

Turkomatic: Automatic, Recursive Task and

Workflow Design for Mechanical Turk

Anand Kulkarni†, Matthew Can*, Björn Hartmann*
†Department of Industrial Engineering and Operations Research, *Department of Computer Science

anandk@berkeley.edu, matthewcan@berkeley.edu, bjoern@eecs.berkeley.edu

Abstract

On today’s human computation systems, designing tasks and
workflows is a difficult and labor-intensive process. Can workers
from the crowd be used to help plan workflows? We explore this
question with Turkomatic, a new interface to microwork
platforms that uses crowd workers to help plan workflows for
complex tasks. Turkomatic uses a general-purpose divide-and-
conquer algorithm to solve arbitrary natural-language requests
posed by end users. The interface includes a novel real-time
visual workflow editor that enables requesters to observe and edit
workflows while the tasks are being completed. Crowd
verification of work and the division of labor among members of
the crowd can be handled automatically by Turkomatic, which
substantially simplifies the process of using human computation
systems. These features enable a novel means of interaction with
crowds of online workers to support successful execution of
complex work.

 Introduction
Crowdsourcing marketplaces like Amazon’s Mechanical
Turk have demonstrated tremendous utility for batch
processing tasks that require human judgment. The vast
majority of work carried out on these marketplaces today
consists of microtasks: cheaply-paid, brief tasks designed
to be completed in a few seconds or minutes, e.g., tagging
an image or looking up data online. Microtasks typically
emerge in the context of workflows that split larger tasks
into multiple smaller steps and distribute these steps to
distinct workers: for example, content generation tasks
may separate outlining, writing, and verification steps.
However, effective task and workflow design remain
something of a black art among crowdsourcing users,
involving substantial planning, software development, and
testing. The complexity of this process limits participation
in crowdsourcing marketplaces to experts willing to invest
substantial time in both design and planning; it also limits
the kinds of tasks that can be crowdsourced successfully.

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose that the problem of workflow design can be
automated by partially delegating the responsibility for
designing workflows to the workers themselves.
Turkomatic is a crowdsourcing interface that consults the
crowd to design and execute workflows based on user
requests. Our system generates pre-structured Human
Intelligence Tasks (HITs) asking Mechanical Turk workers
(Turkers) to decompose complex tasks into simpler ones.
Other workers solve these tasks sequentially or in parallel
and later combine the results into a coherent solution. This
process can be recursive, generating multiple
decompositions across several steps.

During the development of Turkomatic, we found that
the workflows generated by the crowd can often benefit
from small, directed modifications by requesters, e.g., if
Turkers misunderstood tasks, gave inadequate solutions, or
where the requester’s original language was unclear.
Consequently, we developed a visual workflow editor that

Figure 1: Turkomatic harnesses crowds to plan and execute
complex work requested in natural language. A request
(top) is subdivided and solved by workers. Turkomatic
shows a task graph as work is progressing (left). Workers
merge completed subtasks until a global solution is
produced (right) – in this case, a new blog.

enables requesters to manage and control existing
workflows while they execute. Requesters can delete or
modify plans made by workers, restart task branches
launched by workers, or seed the system with partial plans
to evaluate their effectiveness at producing desired results.

The resulting system offers both expert and non-expert
users of microwork platforms a new way to interface with
the crowd for executing complex work. For non-expert
users, we expect that Turkomatic will offer a substantially
easier way to engage the crowd, since minimal knowledge
of HIT or workflow design is required to use these
platforms. For expert users, the included visual workflow
editor offers an immediate way to control the crowd’s
execution of a workflow. In both settings, Turkomatic
enables requesters to solve complex, high-level tasks more
readily than existing interfaces. Following a review of
related work, we discuss how Turkomatic operates from
the requester and worker perspectives, and describe its
algorithmic foundation.

Related Work
Early work in human computation emphasized its utility as
a tool for efficiently processing massive datasets in
applications like tagging and classification that were
outside the reach of autonomous algorithms (von Ahn
2006). Most work on Mechanical Turk today remains
batch data processing (Ipeirotis 2010). Quinn and
Bederson’s taxonomy does not consider any large-scale
creative or integrative tasks to be tractable by distributed
human computation (Quinn 2011). AI work around
Mechanical Turk has emphasized its utility for supporting
active learning rather than creative or open-ended problem
solving (Sheng 2008, Sorokin 2008).

More recent research has attempted to expand the types
of tasks that can be solved via distributed human
computation. The TurKit project provides tools for
deploying arbitrary iterative tasks on Mechanical Turk to
enhance quality and eliminate redundant computation
(Little 2009, 2010). Follow-up work by Little et al.
compares the tradeoffs between iterative and parallel
human computation processes (Little 2010). In these
investigations, it is assumed that task designers (not
workers) will determine how tasks are broken down in all
cases. Bigham et al.'s VizWiz is capable of handling open-
ended, natural-language requests from its users, but doesn't
attempt to parallelize these queries or handle tasks more
complex than short requests (Bigham 2010). Bernstein et
al. propose a “Find-Fix-Verify” paradigm to divide open-
ended work in a manner that maintains consistency and
accuracy (Bernstein 2010). Their Soylent system is the first
to integrate human computation interactively into a
creative process (word processing).

At present, few tools for managing results from the
crowd exist. Mechanical Turk and Crowdflower allow
users to export end results as Excel tables, but systems for
managing workflows do not exist. While most
crowdsourcing tasks are designed manually based on prior
experience and intuition, initial work suggests that
optimization techniques can play a useful role: by varying
HIT parameters programmatically, response quality and
response rate can be improved automatically (Huang
2010).

Recently, work-in-progress on CrowdForge introduced a
map-reduce paradigm to divide complex work into smaller
steps for crowdsourcing platforms (Kittur 2011). We also
employ a divide-and-conquer strategy, but introduce a
recursive algorithm. In addition Turkomatic adds workflow
visualization and editing capabilities not present in
CrowdForge.

Scenario: Working with Turkomatic
The following scenarios indicate typical cases of how
Turkomatic can be used to crowdsource complex work
without and with requester intervention.

Scenario One: Alice is visiting San Francisco and wants
to plan a trip through the city. She types the following into
the Turkomatic task interface: “Plan a day trip through San
Francisco that visits the city’s most famous sights.” A
worker on Turkomatic divides this task into two sub-tasks:
1) choosing the set of locations to visit and 2) planning a
route between locations using public transportation. These
sub-tasks are solved by two new workers. A fourth worker
combines the partial solution into a complete itinerary.

Scenario Two: Bob wants to learn about crowdsourcing.
He decides to use Turkomatic to collect information on this
topic. Like Alice, he types a request into Turkomatic:
“Please write a full encyclopedia article about
crowdsourcing, with references”. Turkomatic passes the
task to workers, who subdivide the task into four sub-tasks:
give the definition of crowdsourcing, give examples of

Figure 2: End users request work from Turkomatic through a
natural-language interface. By eliminating the requirement for
requesters to design HITs, posting work to crowd systems
becomes substantially easier.

crowdsourcing, give examples of companies in
crowdsourcing, and provide links to news articles about
crowdsourcing. Bob is skeptical of the crowd’s ability to
decompose the task, so he consults the Turkomatic
workflow editor. Bob realizes that workers are providing
examples of companies that use crowdsourcing. Instead, he
would like to learn about companies that provide
crowdsourcing services. Using the workflow editor, he
changes the subtask description and reissues it to the
crowd. The other sub-tasks remain unaffected.

Design and Implementation
Turkomatic comprises three distinct parts. First, a
recursive divide-and-conquer algorithm to plan work.
Second, worker interfaces that ask workers to split, solve,
merge, and verify work. Third, a requester user interface
to create, visualize and manage work. We discuss the
model and the associated worker interfaces first, then
describe Turkomatic from the requester’s perspective.

Algorithmic Model
Turkomatic uses a recursive divide-and-conquer algorithm
to guide workers through the process of splitting work into
smaller subtasks, distributing this work among the crowd
and solving it, and recombining the results. This general-
purpose algorithm for generating workflows can be
interpreted as a meta-workflow, which determines when
work should be verified by other users or released back to
the market. Turkomatic’s algorithm for solving work
operates in two phases: a subdivision phase that recursively
breaks down the problem into smaller components and
solves them, followed by a recombination phase where
these solutions are merged into a coherent solution.

Subdivide Phase
The “subdivide” phase handles decomposition of tasks and
the creation of solution elements. An initial HIT provides a
Turker with a task, asking whether or not it can be solved
within a given amount of time (ten minutes in our
prototype). Based on the worker’s answer, Turkomatic will
generate a new HIT. If a Turker indicates the task can be
solved directly, the new HIT will ask the next Turker to do
so (Figure 3b). If the task is judged too complex, the next
Turker is asked to break down the task into two or more
subtasks that are easier to solve than the original task
(Figure 3a). These subtasks are posted again to Mechanical
Turk. This process is recursive: the subtasks generated by
the subdivide step may themselves be broken down by
another subdivide step. To avoid ordering conflicts among
the subtasks, the algorithm further asks Turkers to
determine if a set of subtasks can be worked on in parallel
or whether they must be completed serially.

Figure 3. HITs corresponding to (A) subdivision, (B) solution, (C)
merging and (D) verification.

Merge Phase
The “merge” step combines solution elements produced
during “subdivide” steps into partial solutions to the
problem. Once all the subtasks produced in a given
subdivide step have been solved, the solutions are listed
together in a “merge” HIT (Figure 3c). The HIT instructs a
worker to combine the solutions to the subtasks in a way
that solves the overall task. The merge process continues
until the requester's original task is solved.
Verification
Turkomatic validates the quality of work produced by
subdivide, solve, and merge functions by asking the crowd
to determine whether an answer is valid. In “verification”
HITs (Figure 3d), a single worker is presented with a task
and its solution; the worker is asked to verify that the
solution is acceptable. In the current version of
Turkomatic, a single worker verifies each task. This choice
still results in some substandard tasks passing. Future
implementations of Turkomatic will utilize redundancy
instead, asking multiple Turkers to produce solutions to
each HIT and asking other Turkers to vote on the best.
Using Turkers to select from redundant work for quality is
a well-understood practice (Bernstein 2010, Little 2010).
HIT Design Findings
The biggest challenge in building a task decomposition
system such as Turkomatic proved to be designing general-
purpose HITs that fit a wide variety of tasks while still
conveying specific requirements of the decomposition and
reassembly system to a worker. We report several
techniques used in the design of HITs for task
decomposition:

Show context of tasks in a workflow: Providing workers
with a birds-eye view of the overall decomposition proved
critical. Workers can easily become confused if their
perceived role did not match the one assigned to them. We
ultimately included the full decomposition generated by
other Turkers into the HIT itself, along with subtask
solutions from other workers.

Visually separate prior work: The complex, novel HITs
we used to represent subdivide and merge required
substantial time for workers to comprehend. Workers
sometimes had difficulty identifying which task in a
complex plan they were being asked to carry out. We used
strong colors (red, green) and bold text to distinguish
between different kinds of information in the HIT (prior
work versus specific instructions); such emphasis was
more effective than indentation or whitespace. Minimizing
the amount of text on-screen increased the likelihood that
HITs would be solved as intended.

Requester Interfaces
This section reviews interaction with Turkomatic from the
requester’s perspective.
Requesting Work
Requesters post new Turkomatic jobs through a natural-
language web interface (Figure 2). Inspired by web search,
it offers a text box where the requesters specify what they
want to accomplish.

Expert requesters can also author decompositions that
serve as a starting point. Such decompositions may be
preferred if the requester believes that crowds will not be
able to properly decompose a given task (e.g., because the
decomposition requires significant domain expertise). A
decomposition specifies a tree structure where the leaves of
the tree are the tasks that have to either be solved or further
sub-divided. In the current prototype, decompositions have
to be authored in code; future work could provide a visual
editor for this task. Once a new task prompt or task tree is
loaded, the Turkomatic algorithm takes over to request
further subdivisions, solutions, and merge steps.
Visualizing Ongoing Work
To enable requesters to gain insight into partially
completed work, Turkomatic provides a workflow
visualization that shows the current state of an ongoing job
as a decomposition tree (Figure 4). Such a visualization
can inform requesters how much of the work has been
accomplished, what strategies have been taken, and
whether subtask solutions or decompositions are of
sufficient quality.

Figure 4: Turkomatic includes a real-time visualization and
editing interface. Each node represents a task generated by a
crowd worker; the color indicates whether it has been solved or
not. Requesters can click to modify either the plan or the
solutions to any step to eliminate worker errors or search for
alternate solutions.

Turkomatic uses GraphViz1 to render workflows as
node-link diagrams. Nodes in the graph represent the
component tasks of a job issued to Turkomatic. Directed
edges denote the relationship between tasks and their sub-
tasks (i.e. when there is a subdivision). Dashed directed
edges indicate the order of tasks in a serial split, where one
sibling must complete before another sibling can be posted.
Each node contains a summary of the task prompt, the
solution to the prompt (if already available), and a status
indicator. A task can either be a) waiting on a decision
whether to split or solve (orange in Fig 4); b) in-progress
and waiting for subtasks to complete (cyan); or c) solved
(green). The visualization is interactive: brushing over
nodes displays complete instructions and solutions in a
floating panel, as it often cannot fit into the node itself.
Editing Workflows
Ongoing work can be unsatisfactory for multiple reasons: a
crowd-authored decomposition may be flawed, or a
solution to a subtask may be of low quality. Requesters can
edit existing workflows in real-time to address such
challenges. Requesters can choose to either edit the task
description or the solution for any node in the workflow.
Once an edit is performed, Turkomatic computes which
subsets of tasks will have to be performed again by
additional workers.

When a task description is changed, any subtasks created
for this task by the crowd may also no longer be valid.
Turkomatic therefore invalidates the entire subtree below
the edited task and reissues the task. Subsequent siblings in
serial decompositions also have to be recomputed. Finally,
if the task already had a solution, all upstream solutions of
parents that used this stale information have to be
recomputed.

When a requester edits a task solution directly, the entire
worker-generated subtree of that task is discarded. Tasks in
this subtree that are in flight (currently being worked on)
will also be discarded. As in the task instruction case, serial
siblings and solutions of parents are invalidated as well.

Experimenting with Turkomatic
To explore how effectively crowds can be used to support
the execution of complex work, we examined how well
Turkomatic’s merge and decomposition steps performed
both with and without expert intervention. We examined
tasks that push the boundary of current single-user
microwork: 1) complex content creation, specifically on-
demand essay writing; 2) searching and integrating
information to answer a natural-language query; 3)
creating and populating a blog. For each task, we examined

1 http://graphviz.org

how successful Turkomatic was under the following
scenarios:
1 planning and executing natural-language tasks without

requester intervention (fully automatic mode),
2 using requester intervention to modify erroneous work

by Turkers (Turkomatic as crowd support tool), and
3 using crowds to solve prepopulated workflows generated

by workers (Turkomatic as an execution interface).
To isolate our results from the impact of Mechanical-Turk-
specific design choices such as pricing, we also executed
these tasks in a separate experiment with a pool of expert
Mechanical Turk users at our university. We priced HITs
at 20 cents per subdivision, merge, or execution HIT, and 5
cents per verification task.

Results
Table 1 summarizes the results we obtained: end-to-end
tasks succeeded when expert workers carried out
decomposition and solution of the sub tasks. In the fully-

Figure 5: Requesters can intervene repeatedly to increase the
quality of the work. Different paragraphs of a three-paragraph
essay are independently written by workers; some work is not
acceptable to the requester, so he reissues subtasks.

Task instructions Condition Outcome
Workers only Failed to complete
Requester
intervention

N/A

Requester seeding Completed with 3
interventions

Create a list of the
names of the
Department Chairs of
the top 20 computer
science college
programs in the US
(each school has 1
Department Chair)

Expert workers Completed without
intervention

Workers only Failed to complete
Requester
intervention

N/A

Requester seeding Completed with 4
interventions

Write a 3-paragraph
essay about
crowdsourcing

Expert workers Completed without
intervention

Workers only Failed to complete
Requester
intervention

Failed to complete

Requester seeding N/A

Please create a new
blog about Mechanical
Turk, with a post and a
comment on that post.

Expert workers Completed with 1
intervention

Table 1: Results from Turkomatic Experiments.
N/A: not attempted.

automatic condition, some decompositions and solutions
were of high quality, but tasks remained only partially
completed, for two major reasons. First, some tasks were
starved – after a while, no new workers attempted the
available tasks. This occurred most often when a worker
marked a task as solvable when, judging by the
complexity, it should have been subdivided. Task
starvation has been observed in other projects and can be
counteracted through listing optimization. Second, some
tasks were derailed: Either a worker-provided task
description or a solution was of sufficiently poor quality
that subsequent workers could not recover. When
requesters intervened using the workflow editor, these
tasks eventually succeeded. Figure 5 shows an example of
the essay writing task where repeated intervention
eventually led to a good solution.

The full content created by our workers is available at
http://husk.eecs.berkeley.edu/projects/turkomatic/hcomp11

Discussion
The utility of Turkomatic’s requester interface is apparent:
work generally completed successfully with requester
intervention. When unusable results arrived, requesters
were able to rapidly iterate by modifying local structure
without redeploying an entire workflow. But why did tasks
without expert users or requester intervention starve or
derail? We discuss several possible explanations.
Crowd Verification Underperformed
The current design uses a single crowd worker to verify
each division or solution step. We found numerous
instances where these verifications failed – bad work was
accepted. The verifier may lack sufficient context to judge
quality. We believe that having the verifier choose between
multiple possible alternative solutions is a more promising
strategy as it allows comparison and contrast.
Instructional Writing is Uncommon for Workers
We noticed that expert workers provided more detailed
instructions in their subdivisions; they were also more
careful to ensure subtasks were self-contained and did not
require reference to parent tasks. Composing good
instructions is not trivial and takes time. This requirement
stands in tension with the goal of workers to maximize the
number of tasks they complete per unit of time. While we
observed that some workers were able to write excellent
instructions, the majority of other tasks on Mechanical
Turk do not require such careful attention, and workers
may thus be disincentivized from delivering nuanced work.
Reputational Effects
Turkomatic assigns responsibility for wording tasks to the
workers. Interestingly, this means that bad choices by
Turkers may negatively affect the requester’s reputation.
We noticed that workers on Turker Nation, a discussion

forum for workers, posted messages about tasks created by
Turkomatic, complaining about poor wording or excessive
scope. Workers were not aware that these tasks were in
fact created by other workers and assigned their
dissatisfaction to the requester.

Conclusion and Future Work
Turkomatic’s primary advantages appear to lie in both its
generality and its flexibility – crowd-produced workflows
and generic HITs can handle an interesting range of tasks.
However, this one-size-fits-all model trades off ease-of-
specification for required runtime supervision: Workflows
can be generated without exhaustive planning, but require
some requester intervention at runtime to guarantee quality
of results. In future work, we plan to investigate to what
extent this supervisory function can again be assigned to
crowd workers.

Turkomatic’s crowd-assisted workflow generation also
makes no guarantees for optimality in pricing or execution
time. The question of optimizing crowd-produced
workflows is fascinating and merits future investigation.

References
Bernstein, M., Little, G., Miller, R.C., Hartmann, B., Ackerman,
M., Karger, D.R., Crowell, D., and Panovich, K. Soylent: A Word
Processor with a Crowd Inside. UIST 2010.
Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R.C.,
Miller, R., Tatrowicz, A., White, B., White, S., and Yeh, T.
VizWiz: Nearly Real-time Answers to Visual Questions.
UIST 2010.
Huang, E., Zhang, H., Parkes, D.C., Gajos, K.Z., and Chen, Y.
Toward automatic task design: A progress report. HCOMP 2010.
Ipeirotis, P. Analyzing the Amazon Mechanical Turk
Marketplace. Working paper, http://hdl.handle.net/2451/29801.
2010.
Kittur, A., Smus, B., and Kraut, R. CrowdForge: Crowdsourcing
Complex Work. CHI 2011 Work-in-Progress.
Little, G., Chilton, L.B., Goldman, M., and Miller, R.C. TurKit:
Tools for Iterative Tasks on Mechanical Turk. HCOMP 2009.
Little, G., Chilton, L.B., Goldman, M., and Miller, R.C. TurKit:
Human Computation Algorithms on Mechanical Turk.
UIST 2010.
Little, G., Chilton, L.B., Goldman, M., and Miller, R.C.
Exploring Iterative and Parallel Human Computation Processes.
HCOMP 2010.
Quinn, A.J. and Bederson, B.B. Human Computation: A Survey
and Taxonomy of a Growing Field. CHI 2011.
Sheng, V.S, Provost, F., and Ipeirotis, P.G. Get Another Label?
Improving Data Quality and Data Mining Using Multiple, Noisy
Labelers. KDD 2008.
Sorokin, A. and Forsyth, D. Utility data annotation with Amazon
Mechanical Turk. CVPRW 2008.
von Ahn, L. Games with a Purpose. IEEE Computer (2006).

