
demonstrations of code for a specific language, accessible as
a web API. When queried with the content of a web page,
a Tutoron detects explainable regions of the language, parses
them, and returns explanations for each region as formatted
HTML that can be viewed from a tooltip.

The information flow of the Tutorons ecosystem is shown
in Figure 2. By installing an addon for the browser, a pro-
grammer receives instant access to micro-explanations, or in-
situ descriptions of code, from Tutoron servers. The addon
queries existing Tutorons with the page source, receiving
micro-explanations for all explainable regions of code. After
the addon receives a response, the programmer can click on
any explainable string of text to view an explanation in a tooltip
(see Figure 1). The addon can query many explanation servers
for multi-language support within the same page.



(a) The CSS selector. (b) The CSS selector with quotes.

(c) A jQuery selection. (d) A sloppy selection.

Fig. 3. If a Tutoron does not automatically detect code a programmer wants to
have explained, they can request a specific Tutoron to explain it. Tutorons can
allow “sloppy” selections by adjusting user-reported regions to ones that can
be parsed. For example, our CSS selector Tutoron searches for jQuery strings
closest to the user-reported bounds, making the above selections equivalent.

After a page loads in the browser, the addon sends parallel
requests to the Tutoron servers to detect all explainable code.
Explanations are therefore fetched in one batch when the
user first accesses the page. Once the response is received,
explanations can be accessed instantaneously by clicking on
the explained regions. The original web page is instantly
available to the programmer, and micro-explanations for each
language become available as each Tutoron processes the
document. Computational burden then resides on the server.

The addon colors explainable regions to indicate what code
programmers can gain clarification on. If a Tutoron fails to
detect code that a programmer wants to have explained, they
can select text and pick a Tutoron to generate an explanation
from a context menu. Users may select the bounds of an
explainable region in a way that the Tutoron doesn’t expect,
e.g., including the quotation marks on either side of a CSS
selector string literal. Tutorons can adjust the boundaries of
user-reported regions before parsing, if given sufficient context
from the browser addon. As an example, one variant of our
CSS selector Tutoron fixes sloppy region bounds for selectors
in jQuery strings by searching for the pair of quotation marks
nearest to the user’s original selection (see Figure 3).

Micro-explanations could also be integrated into individ-
ual programming help pages through a Wordpress plugin or
Javascript library. We have implemented a Javascript library
so any tutorial page can fetch and display explanations from
Tutorons regardless of the visitor’s browser.

V. HOW TO BUILD A TUTORON

A Tutoron is a routine that detects, parses, and explains
code for a programming language in HTML documents. We
describe each processing stage with overarching strategies we
have determined for finding relevant code in a page, parsing
languages, and generating domain-appropriate explanations.
We augment our discussion with implementation details of
Tutorons we developed for CSS selectors, regular expressions,
and the wget Unix command.

A. Detection

In the detection stage, a Tutoron should extract explainable
regions from an HTML document using the language’s lexicon
and / or syntax. This can consist of four steps:

First, the Tutoron extracts blocks of code from HTML
pages by selecting code-related elements. Each of our current
Tutorons extracts blocks of code from some combination of
<code>, <pre>, <div>, and <p> elements.

Second, it divides code blocks into candidate explainable
regions based on language-dependent rules. CSS selectors and
regular expressions can be detected as string literals in parsed
Python or JavaScript code, requiring an initial parsing stage
to detect these candidate regions. Commands like wget often
occupy a line of a script, meaning that candidate regions can
be found by splitting code blocks into lines.

Third, it passes candidate regions through a language-
specific syntax checker to determine if it follows the grammar.
Note that this can be combined with the parsing stage of the
Tutoron processing pipeline.

Finally, a Tutoron may reduce false positives by filtering
candidates to those containing tokens representative of the
language. This is necessary when candidate regions are small
and the lexicon and syntax of the language are lenient or broad.
While a string like 'my_string' in a JavaScript program
could represent a custom HTML element in a selector, it is
more likely a string for some other purpose. Elements in a
CSS selector more often than not have tag names defined in
the HTML specification (e.g., p, div, or img).

It may happen that the same explainable region is detected
by multiple Tutorons. For example, ‘div’ could be a CSS
selector as well as a regular expression. While in practice the
candidate regions of our current Tutorons differ enough that
this is not a noticeable problem, we describe approaches to
solve this problem in the discussion.

B. Parsing

Detected code snippets are parsed into some data structure
in preparation for explanation. We have found two methods of
building parsers to be useful. The first method is to introduce
hooks into existing parsers to extract the results of parsing.
This is useful when it is necessary to recognize a wide range
of symbols and their semantics, such as handling the complex
interplay of spaces, quotation marks, and redirects involved in
parsing Unix commands.

The second method is to develop a custom parser for
the language that supports a subset of the language. For
CSS selectors, we wrote a 30-line ANTLR1 parser to gain
control over the parse tree structure, allowing us to shape it to
how we wanted to generate explanations. The resulting parser
integrated nicely into existing code for the selector Tutoron.

C. Explanation

During the final stage, explanation, the Tutoron traverses
the parse structure to generate explanations and demonstrations
of the code. The implementation details of this stage are spe-
cific to the parse structure and the desired micro-explanation.
In the next section, we describe techniques to provide inspira-
tion for future language-specific micro-explanations.

VI. DESIGNING AND IMPLEMENTING RICH
MICRO-EXPLANATIONS WITH TUTORONS

We designed and implemented micro-explanations for three
languages. For each, we aimed to generate useful explanations
for a range of possible code examples without knowing the

1www.antlr.org



function VISIT NODE(node)
if node has id then clause = node.element

clause += ‘ with ID node.id’
else

clause = pluralize(node.element)
if node has class then

clause += ‘ of class node.class’
end if

end if
if node has child then

child = visit node(node.child)
clause += child + ‘from’ + clause

end if
return clause

end function

Fig. 4. A recursive representation of our technique for generating an
explanation of a CSS selector from a tree of elements and their attributes.

precise content ahead of time. We discuss techniques for
natural language explanations, document generation, template
instantiation, and common usage mining to construct micro-
explanations for CSS selectors, regular expressions, and wget.

A. CSS Selectors

CSS selectors appear in JavaScript, stylesheets, and web
scrapers. Despite their small size, advanced and compound
CSS selectors cause errors for programmers working with
HTML and CSS [19], making them an appropriate language
for developing automatic micro-explanations.

1) Explaining CSS selectors with natural language: Our
method of building natural language explanations for CSS
selectors involves language generation through parse tree
traversal. Our English language explanation technique is im-
plemented as a tree walker that starts at a leaf node and climbs
up through its ancestors. The walker first generates a clause at
a leaf node that consists of a single noun — a description of
the element’s tag type in plain English (e.g., ‘link’ instead of
the anchor tag ‘a’, and ‘bolded text’ instead of ‘strong’). It
then appends modifiers to the noun to describe the ID, classes,
attributes, and pseudo-selectors for the node which must be
present for the node to be selected.

Then the walker ascends. At each ancestor, it forms a
phrase that its child selector is picked “from” the parent (see
Figure 4). When it reaches the root, the walker completes a
sentence describing that the selector shown chooses the child
via all of its ancestors. English language is realized using
SimpleNLG2. We show descriptions we generate in Table I.

2) Generating example documents: Selectors refer to node
characteristics and parent-child and sibling relationships man-
ifest in HTML. We synthesize simple documents for which
those characteristics and relationships hold.

Our generation technique is implemented as a visitor for
the parse tree of a CSS selector. For each node that represents
a tag of an HTML element, we use PyQuery3 to construct an
HTML element. The visitor starts at the leaf nodes of the tree.
As it ascends, the visitor constructs the document by appending
child nodes to their parent. The resulting document is pretty-
printed with BeautifulSoup4 with spaces, newlines, and carets
escaped for display in the browser.

2https://code.google.com/p/simplenlg/
3https://pypi.python.org/pypi/pyquery
4http://www.crummy.com/software/BeautifulSoup/

(a) form.myform (b) table tr td (c) #first:hidden

Fig. 5. Examples of HTML documents that can be matched by a CSS
selector, automatically generated by our CSS selector Tutoron. Note that we
bolden the font of the selected node, for example in subplot 5(b), where the
selected element is the td nested inside a tr in a table.

To convey that the leaf nodes are the elements the selector
chooses (rather than all elements in the generated document),
leaf nodes are marked with a span to bolden and color the
element. If an element has no tag name, we create a generic
div to represent it. Attributes, IDs, and class names are
added to the opening tag of the element. As pseudoclasses
like checked and hover are not visible from the document
but are valid components of selectors, we demonstrate their
presence as comments within the element that was selected
(see Figure 5(c)).

Future iterations of CSS micro-explanations might benefit
from rendering the documents as they would appear when
viewed in a browser, particularly for graphical elements like
tables and form inputs.

B. Regular Expressions

Regular expressions can be difficult for novices and time-
consuming for experts to understand. There is a plethora of
tools that generate token-by-token explanations of patterns5,
visualize them6, and help programmers debug them7. We
discuss techniques to visualize and explain regular expressions
by reappropriating third-party tools and generating example
strings.

1) Explaining expressions through diagrams via third-party
visualizations: In an early prototype, we developed a Tutoron
for visualizing regular expressions, leveraging the third-party
visualizer RegExper (see Figure 6). While the technical imple-
mentation details are trivial, we mention it here as an example
of how a Tutoron author can leverage demonstrations produced
by their peers to create micro-explanations.

2) Generating example strings: Inspired by recent work
on building counterexample-guided feedback on automaton
design problems [18], we aimed to generate helpful and
instructive examples of what a regular expression can match.
The explanation stage we have developed shares thematic ties
with the CSS selector document generator.

Like the demonstrations for CSS selectors, we choose
to generate brief but demonstrative examples, assuming that
strings cannot be too long, or else readers will not be able to
grasp the intent of the pattern. Given a regular expression, we
build a parse tree that consists of branches, repetitions and
literals by examining output from Python’s built-in regular
expression compiler. We generate each sub-pattern marked
with a repetition * or + exactly once to ensure the subpattern
is represented in the text without adding too much length to

5http://rick.measham.id.au/paste/explain.pl
6http://regexper.com/
7https://www.debuggex.com/



TABLE I. TEXT GENERATED TO EXPLAIN CSS SELECTORS

Selector Realized Text

div.video-summary-data a[hrefˆ=/video]
The selector ‘div.video-summary-data a[hrefˆ=/video]’ chooses links with URLs starting
with ‘/video’ from containers of class ‘video-summary-data’.

input:focus The selector ‘input:focus’ chooses in-focus inputs.

p.introduction::text The selector ‘p.introduction::text’ chooses text from paragraphs of class ‘introduction’.

Fig. 6. A micro-explanation of a regular expression that reappropriates
content from the third-party tools RegExper and explain.pl in an in-situ tooltip.

String Type Regular Expression Generated Example
MAC addresses ([0-9A-F]{2}[:]){5}([0-9A-F]{2}) D8:E6:0C:ED:0E:79

US Phone numbers ˆ(\d{3})-(\d{3})-(\d{4})$ 307-039-2703

Fig. 7. Examples of regular expressions followed by automatically generated
example strings our Tutoron builds.

the string. All literals are printed exactly as they appear in
the pattern, and we choose a random side of each branch. See
Figure 7 for examples of strings we generate to satisfy regular
expression patterns.

We take effort to produce readable strings. When we find
a repetition of alphanumeric characters, we print an English
dictionary word four to six letters in length. If the character
class contains symbols or numbers, we insert two random non-
alphabetic characters from the class.

C. wget Unix command

As Miller et al. [20] point out, command lines offer
efficiency at the price of learning command names and options
through up-front effort. We created a Tutoron for the file
retrieval Unix command “wget” to show how Tutorons can
reduce the effort of recalling the meaning of single-character
argument symbols and positional arguments for Unix com-
mands in general. wget has around 100 arguments, making it
impractical to remember what each individual one means, par-
ticularly with its opaque flags. Utilities like wget already have
comprehensive (albeit non-adaptive) documentation accessible
through man pages and the -h flag from the command line.

These documents can be used as a starting point for building
in-situ micro-explanations.

1) Listing command options and extracting help text from
source code: We generate argument-level help by extracting
and modifying help phrases for each argument from the wget
source code. Two patterns in the help strings allow us to adapt
them into more context-relevant descriptions of the arguments:
(a) Some strings begin with a noun indicating what the value
represents, (e.g., “location for temporary files created by the
WARC writer.”) After detecting a noun at the start of a string
using a standard typed dependency parser8, we add the value
to the start of the statement, (e.g., “my dir is a location
for temporary. . . ”). (b) If the variable name occurs in all
capital letters in the help phrase (e.g., “insert STRING into
the warcinfo record.”), we substitute the value of the argument
into the help phrase, replacing the variable’s name.

2) Compound explanations of frequent option groups: In
many commands including wget, multiple options are fre-
quently used in conjunction with each other to define program
behavior. Based on a pilot effort with wget, we propose a way
to find common use cases of commands with many options by
mining programming help. We scraped 1000 questions from
StackOverflow matching the query ‘wget’. From these, we
extracted 510 lines of code that began with the string ‘wget’.
Using a custom wget parser from an earlier version of the wget
Tutoron, we parsed 346 of these lines without error. For all
lines, we then computed the co-occurrence of options, counting
how often certain options were used together.

Commonly co-occurring option pairs include -r and -A
(28 counts), --user and --password (23 counts), and
-r and -l (22 counts). These pairs are indeed semantically
meaningful: -r, -l, and -A can be used together to recursively
scrape for a certain file type from a site; and --user and
--password are used concurrently to authenticate.

In our wget Tutoron, we create string templates for describ-
ing the intent of these frequent groups of options, into which
the values of the parameters can be substituted (Table II).
To reduce the verbosity of text descriptions, we require that
any one option can be described in at most one compound
explanation. With this technique, we generate explanations for
wget commands like that shown in Figure 8.

D. Design Guidelines for Micro-Explanations

We propose four guidelines to aid in designing micro-
explanations for languages in online code examples.

8http://nlp.stanford.edu/software/lex-parser.shtml



TABLE II. TEMPLATES FOR DESCRIBING COMBINATIONS OF WGET OPTIONS

Template Command Realized Text

Recursively scrape web pages linked from {url}
of type ‘{accept}’, following links {level} times. wget -l3 -A '*.jpg' site.com

Recursively scrape web pages linked from http://site.com of
type ‘*.jpg’, following links 3 times.

Authenticate at {url} with username ‘{user}’ and
password ‘{password}’.

wget --user andrew --password
mypass site.com

Authenticate at http://site.com with username ‘andrew’ and
password ‘mypass’.

Fig. 8. A multi-level explanation of wget comprises three parts. (a) An
introduction to the command. (b) A meaningful description of what this
combination of options does at a high level. (c) A review of the meaning
and values of each of the options.

1) Leverage multiple representations to illuminate high-
level intent and enable low-level understanding of syntax:
We explain CSS selectors and regular expressions with text and
examples, and wget with high-level and low-level explanations.
Such a format supports multiple information needs at once,
enabling a viewer to grasp the purpose of the code and engage
in fine-grained inspection to prepare for modifying it.

2) Be concise — skip static explanations and focus on
dynamically generated content: Our CSS natural language
explanations open with one sentence introducing the purpose
of CSS selectors. Our usability study revealed that parts of
explanations that remain unchanged are likely to be ignored.

3) Reappropriate existing documentation: Explanations for
the wget Tutoron were built from help messages extracted from
the utility’s source code. Programmers working with languages
like regular expressions have already built visualization and
explanation engines used widely within their communities. The
task of the Tutoron author, when good tools and documentation
exist, is to locate and build mashups of parsers and explainers
built by their peers, and then support in-situ explanations by
producing a reliable language detector.

4) Inspect code examples on a large scale to support
explanations of common usage: Common usage can be defined
in a data-driven way, rather than relying on intuition. By
parsing CSS selectors from jQuery code on 50 tutorial pages,
we found that 332 / 466 (71.2%) are single tag names, IDs or
class selectors. To determine common argument groups that
can be described together, detect and parse code examples
from online Q&As or web tutorials, as we did for the wget
command.

VII. EVALUATION

A. Detection and Parsing Accuracy

While users can explicitly select text that they want to have
explained with the Tutorons addon, automatic preprocessing
and detection of explainable regions can provide improved
information scent. In this section, we assess our Tutorons’
accuracy in detecting explainable regions.

We collected a set of online programming help pages that
used the languages of each of our Tutorons. To assemble
this corpus, we formulated queries for tutorials. Using the
API for StackOverflow, a popular programming Q&A site, we
extracted the most frequent triplets of tags that included each
language’s tag. For these triplets, we queried Google with the
triplet and the word ‘tutorial’ (e.g. ‘mod-rewrite redirect regex
tutorial’), yielding around 200 programming help documents
per language. After choosing random sample of 50 documents
for each language from these sets, we manually extracted the
element and character location of all uses of each language,
yielding more than 100 examples per language. We ran the
Tutorons on each document and compared the regions the
Tutorons found to those we extracted by hand.

With the current Tutorons, we observe 95% precision
(129/136) and 64% recall (129/203) for wget, 80% precision
(191/238) and 41% recall (191/466) for CSS selectors, and
70% precision (62/88) and 14% recall (62/445) for regular
expressions. Our detectors achieve high precision yet low
recall. Major reasons for low recall are: (a) wget: we fail
to reliably detect code examples within sentences of text. (b)
selectors: we scan only ‘pre’ and ‘code’ nodes while skipping
‘div’ nodes. (c) regular expressions: while we wrote rules to
reliably detect regular expressions in some contexts (Apache
server configs, sed, grep, and Javascript), rules are missing for
others (Python, Perl, etc.). We compensate for low recall by
extending the browser addon to allow programmers to request
explanations for arbitrary text. Recall may be further improved
by incorporating a machine learning approach to recognizing
commands (e.g., [21]).

We note that we should achieve a 100% success rate
parsing valid wget commands and Python flavor regular ex-
pressions by reusing existing open source parsers. As we built
our own CSS selector parser, we tested its accuracy parsing
the ground truth selectors from the detection tests. Of 466
selectors, our Tutoron parsed 440 (94%) without error. Of the
selectors that failed to parse, 13 contained invalid characters
in the original HTML markup or jQuery pseudo-classes un-
recognized in the CSS lexicon. The other 13 illuminated cases
our parser cannot yet handle: selectors grouped by comma,
double quotes around attribute values, and pseudo-classes that
take arguments (e.g., :nth-child(5)). Our concise hand-
written parser achieves high parsing success in its current form,



and we will revise the selector Tutoron in the near future to
properly parse the above failure cases.

B. In-Lab Usability Study

We conducted a usability study to understand how Tutoron-
generated micro-explanations affected programmers’ ability to
perform code modification tasks with online example code.
We recruited nine programmers from university listservs for
undergraduate and graduate students in computer science and
information science. All participants had at least two years
of programming experience, with a median of four years of
experience in their longest-used language.

Each participant attempted eight code modification tasks
(plus two practice tasks) using two different languages: CSS
selectors and wget. For each language the four coding tasks
increased in difficulty with the fourth being especially tricky.

Each code modification asked a participant to:

1) Read a task. For example: “modify the [wget] com-
mand so it does not automatically fetch the images
necessary to display the webpage.”

2) View a snippet that is unrelated to the specific
modification goal, but that contains some clue on
how to do it. For example, a StackOverflow post
that includes, but doesn’t explain, this command:
wget --random-wait -r -p -nd -e

robots=off -A".pdf" -U mozilla
http://math.stanford.edu/undergrad/

3) Write and test code against a condition we provide.

After reading the snippet, participants could use any re-
sources they wanted to, including web search, to complete the
task. To make the code examples similar to what a programmer
would find when searching for help, we adapted snippets from
StackOverflow questions or answers. Tasks asked participants
to modify code, as we hoped to find whether the Tutorons pro-
vided enough understanding of the code to help programmers
perform a practical task.

In one condition, snippets were enhanced with micro-
explanations. The explanation did not contain exactly the
missing information to complete the task. For example, for
wget tasks, participants were shown explanations of all options
and asked to discover and modify or remove only those
relevant to the task. While these tasks limit the generalizability
of our study, we believe that it shows that Tutorons can help
in the situations we devised and tested.

Participants viewed micro-explanations for alternating
tasks so we could observe differences in how they approached
the tasks with and without them; order of exposure to micro-
explanations was counter-balanced across participants. When
in the micro-explanation condition, participants were asked to
find and view all micro-explanations for the source code after
reading the snippet.

Participants were told they would have five minutes for
each task; if participants had extra time and they had not
completed the task, we often asked them to continue so we
could observe their problem-solving process. For this study,
the browser addon was not equipped with visual indicators
of explainable regions as this feature was not yet conceived,

Task P1 P3 P5 P7 P9 Task P2 P4 P6 P8
CSS 1 CSS 1
CSS 2 D D CSS 2
CSS 3 CSS 3 D
CSS 4 D D D D CSS 4

wget 1 wget 1 D D D
wget 2 D D D D wget 2
wget 3 wget 3 D D D D
wget 4 D D D D D wget 4 D D

Fig. 9. Tasks for which participants sought additional documentation beyond
the snippet. In white rows, participants used micro-explanations; in gray
rows, they did not. A cell is marked with the letter ‘D’ if a participant
accessed external documentation during that task. Participants used additional
documentation for 63.9% of tasks when micro-explanations were not available,
and for 5.6% of tasks when they were available.

although micro-explanations were pre-fetched. We asked par-
ticipants to “think aloud” as they performed these tasks.

C. Results

Our primary goal in observing participants was to de-
termine if Tutoron-generated micro-explanations were helpful
during code modification tasks and reduced the need to ref-
erence additional documentation. In the discussion below, we
refer to our participants as P1− 9.

1) Micro-explanations help programmers modify code with-
out using other documentation: When using the micro-
explanations, 2 out of 36 tasks, or 6% required external docu-
mentation. However, for those tasks where micro-explanations
were not available, 64% of the time participants did indeed
access external resources in order to complete the task. This
difference is significant (Fisher’s exact test, p < 0.0001) The
wget tasks especially required external help, with man pages
and other resources being accessed in 89% of cases. A log of
external document accesses is shown in Figure 9.

These preliminary results suggest that the micro-
explanations are effective at reducing the need to switch
contexts to find relevant programming help for completing
some programming tasks. The micro-explanation aided the
programmers in several ways:

Reducing the need to access external documentation.
Participants were able to identify which flags had to be
removed from wget commands without consulting external
documentation, despite not having used wget before (P4). For
some, the micro-explanation affirmed a guess the participant
already had about how to construct a CSS selector (P1).

Context-relevant pattern matching. One participant
noted that the micro-explanations helped to map flags for a
wget command to the higher-level intent of the task (P4). For
the most complex CSS selector task, two participants noted that
the example HTML shown in the micro-explanation provided



a pattern of what fields needed to be changed from the selector
in the snippet to capture the element and ID required by the
task prompt (P2, P4).

Learning programming concepts. For another participant
with little previous experience with CSS selectors, a micro-
explanation in the first task provided him with the knowledge
needed to write the selector for the next two tasks, one task for
which he was not allowed to view micro-explanations (P5).

2) Programmers without micro-explanations searched ex-
ternal documentation: Some of the difficulties participants
faced in the no-micro-explanation condition highlight the ben-
efits of in-situ help. Some participants had difficulty searching
for programming help on a web search engine (Google) and
using the search results. One participant could not express
the symbols ‘ˆ=’ as a query term when searching for the
pattern’s meaning for CSS selectors. Her follow-up queries
with English language query terms yielded search results that
were not relevant (P3).

Participants also had difficulty navigating conventional
forms of programming help. When looking for the -r flag in
the man page for wget, participants found that a page-internal
search for the flag yielded so many matches that it was difficult
to find the desired definition (P2, P4). The description of the
-N timestamp flag that was relevant to the code modification
task was not adjacent to where the flag was introduced, causing
one participant to overlook this information (P3).

These results underscore the usefulness of context-relevant
explanations located within the tutorial text itself.

3) Opportunities for improvement: In those cases where
the micro-explanation did not aid programmers, there were a
few primary causes:

No visual affordances. For the study, we did not place
visible cues showing where explanations were available. Some
programmers failed to find micro-explanations since they had
to be explicitly invoked by selecting text. One participant (P2)
had to be reminded that he had to click around the snippet to
find micro-explanations for unexplained code when he had not
found all explainable regions. Since this study, the browser
addon has been extended to provide visual feedback of all
regions automatically detected.

Selection region ambiguity. At the time of the study, the
algorithm we used to summon an explanation for selected text
caused irrelevant explanations to appear when users selected
text that was a substring of a detected, explained string. Several
participants experienced this problem (P1, P3, P5). With the
addition of visual information scent, clickable regions now
have exactly one correct explanation to overcome this problem
in the default case.

Incomplete explanations. The micro-explanation text may
not include enough detail to help programmers develop ade-
quate mental models of unfamiliar material. For instance, even
after completing all four CSS selector tasks, P5 appeared to
believe that CSS selectors were HTML elements themselves,
rather than labels that could fetch them, perhaps confused by
the example HTML produced in each micro-explanation. In
this case, the idea of micro-explanation can be expanded by
adding links to fuller tutorial material.

VIII. DISCUSSION

A. Study Caveats

We are encouraged by the results of this preliminary
evaluation of the micro-explanation idea of context-sensitive
programming explanations. Participants were able to complete
the tasks in most cases without requiring other documenta-
tion, whereas participants without the explanatory helper text
needed to consult external resources. That said, the study had
several limitations. It consisted of only a small number of
participants, and the tasks were designed such that the Tutorons
would function properly.

Furthermore, participants may have been more patient
with micro-explanation content than they would have been
with documentation they found on their own, especially if
they assumed micro-explanations were selected to provide
critical insight about the code snippets. In real world scenarios,
programmers may not take the same care in reading the micro-
explanation text as they did in the study.

Finally, tasks in the study involved edit or deletion tasks
with existing code. Tutorons will have to be augmented before
they can provide insights for additive tasks and suggest relevant
code options that are not in the code itself.

B. Future Work

When Tutorons are available for many languages, disam-
biguation between different Tutorons will become necessary
as multiple detectors can match a given string. We see two
potential avenues: First, users could explicitly restrict which
Tutorons they wish to activate on a given page. Second, expla-
nations could be ranked by the likeliness that an explainable
region belongs to each detected language. We are currently
investigating the use of both rule-based and learned weights
computed from the frequency of characteristic node types in
parse trees in order to generate these likeliness ratings.

We are also interested in conducting a study with novice
programmers. We believe that observing the problem-solving
strategies of novice programmers will yield better recommen-
dations for how to design in-situ help for this group.

IX. CONCLUSIONS

Programmers frequently turn to the web to solve coding
problems and to find example code. Tutorons produce ex-
planations for unexplained code that programmers find on the
web. In our framework, Tutorons can produce effective micro-
explanations when they leverage multiple representations, fo-
cus on dynamically generated content, build on existing docu-
mentation, and address common usage. We show that Tutorons
for a collection of languages achieve around 80% precision
detecting code examples, and improve programmers’ ability
to modify online code examples without referencing external
documentation. Tutorons bring context-relevant, on-demand
documentation to the code examples programmers encounter
in online programming documentation.

ACKNOWLEDGMENTS

This work was supported by NSF IIS 1149799.



REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1589–1598.

[2] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 513–522.

[3] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: An exploratory study,” in Proceedings of the
2012 International Conference on Software Engineering, pp. 266–276.

[4] B. Dorn, A. Stankiewicz, and C. Roggi, “Lost while searching:
Difficulties in information seeking among end-user programmers,”
Proceedings of the American Society for Information Science and
Technology, vol. 50, no. 1, pp. 1–10, 2013.

[5] B. Dorn and M. Guzdial, “Learning on the job: characterizing the
programming knowledge and learning strategies of web designers,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 703–712.

[6] S. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code
example?: A study of programming Q&A in StackOverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM),
pp. 25–34.

[7] K. S.-P. Chang and B. A. Myers, “WebCrystal: understanding and
reusing examples in web authoring,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 3205–3214.

[8] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in 2011 33rd
International Conference on Software Engineering (ICSE), pp. 101–
110.

[9] H. Burden and R. Heldal, “Natural language generation from class
diagrams,” in Proceedings of the 8th International Workshop on
Model-Driven Engineering, Verification and Validation, pp. 8:1–8:8.

[10] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java
methods,” in Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, pp. 43–52.

[11] M. Kamimura and G. Murphy, “Towards generating human-oriented
summaries of unit test cases,” in 2013 IEEE 21st International Confer-
ence on Program Comprehension (ICPC), pp. 215–218.

[12] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,” in
Proceedings of the 22nd International Conference on Program
Comprehension, pp. 279–290.

[13] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating parameter
comments and integrating with method summaries,” in 2011 IEEE
19th International Conference on Program Comprehension (ICPC),
pp. 71–80.

[14] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for
Java classes,” in 2013 IEEE 21st International Conference on Program
Comprehension (ICPC), pp. 23–32.

[15] J. Sorva, “Visual program simulation in introductory programming
education,” Ph.D. dissertation, Aalto University, 2012.

[16] P. J. Guo, “Online python tutor: embeddable web-based program
visualization for cs education,” in Proceedings of the 44th ACM
Technical Symposium on Computer Science Education, pp. 579–584.

[17] J. Ou, M. Vechev, and O. Hilliges, “An interactive system for data
structure development,” in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pp. 3053–3062.

[18] L. D’Antoni, D. Kini, R. Alur, S. Gulwani, M. Viswanathan, and
B. Hartmann, “How can automatic feedback help students construct
automata?” ACM Trans. Comput.-Hum. Interact., vol. 22, no. 2, pp.
9:1–9:24, Mar. 2015.

[19] T. H. Park, A. Saxena, S. Jagannath, S. Wiedenbeck, and A. Forte,
“Towards a taxonomy of errors in HTML and CSS,” in Proceedings
of the Ninth Annual International ACM Conference on International
Computing Education Research, pp. 75–82.

[20] R. C. Miller, V. H. Chou, M. Bernstein, G. Little, M. Van Kleek,
D. Karger, and others, “Inky: a sloppy command line for the web
with rich visual feedback,” in Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology, pp. 131–140.

[21] A. Pavel, F. Berthouzoz, B. Hartmann, and M. Agrawala, “Browsing
and analyzing the command-level structure of large collections of
image manipulation tutorials,” Citeseer, Tech. Rep., 2013.


