Craft & Making 2 (Outputs)

DIS 2017, June 10-14, 2017, Edinburgh, UK

Machine Learning for Makers: Interactive Sensor Data
Classification Based on Augmented Code Examples

David A. Mellisf, Ben Zhang', Audrey Leung’, Bjorn Hartmann'
1: UC-Berkeley EECS, i: UC-Berkeley I School
mellis@berkeley.edu, benzh @cs.berkeley.edu, audrey @ischool.berkeley.edu, bjoern @berkeley.edu

ABSTRACT

Although many software libraries and hardware modules sup-
port reading data from sensors, makers of interactive sys-
tems often struggle to extract higher-level information from
raw sensor data. Available general-purpose machine learn-
ing (ML) libraries remain difficult to use for non-experts.
Prior research has sought to bridge this gap through domain-
specific user interfaces for particular types of sensors or algo-
rithms. Our ESP (Example-based Sensor Prediction) system
introduces a more general approach in which interactive vi-
sualizations and control interfaces are dynamically generated
from augmented code examples written by experts. ESP’s
augmented examples allow experts to write logic that guides
makers through important steps such as sensor calibration,
parameter tuning, and assessing signal quality and classifi-
cation performance. Writing augmented examples requires
additional effort. ESP leverages a fundamental dynamic of
online communities: experts are often willing to invest such
effort to teach and train novices. Thus support for particular
sensing domains does not have to be hard-wired a priori by
system authors, but can be provided later by its community
of users. We illustrate ESP’s flexibility by detailing pipelines
for four distinct sensors and classification algorithms. We
validated the usability and flexibility of our example-based
approach through a one-day workshop with 11 participants.

Author Keywords
Maker culture, sensors, machine learning, examples

ACM Classification Keywords
H.5.2. User Interfaces: input devices and strategies; interac-
tion styles; prototyping.

INTRODUCTION

Today’s makers — whether hobbyists tinkering with elec-
tronics, designers prototyping new products, or educators
guiding students in hands-on activities — have access to a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

DIS 2017, June 10-14, 2017, Edinburgh, United Kingdom

ACM 978-1-4503-4922-2/17/06.

http://dx.doi.org/10.1145/3064663.3064735

1213

ML Pipeline

Calibration
Parameters
+
Training Data

Example Author ESP

End-User

Figure 1. The ESP system leverages code examples written by ma-
chine learning experts to support end-users in applying ML to real-time,
sensor-based applications.

wide range of sensors. Companies like SparkFun Electron-
ics and Adafruit Industries make sensors available to hobby-
ists through the creation and distribution of breakout boards,
software libraries, tutorials, and more. Platforms like Ar-
duino and the Raspberry Pi facilitate writing code that inter-
face with these sensors. In addition, a variety of toolkits pro-
vide novices with high-level hardware and software building
blocks for working with sensors and other electronic compo-
nents (e.g. [19, 25, 42, 49]). All of which makes it relatively
straightforward for a hobbyist to purchase, connect, and get a
reading from a sensor.

It is, however, significantly more challenging to build inter-
active systems that analyze the data from these sensors in or-
der to make higher-level inferences about physical phenom-
ena — e.g. recognizing gestures from accelerometer data, or
extracting information about the nature of a sound picked up
by a microphone. Makers tend to use hard-coded thresholds
for sensor readings, which is inadequate for real-world us-
age involving changing environmental and electrical condi-
tions [33, 34].

At the same time, a vast array of signal processing and ma-
chine learning techniques have been developed by researchers
and industry to detect a wide range of phenomena using sen-
sor data. Powerful libraries such as SciKit-Learn [46] and
MLPack [36] offer many sophisticated tools, but harnessing
their power for a particular application domain requires sig-
nificant machine learning expertise. As Domingos [11] has
noted, much of the effort involved is in feature engineering —
the selection of appropriate filters (pre-processing modules)
and mathematical transformations (feature extraction mod-
ules) for transforming raw input data into a form suitable for
processing by a machine learning classifier. Together with the

Craft & Making 2 (Outputs)

DIS 2017, June 10-14, 2017, Edinburgh, UK

This algorithm picks a representative sample for each class and looks for the class with the closest representative sample. As a result, you don't need a lot of training data but bad
training samples can cause problems.
) 422 ¢

2% (4,71}

140 0 0

RENAME RENAME M RENAME RENAME

DELETE DELETE DELETE DELETE DELETE

TRIM TRIM TRIM TRIM TRIM

RELABEL RELABEL RELABEL RELABEL RELABEL

DELETE ALL DELETE ALL DELETE ALL DELETE ALL

DELETE ALL

RENAME RENAME RENAME RENAME
DELETE DELETE DELETE DELETE
TRIM TRIM TRIM TRIM
RELABEL RELABEL RELABEL RELABEL
DELETE ALL DELETE ALL

DELETE ALL DELETE ALL

Figure 2. The training tab of the ESP interface, running our gesture recognition example: (a) live sensor data with prediction from the machine learning
pipeline, (b) training data with confusion scores (‘“closeness to”), (c) interface for editing training data.

classifier itself, and optional post-processing modules (e.g.
for smoothing or de-bouncing classifier predictions), these
pre-processing and feature extraction modules form a ma-
chine learning pipeline. Once a machine learning pipeline
has been defined, it can often be applied to a variety of spe-
cific phenomena within the same general category, e.g. a ges-
ture recognition pipeline can be applied to many different ges-
tures, and a speaker identification pipeline can be applied to
many different individual voices. This means that the hard
work of feature engineering, once complete, can potentially
be of use to many different projects. However, just providing
a pipeline itself is not enough. Makers also need appropri-
ate tools to manage the transfer and application of a pipeline
to their specific project context, as well as methods to under-
stand why a pipeline may not perform as intended, and how
to improve this performance.

Prior HCI research has explored the potential of domain-
specific interfaces for allowing ML novices to visualize and
customize specific, fixed pipelines, e.g. for gesture recog-
nition using dynamic time warping (MAGIC [3] and Exem-
plar [24]) and for image classification using decision trees
(Crayons [12]). Developing a custom software application for
each application domain does not scale, as significant effort
is required even for machine learning experts already familiar
with the domain. Other work provides generic interfaces for
defining pipelines and managing training data [6, 13, 38], but
assumes that the user is knowledgeable enough in machine
learning to design and implement their own pipeline.

Our Example-based Sensor Prediction (ESP) system takes a
community-centric approach to supporting makers in apply-
ing machine learning to a wide range of applications (Figure
1): expert community members author augmented code ex-

1214

amples that define an ML pipeline, as well as additional logic
to help novices customize this pipeline. When novices run
these examples, ESP generates visualization and customiza-
tion user interfaces based on these augmentations. Our ap-
proach is motivated by the tremendous success of online ex-
pertise sharing communities such as Stack Overflow [32] or
the Arduino Forum [2], where expert users routinely invest ef-
forts to create and share carefully crafted code examples and
explanations. Thus support for particular sensing domains
does not have to be hard-wired into ESP, but can be provided
later by its community of users.

In ESP, experts author pipelines using a general-purpose ma-
chine learning library, the C++ Gesture Recognition Toolkit
(GRT) [17]. This allows for diverse and complex pipelines
and enables the expert to focus on machine learning, not GUI
development. In addition to the pipeline itself, an expert-
authored ESP example can include domain-specific heuris-
tics for evaluating signal quality, calibrating the system to
their specific sensor setups, and collecting quality training
data. For instance, a gesture recognition example can sup-
port calibration for accelerometers with different ranges and
provide warnings if the data is noisy. Experts can also pro-
vide domain-specific parameters for pipeline configuration,
allowing for the translation of abstract machine learning ter-
minology into a relevant and understandable vocabulary.

ESP generates a graphical interface from these augmenta-
tions (Figure 2) that allows makers to apply the pipelines to
their own projects by iteratively modifying the training data
and customizing pipeline parameters. ESP provides a range
of pipeline-agnostic visualizations and operations inspired by
prior research, supplying a common interface for novices to
manage training data and to visualize and customize pipeline

Craft & Making 2 (Outputs)

behavior. These elements include visualization of each stage
of the pipeline, from raw sensor input to final features; nu-
merical measures of the confusion between different classes
of training data; and real-time plots of the distribution and
confidence of pipeline predictions.

To ensure the flexibility of the ESP system, we developed it in
parallel with a set of examples, motivated by techniques pub-
lished in the HCI literature and encountered as aspirational
goals in our classroom experience. These motivating exam-
ples involve different sensors and classifiers, using their di-
verse characteristics to inform the system’s functionality and
design. These examples are:

e gesture recognition using an accelerometer and dynamic-
time warping (DTW)

e speaker identification using a microphone and a Gaussian
Mixture Model (GMM) applied to MFCC coefficients

e grasp detection using swept-frequency capacitive sensing
and a Support Vector Machine (SVM) (a la Touché [44])

e simple object recognition using a color sensor and a naive
Bayes classifier

We describe some insights from a formative usability study
with six participants that guided early development. We also
describe insights from a full-day workshop with 11 partici-
pants, experienced makers with little knowledge of machine
learning. This workshop validated the flexibility and usability
of ESP’s example-based approach, with participants finding a
range of custom applications for the provided pipelines.

In summary, the contributions of this work are:

e Design of a system that supports experts in authoring aug-
mented ML code examples, and novices in using and cus-
tomizing such examples through auto-generated user in-
terfaces for a wide range of interactive projects.

e Demonstration of the flexibility of such an example-based
approach through the implementation of examples using
a diversity of sensors and classifiers.

e Evaluation of the system through a hands-on workshop,
highlighting the ways in which our examples-based sys-
tem can be adopted by our target audience.

RELATED WORK

Here, we discuss three categories of related work: interfaces
supporting the use of machine learning, example-centric ap-
proaches to supporting novices in other domains, and HCI
applications of machine learning to sensing.

User Interfaces for Machine Learning

Prior interfaces for making machine learning more accessible
often follow one of two general approaches. The first involves
pairing a specific domain and a set of machine learning algo-
rithms and then building an application and interface specifi-
cally tailored to them. This approach makes the system easier
to use but limits its flexibility. For instance, the Crayons sys-
tem [12] supports users in image classification through the
use of decision trees and a pre-defined set of pixel-based fea-
tures. PapierMache [27] and EyePatch [35] generalize this

1215

DIS 2017, June 10-14, 2017, Edinburgh, UK

approach to support a wider variety of vision algorithms,
but also supply specific Uls for specific classifiers. A CAP-
pella [10] supports end-users in building context-aware sys-
tems based on a pre-defined classes of video and audio events.
Gesture Coder [31] learns to recognize multi-touch gestures
from examples. Closer to our work are systems targeting real-
time sensor data. MAGIC [3] is a system for gesture recogni-
tion using dynamic time warping with a fixed set of features
derived from acceleration data. Similarly, Exemplar [24] sup-
ports the use of basic thresholding and dynamic time warping.
Beyond these individual systems, Amershi’s work [1] charac-
terizes the larger design space for offering interactive control
of machine learning systems.

A second approach is to generically support a wide range of
machine learning algorithms and rely on the user to configure
them for particular domains. This approach is more flexible
but requires the user to decide which machine learning algo-
rithms and features to use. Examples include Wekinator [13],
Gestalt [38], and mLlib [6]. A unique approach is taken by
PICL [15], which turns machine learning into a hardware
component that makers can add to their circuits.

Our approach is to build a generic system that supports many
types of machine learning and to leverage expert-authored ex-
amples to scaffold novices for particular applications. Ex-
perts can embed a variety of domain-specific heuristics and
enable ESP to visualize the behavior of the entire pipeline.
The visualizations themselves are based on techniques intro-
duced in the prior work above. Perhaps closest to our vision
of this community-centric approach is the emerging practice
of sharing Jupyter Notebooks in the data science commu-
nity [26]. Such online notebooks can contain code and data,
explanatory text, and visualizations. These notebooks focus
on offline data analysis, and the choice of visualization is en-
tirely left to the author. ESP formalizes scaffolding through
the APIs it provides to authors, and focuses on real-time data
classification.

Working with Examples

Examples can provide important scaffolding for learning,
serve as inspiration, and lower the barrier to participa-
tion [30]. HCI research in programming and design tools has
focused on facilitating the creation of more powerful exam-
ples [18, 37], improving searching and browsing of example
corpora [4, 41] and enabling comparison between multiple
available examples [28]. Other techniques focus on reusing
existing web pages or visualizations as examples by extract-
ing their underlying structure or data [29, 45]. We investigate
the utility of examples in the novel domain of real-time ma-
chine learning, drawing on the insight that custom user inter-
faces can greatly extend the power of examples and the ability
of novices to make use of them.

Machine Learning for Real-Time Sensor Data

HCI researchers have applied machine learning to a wide
range of sensing-based applications. Examples include: ap-
plying electromyography to sense and classify muscle acti-
vations in the forearm to control games [43]; classifying ca-
pacitive touch patterns of electrodes on a tablet to infer how

Craft & Making 2 (Outputs)

ML Implementation ML Analysis

Pipeline Parameter Editor

ESP File Change Pipeline

Parameters N\
Download |_

Example Data Management & ESP Runtime
Calibrators Scoring Interface Sensor Data Visualization Classifier Visualization
Calibrate

Build Physical Add/Modify Train Run Classifieron __ Observe
Sensing System Sensors Training Data Model Live or Stored Data

Performance

Figure 3. Schematic overview of ESP : User actions are shown in gray;
system support for those actions in blue.

it is being held [8]; recognizing which part of a user’s finger
hit a touch surface using acoustic features from a surface mi-
crophone [22]; and determining the location of finger taps on
the body from microphone data [23]. Another set of ubig-
uitous computing systems aims to recognize activity in the
home (e.g., faucet-level water usage, individual appliance us-
age) by deploying a single sensor on a house’s infrastructure
and applying machine learning [9, 14, 16, 20, 39]. We en-
vision these projects as potential examples within our ESP
system — that is, our system provides a framework for these
researchers to share their work in a way that would facilitate
its adoption and adaptation by novices.

THE ESP SYSTEM

Our ESP system builds on expert-authored examples to pro-
vide an interface that allows machine-learning novices to
modify and adapt machine-learning pipelines for use in their
own projects. As Patel et al. [38] note, the process of apply-
ing machine learning typically involves frequent iteration be-
tween implementation and analysis. ESP supports machine-
learning novices in this iterative process, as applied to the
classification of real-time sensor data (Figure 3). With ESP,
the pipeline itself is defined in the expert-authored example.
Thus, for the ESP user, implementation means the collection
and refinement of training data and the tuning of pipeline pa-
rameters. In particular, users need a way to easily record new
training data from live streams of sensor data as well as an
understandable vocabulary for the available parameters. For
ESP, analysis means inspecting the behavior of the pipeline
on incoming sensor data, observing the behavior of the over-
all interactive system containing the pipeline, and understand-
ing the quality of and relationships between individual sam-
ples of training data. Here we discuss the interface of the ESP
system (Figure 2) and the way it supports these processes of
implementation and analysis for a machine-learning novice.

ESP is implemented in openFrameworks! and runs on Mac
OS X, Windows, and Linux (Figure 7). ESP is open-source
and available on GitHub.?

Visualizing Sensor Data

Machine learning pipelines may differ in the dimensionality
of the sensor input, as well as the number and type of pre-
processing and feature extraction stages. The ESP interface
provides a pipeline-agnostic visualization of the live sensor
data as it flows through the pipeline. We generalize the ap-
proach taken in MAGIC [3], showing live sensor data as a

"http://openframeworks.cc/
Zhttps://github.com/damellis/esp

1216

DIS 2017, June 10-14, 2017, Edinburgh, UK

Pipeline

Audio Input

v

Fourier
Transform

. frequency (shown as snapshot because of high dimensionality) —>

v
12 MFCC
Coefficients

Classification
(not shown)

Figure 4. The pipeline tab of the ESP interface shows a live visualiza-
tion of each stage of the machine learning pipeline. Here, we show the
pipeline for our speaker identification example.

line graph, with each dimension in a different color. The in-
terface allows the user to toggle this main live plot between
the calibrated inputs from the sensor(s) and the final features
being fed to the classification algorithm. By default, all ESP
tabs show the live sensor data stream with an overlay of live
predictions. That means that wherever the user is in the inter-
face, they can always view the results of interacting with their
sensor(s), facilitating experimentation. The pipeline tab visu-
alizes each stage of the machine learning pipeline, graphing
the sensor data resulting from each pre-processing and feature
extraction module (Figure 4). To extract the required data, we
query the pipeline using standard C++ interfaces — defined by
the GRT and implemented by each module in the pipeline.
For high dimensional data (above 32 dimensions), instead of
a time-varying plot, we show a snapshot of the most recent
data point.

Calibrating Sensors and Checking Signal Quality
Different users of ESP may have sensors or setups with dif-
ferent sensitivities or ranges, varying signal quality, and dif-
ferent physical setup. The ESP calibration tab allows the user
to calibrate ESP for their particular setup and to receive feed-
back on their signal quality. These samples are analyzed by
the expert-supplied code. For instance, our accelerometer-
based example asks the user to collect a sample of data with
the accelerometer upright and one with it upside-down. Our
example code uses these samples to calculate the sensor val-
ues corresponding to 0 and 1g, as well as provide warnings
in the presence of noise. Calibration allows the example and
training data to be shared across accelerometers with differ-
ent ranges. Expert-authored heuristics alert the user to poten-
tial signal quality issues that may interfere with the machine
learning.

We also allow the expert to apply similar heuristics to each
sample of training data collected by the user. This can pro-
vide domain-specific warnings, e.g. about the absence of mo-
tion in the recording of a gesture, or about noise in an audio
sample.

Managing Training Data

A common aspect of the process of applying an existing ma-
chine learning pipeline to a particular project is the collection
of project-specific training data. The ESP interface facilitates

Craft & Making 2 (Outputs)

DIS 2017, June 10-14, 2017, Edinburgh, UK

Domain ESP System

Example Author

ESP User

Machine Learning Pipeline Visualizes pipeline stages, predictions,

and likelihoods

Codes pipeline for a particular task

Incorporates pipeline into their project

Provides interface for collection of
calibration samples and applies cali-
bration to incoming data

Sensor Calibration

Specifies calibration samples required
and code for processing them, as well
as warnings about signal quality

Collects specified samples in GUIL

Training Data Management Provides interface for training data
management. Calculates confusion
scores between classes and informa-

tion gain of new samples

Provides reference training data

Collects and modifies training samples
for specific project

Pipeline Configuration Provides interface for on-the-fly

pipeline configuration

Specifies pipeline parameters that can
be tuned

Tweaks the parameters based on their
usage

Input and Output Specification | Provides a variety of input and output

stream implementations

Selects and configures appropriate
streams

Adjusts as necessary

Table 1. Domains involved in applying machine learning to real-time sensor data and the work done by the ESP system, the example author, and the

ESP user within each domain.

iterative collection and modification of training data and al-
lows for on-the-fly re-training of the machine learning algo-
rithm while it runs as part of the larger interactive project.
The training tab (Figure 2) allows the user to collect, visu-
alize, and edit training samples. Currently we support up to
nine classes, which can be given custom names by the user.
To collect new training samples, the user presses and hold the
corresponding key on the keyboard (‘1° to ‘9”). It’s also pos-
sible to pause the pipeline and extract new training samples
from the history of sensor readings. Furthermore, an expert
can provide sample training data along with their example,
providing the user with a starting point for experimentation
and a visual reference of what good training data looks like.
Because training data is stored as calibrated sensor data, it
can be shared across physical setups and across pipelines with
different pre-processing or feature-extraction modules.

Scoring Training Data

Our initial usability study made clear the importance of assist-
ing users in understanding the quality of and relationship be-
tween individual training samples. To support this, we iden-
tified two scoring methods applicable to a wide range of ma-
chine learning pipelines: (1) confusion scores calculated on
all samples when the model is trained and (2) information
gain scores calculated on new training samples as they’re col-
lected.

Confusion scores can help users identify training samples
which may be mislabeled or of insufficient quality to en-
able the machine learning pipeline to correctly identify their
class. Specifically, whenever the user retrains the classi-
fier, we score each training sample by running it through the
pipeline as if it were live data, yielding the classifier’s predic-
tion of the likelihood of the sample belonging to each class
of training data. (This approach has the advantage of not re-
quiring any scoring-specific APIs in the underlying machine
learning library.) Ideally, the model would predict with 100%
likelihood that the sample belongs to the class to which the
user has assigned it — with 0% probability of it belonging to
any of the other classes. The lower the former number and the
higher the latter, the more the sample is being confused with
other classes, a sign that it may be mislabeled or of poor qual-
ity. We display these per-sample scores rather than an overall
confusion matrix because it provides a direct connection to

1217

Figure 5. The prediction tab includes a plot of the relative likelihoods of
each class of training data, shown here with the Touché example. The
three lines correspond to the following classes: Red: No touch.

Blue: Grab.

the per-sample editing operations the user might undertake as
a result of the scores. Because the expected scores for good
training samples vary across pipelines, we allow the expert to
specify a custom threshold below which to display a warning
about the corresponding training sample. This allows a little
bit of work by the example author (specifying the threshold)
to augment the value of the more complex work (score calcu-
lation) done by the system.

While confusion scores are applicable to a wide range of ma-
chine learning systems, ESP differs from the better-studied
problems of data cleaning [5] or interactive labeling [47, 48]
because our users can not only label or relabel existing train-
ing data but also collect new samples. In order to provide the
user with information about new training samples as they’re
collected, we borrow an idea from Guyon et al. [21], who pro-
posed an early online approach to data cleaning. Specifically,
we calculate the information gain of each new sample by tak-
ing the negative log of the probability given by the classifier
of the sample belonging to the class to which it was assigned
by the user. This provides the user with a suggestion of the
extent to which this new training sample will modify the be-
havior of the classifier. Scores with low information gain (e.g.
1-2%) suggest that the collection of additional training data is
offering limited value, while scores with very high informa-
tion gain (e.g. 90%+) may be a sign that the training sample
has been misclassified by the user or is of poor quality.

Visualizing Classifier Results

If a machine learning pipeline isn’t making the predictions its
user expects, it can be helpful to view more details about the
relationship between the live data and the various classes of

Craft & Making 2 (Outputs)

11 PARAMETER TUNING ::
SIMILARITY ’7
ure needs to be to a

wer the number, the
to be

TIMEOUT ‘

How long (in milliseconds) to wait after
recognizing a gesture before recognizing
another one.

CLICK TO HIDE

Figure 6. The ESP interface allows the end-user to tune the parameters
specified by the example author.

training data in order to find ways to improve the pipeline’s
performance. ESP’s predictions tab (Figure 5) plots the class
likelihoods over time — that is, for each class of training data,
the probability of the live data belonging to that class. For
models that support it, the predictions tab also plots the class
distances — a model-specific notion of the “distance” from
live data to each class. The class distance is typically used for
null rejection: a prediction that the current live data does not
belong to any of the trained classes — not even the one with
the highest likelihood — because its distance from that class
exceeds some threshold. This null rejection threshold often
included in the expert-authored tuneable parameters as it al-
lows the user to adjust the specificity of the predictions. To
better explore these plots, the user can pause the ESP pipeline
and mouse over the plots to view the numeric values for each
moment in time.

Customizing Pipeline Parameters

Users may want to tune various aspects of a machine learn-
ing pipeline to their own needs, for instance to adjust false-
positive vs. false-negative rates (i.e. precision and recall) or to
customize “debouncing” intervals (i.e. a delay between suc-
cessive predictions). In general, however, the code specifying
a machine learning pipeline contains many such potential pa-
rameters — a large space likely to be overwhelming to those
without machine learning expertise. We take an example-
centric approach towards making the parameter space under-
standable to novices. The example author specifies, in code,
parameters that can be tuned (Figure 8 (c) and (g)), along with
a domain-specific name and description for each. The end-
user can then, in the ESP GUI, view and adjust these param-
eters (Figure 6). These tunable parameters provide the end-
user with a smaller, documented parameter space focused on
their specific application, facilitating understanding and ex-
perimentation.

Validating Pipeline Correctness

As one edits a machine learning pipeline or its training data,
a common practice is to periodically check the behavior of
the pipeline on a consistent set of test or validation data. The
analysis tab supports this practice, allowing the user to record

1218

DIS 2017, June 10-14, 2017, Edinburgh, UK

—Serial Serial
—
TCP
[T —. B
| Built-in Mic

Keyboard
D 0OSC_, Emulation

Figure 7. ESP can run within a user’s larger interactive system, read-
ing input and writing output to a variety of sources. The system can
run on Mac, Windows, and Linux (including a preliminary port to the
Raspberry Pi).

[=5

a longer sequence of data against which to test the pipeline’s
performance. The tab displays a visualization of the recorded
test data with an overlay of the predictions made by the ma-
chine learning pipeline. The user can navigate through this
visualisation by selecting a region of interest on a condensed
view of the entire test data set. Whenever the machine learn-
ing pipeline is retrained (on updated training data or tuned
parameters), prediction is re-run on the test data set and the
plot updated.

Reading Sensor Data and Outputting Pipeline Results
Machine learning may be useful to add to interactive projects
that employ a diversity of sensing and actuation methods. To
support its use within these larger systems, ESP can read sen-
sor data from a variety of input streams and output pipeline
results to a variety of output streams. These include Arduino
boards or other microcontrollers connected over USB serial,
TCP network connections, and the built-in microphone on
the computer ESP is running on. Only one input stream is
supported but this can include readings from multiple sen-
sors. ESP supports multiple simultaneous outputs, sending
the same data to each. Because ESP continues to stream live
data as the user adjusts the machine learning pipeline, they
can explore and refine its behavior as part of their overall
project.

ESP APl FOR EXAMPLE AUTHORS

Here, we describe the API experts use to author an ESP ex-
ample. (The full API documentation is included in the suppl-
mental materials.) The pipeline itself is specified using the the
Gesture Recognition Toolkit (GRT) [17], a general-purpose
C++ library for real-time machine learning. We chose to
build on the GRT because it is one of the only machine learn-
ing libraries specifically intended for use with live, timeseries
data. In addition, the GRT’s use of C++ offers the potential
to port GRT pipelines to embedded platforms like Arduino
or the Raspberry Pi — platforms that are frequently used by
makers to extract data from sensors. We supply ESP-specific
functions for specifying sensor calibration, pipeline parame-
ter tuning, and input and output streams. We’ve attempted to
keep the ESP API relatively similar in style to that of Arduino
to facilitate modifications by novices if the example doesn’t
quite meet their needs.

Craft & Making 2 (Outputs)

#include <ESP.h>

ASCIISerialStream iStream(115200, 3);
TcpOStream oStream("localhost", 5204);
GestureRecognitionPipeline pipeline;
Calibrator calibrator;

A double zeroG = @, oneG = 0;

double processAccelerometerData(double input) {
return (input - zeroG) / (oneG - zeroG)

CalibrateResult restingDataCollected(const MatrixDouble& data) {
// take average of X and Y acceleration as the zero G value
zeroG = (data.getMean() [0] + data.getMean()[1]) / 2;
oneG = data.getMean()[2]; // use Z acceleration as one G value

double range = abs(oneG - zeroG);
vector<double> stddev = data.getStdDev();

if (stddev[@] / range > 0.05 ||
stddev[1] / range > 0.05 ||
stddev[2] / range > 0.05)
return CalibrateResult(CalibrateResult::WARNING,
"Accelerometer readings are noisy, check circuit.");

return CalibrateResult::SUCCESS;
}

B TrainingSampleCheckerResult checkTrainingSample(const MatrixDouble &in) {
VectorDouble stddev = in.getStdDev();
if (xmax_element(stddev.begin(), stddev.end()) < 0.1)
return Tra1n1ngSampleCheckerResult(Tram1ngSampleCheckerResuIt :WARNING,
"Warning: Gesture contains very little movement.
return TrainingSampleCheckerResult::SUCCESS;

C double null_rej = 0.4;

void updateVariability(double new_null_rej) {
pipeline.getClassifier()->setNullRejectionCoeff(new_null_rej);
pipeline.getClassifier()->recomputeNullRejectionThresholds();

void setup() {
D useInputStream(iStream);
useQutputStream(oStream);

E calibrator.setCalibrateFunction(processAccelerometerData);
calibrator.addCalibrateProcess("Resting",

"Rest accelerometer on flat surface."
useCalibrator(calibrator);

, restingDataCollected);

F DTW dtw(false, true, null_rej);

pipeline.setClassifier(dtw);
usePipeline(pipeline);

G registerTuneable(null_rej, 0.1, 5.0, "Variability",

"How different from the training data a new gesture can be and "
"still be considered the same gesture. The higher the number, the "
"more different it can be.", updateVariability);

H | useTrainingSampleChecker(checkTrainingSample);
}

Figure 8. Code for creating a pipeline for a gesture recog-
nition system: (a) code for performing calibration (the
processAccelerometerData () function normalizes each
sensor reading, the restingDataCollected () function calculates
the calibration parameters based on the user’s sample), (b) function
for warning users if training samples contain little motion, (c) variable
and function for a user-tuneable parameters, (d) registration of input
and output streams, (e) specifying the calibration samples and functions
used, (f) definition of the machine learning pipeline, (g) definition of
the tuneable parameter, (h) registration of the training sample checker.
Note that for space, we show a slightly simpler version of our gesture
recognition example than the one described in the paper.

Machine Learning Pipeline

The GRT includes a large and extensible set of modules
for the creation of machine learning pipelines, including
classifiers, pre-processing filters, feature extraction modules,
and post-processing filters, each implementing standard base
classes. This allows experts to leverage tested implementa-
tions of common modules while enabling the creation of cus-
tom modules whose interfaces are compatible with the GRT
and ESP. For instance, we implemented a feature-extraction
module to derive MFCC coefficients from an FFT spectrum
for our speaker identification example.

Calibration Specifications
In an ESP example, calibration is specified by one or more
calibration samples and a mapping function. An example is

1219

DIS 2017, June 10-14, 2017, Edinburgh, UK

shown in Figure 8(a) and (e). Each calibration sample has a
string name and description that is shown to the user. The ex-
ample author provides a callback function to process each of
these samples as they’re collected by the user, extracting any
required information (e.g. mean, standard deviation) from the
recorded series of data points. The callback can also signal a
warning or error and provide a message to be shown to the
user. In case of error, the calibration sample is rejected and
the user must collect a new one. After all the calibration sam-
ples have been recorded, live data is passed to the specified
mapping function, which translates each sensor reading from
raw input values (e.g. ADC readings) to calibrated values
(e.g. in units of g-force).

Training Sample Heuristics

To provide domain-specific heuristics on the user’s training
data, example authors can register a function to be called on
each training sample as it’s recorded (Figure 8(b) and (h)).
This function analyzes the recorded sensor readings and re-
turns either success, or a warning or error together with an
associated message to be displayed to the user. For instance,
our gesture recognition example warns the user about unusu-
ally short or still gestures.

Pipeline Tuning

Tunable parameters are specified as a reference to a global
variable (integer, floating point, or boolean), a default value,
a minimum and maximum value (for numeric types), a name,
a description, and a function to be called when the parame-
ter’s value is changed by the user (Figure 8 (c) and (g)). This
callback will typically update one or more parameters in the
underlying machine learning pipeline, possibly translating to
standard units from domain-specific values.

Input and Output Data Streams

ESP examples can instantiate and register any of a number
of input, output, and bi-directional data streams. ESP regis-
ters a callback with the registered input stream; the callback
is supplied with incoming data points by the input stream.
ESP calls any registered output streams with the output of the
active pipeline (i.e. the number of the predicted class).

SAMPLE ESP APPLICATIONS

Here, we describe the application of our system to four ma-
chine learning problems as a means of illustrating the flexi-
bility of our example-centric approach (see Table 2). We also
use these applications to describe how the features of ESP
enabled us to improve recognition accuracy.

Application 1. Gesture Recognition

This example shows how, by writing a few lines of code in
our system, an expert can provide end-users with an interface
similar to that of specialized gesture recognition tools like
Exemplar or MAGIC. A simplified version of the example
code is shown in Figure 8. It instantiates a machine learn-
ing pipeline with a dynamic time warping classifier provided
by the GRT. This pipeline is fed by an ESP input stream that
receives accelerometer values from an Arduino board con-
nected via USB serial. We’ve included a calibrator that allows

Craft & Making 2 (Outputs)

DIS 2017, June 10-14, 2017, Edinburgh, UK

Example Input Calibration Features Classifier Parameters
Gesture Recognition | Accelerometer | Bias & Sensitivity Raw XYZ DTW Similarity & Timeout
“Touché” Electrode - Frequency response SVM -
Speaker Identification Microphone Bias & Sensitivity MFCC GMM Noise level
Color Color Sensor - Raw RGB Naive Bayes | Scaling & Similarity

Table 2. ESP examples.

the code to be used with accelerometers of differing ranges.
We also specified two parameters that can be tuned by the
end-user: one that controls the strictness of the recognition
and another (not pictured) that controls the minimum delay
between successive predictions of a gesture. With this exam-
ple, ESP users can train the system to recognize a wide range
of non-repetitive gestures (e.g. tennis swings, dance steps,
etc). In applying this example to the recognition of differ-
ent gestures, we found the confusion scores valuable in sug-
gesting training samples to delete and the class distance plots
essential to tuning the classifier’s null rejection threshold.

Application 2. Swept-Frequency Capacitive Sensing

This example provides Touché [44]-like functionality, using
swept-frequency capacitive sensing to detect different user
grasps or poses. We modified existing Arduino code? to gen-
erate the variable frequencies, read the corresponding capaci-
tance values, and stream them to the computer. This generates
a 160-dimensional input vector, which we supply to an SVM
(w/ polynomial kernel). (For convenience, we slightly simpli-
fied the pipeline used in the original publication.) This exam-
ple challenged us to develop visualizations and interactions
appropriate to such high-dimensional data streams. It allows
users to detect interactions with a range of capacitive surfaces
(e.g. different ways of grasping a water bottle, or of touch-
ing two hands together). In applying this example to different
uses, the class likelihood plot was helpful in clarifying the
physical positions corresponding to the boundaries between
predicted classes and the extent to which the classifier was
able to distinguish between different physical configurations.

Application 3. Speaker Identification

The speaker identification example determines the speaker
from a known group of voices. It uses Mel-Frequency Cep-
stral Coefficients (MFCCs) as the features and Gaussian Mix-
ture Models (GMM) as the classifier [40]. Two types of in-
put audio streams are supported: a computer’s built-in micro-
phone or an external microphone connected via an Arduino
board. Because the GRT doesn’t include a MFCC feature
extraction module, we implemented our own (following the
HTK book [50]). We use 30 millisecond audio frames (with
15 ms overlap). Each frame generates 12 MFCC coefficients,
the feature vector fed into the 16-mixture GMM classifier.

We learned several lessons from building this example. (1)
Processing high-rate audio data is computational expen-
sive. Our initial MFCC implementation follows the reference
equations without much optimization. It has slowed down
the whole user interface, making the system un-usable. To

3http://www.instructables.com/id/Touche-for-Arduino-Advanced-
touch-sensing/

speed up, we optimized the code by reducing object con-
struction whenever possible and rely on BLAS* for the ac-
tual matrix computation. (2) Training GMM models is time-
consuming, typically on the order of minutes. The training
is also not guaranteed to succeed because of the underly-
ing EM (expectation-maximization) algorithm might not con-
verge. Our pipeline saving and loading functionality played
an important role in developing this example.

Application 4. Color Sensing

This example classifies objects based on readings from a
color sensor. While this simple example could potentially be
implemented without a machine learning algorithm, our inter-
face facilitates the collection and testing of sensor readings.
Our feature vector consists of the red, green, and blue val-
ues from the color sensor, normalized to unit length. We feed
these values to a naive Bayes classifier. With this application,
the information gain scores proved useful in understanding
when we could stop collecting additional training data be-
cause it doing little to update the behavior of the classifier.

EVALUATION

We evaluated ESP through a one-day workshop with 11 par-
ticipants. Here, we describe the workshop participants and
structure, then discuss insights it offers into the ESP system.

Workshop Participants and Structure

The workshop took place in a maker space on our campus
and lasted from 10 am to 6 pm on a Saturday. Participants
completed pre- and post-workshop online surveys and partic-
ipated in opening, mid-workshop, and closing discussions (all
audio-recorded). We recruited participants who were experi-
enced with physical computing but relative novices at ma-
chine learning (as self-assessed on an initial screening sur-
vey). Of our 11 participants, three were female and eight
male. They ranged in age from 25 to 61 (median 39). Six
participants have a master’s degree or PhD. On the opening
survey, six reported having no prior experience with machine
learning, two reported a little experience, and two reported
some experience. (One participant arrived late and didn’t
complete the opening survey.) Eight of the ten participants
who completed the opening survey reported significant ex-
perience in either programming, electronics, or sensors, with
the remaining two reporting at least some experience in one
of the areas.

The workshop was facilitated by the two first authors, with
assistance from the main author of the GRT. After we briefly
introduced the ESP interface, participants spent about an
hour exploring the recognition of custom gestures using our
accelerometer- and DTW-based example. Afterwards, they

*http://www.netlib.org/blas/

1220

Craft & Making 2 (Outputs)

each shared reflections on the process. We then provided a
brief overview of the dynamic time warping algorithm used in
the example. After lunch, we introduced the Touché and color
sensing examples, after which participants experimented with
the recognition of custom classes of training data. This was
followed by participant reflections and a short presentation of
the SVM and naive Bayes algorithms in the examples. Fi-
nally, participants had about an hour to experiment freely —
with some exploring additional classes of training data for the
provided examples, others connecting ESP prediction output
back to Arduino or to Processing, and some modifying ESP
example code.

Discussion

Here, we discuss four themes that emerged from partici-
pants’ use of ESP in the workshop. Participant feedback
also suggested several directions for future research, which
we discuss in the following section (“Limitations and Future
Work™).

Provided Insight into Real-World Use of Machine Learning
Using the ESP system gave our participants insight into the
application of machine learning to real-world projects. At a
basic level, it gave them the confidence that they could do
so. This is evidenced by their survey responses — the number
of participants agreeing or strongly agreeing with the state-
ment “I could incorporate machine learning into an interac-
tive project if I wanted to” went from one before the work-
shop to nine after it.

The example-based nature of ESP allowed participants to ex-
periment with a variety of sensors and machine learning al-
gorithms:

“Getting multiple sensors (accelerometer, sound and color)
to work was exciting and revealed [a lot] of possibility.” (P9,
closing survey)

“today i saw a bunch of really great specific examples of ap-
plying different classifiers and filters to different kinds of sen-
sor data streams for different purposes. i feel that i [now] have
a foundation to build on for investigating future projects.”
(P6, closing survey)

By using ESP, these participants learned about machine learn-
ing as a general strategy that can be applied to a range of real-
time sensing tasks — in contrast to single-purpose tools like
MAGIC, which expose users to a specific task like gesture
recognition.

One participant contrasted their experience in the workshop
with prior machine learning exercises involving canned train-
ing data and pre-determined outcome:

“This was totally real and raw and I was generating the data
but then I was training model and seeing how well the clas-
sifier worked. And that whole process for me of being really
hands-on with it really helped my way of thinking about it,
thinking about all the steps along the way.” (P5, closing dis-
cussion)

By experimenting with the use of ESP examples to recognize
custom physical phenomena, these participants gained insight

1221

DIS 2017, June 10-14, 2017, Edinburgh, UK

into the importance of quality training data for the application
of machine learning. By going through the process of apply-
ing machine learning to their own uses, they learned that it
is not a magical process but a specific set of techniques and
processes, requiring iteration and understanding.

Demonstrated Successful Transfer of Provided Examples to

Users’ Tasks

Participants were able to experiment with the application of
pre-existing machine learning pipelines to a range of sens-
ing tasks. One pair of participants (P6 and P11) applied the
Touché example to multiple tasks: distinguishing between the
two of them based on their grasp of a soda can, detecting dif-
ferent hand gestures using an electrode wrapped around the
wrist, and distinguishing different grasps on a water bottle.
Another participant (P10) mounted their accelerometer to a
pencil and used the DTW example to detect different types of
scribbles. This suggests that ESP’s example-based approach
is flexible enough to allow machine-learning novices to apply
an existing expert-authored pipeline to their own training data
and projects.

Several of the participants identified ways in which they
might use ESP in their own projects. P7 mentioned an instal-
lation that involved detecting people’s proximity to a crystal
ball. P6 was interested in building public art that involved
detection of people’s interaction with everyday objects. Both
saw possibilities for implementing these using custom train-
ing data together with the ESP Touché example. P9 was in-
terested in distinguishing between different colors of sky and
explored the sensitivity of the color detection example for
this purpose. This suggests that they see enough flexibility
in ESP’s examples to find them applicable to their real-world
interests and projects.

Suggested the Accessibility of Example Modification

Two participants (P5 and P7) went beyond the workshop
structure and modified one of the provided examples to work
with their own sensor — a light sensor (P5) and a simple ca-
pacitive electrode (P7).

“I found it pretty easy to change the code and actually get
something else working with another sensor.... I was able to
successfully get something working all the way through to
Processing and could change the screen graphics based on
something I trained.... And that only took me, I don’t know,
15 minutes to do.” (P5, closing discussion)

“It was pretty easy to hook something completely new up to
it, so I wouldn’t worry about crossing that border.” (P7, clos-
ing discussion)

Notably, this occurred without a section of the workshop ded-
icated to explaining or encouraging the editing of the ESP
example code. This suggests that experienced Arduino users
like these will be comfortable diving into and editing the code
of ESP examples. This offers a path for ESP users to begin
to experiment with authoring machine learning pipelines for
themselves.

Craft & Making 2 (Outputs)

Provided Feedback on ESP Heuristics

Participant feedback offered some general insights into the
value of the heuristics in ESP. Calibration, required for the
gesture recognition example at the start of the workshop, pro-
ceeded without difficulty for all participants. The confusion
scores were not immediately understandable to all partici-
pants, which prompted us to add the expert-supplied thresh-
old for displaying warnings on problematic samples. This
provides first pass indication of the quality of the training
samples and may help users begin to explore the confusion
scores in more detail. Participants’ reflection on the gesture
recognition example suggested opportunities for future train-
ing sample checkers, such as providing warnings for overly
long or repetitive samples. Participants also suggested UI im-
provements for making the plots of the classifier results more
legible.

LIMITATIONS
The current version ESP has several important limitations—
some are conceptual, others due to implementation choices.

Only Supports Classification: ESP currently only supports
multi-class classification problems. Machine learning is also
used for other tasks such as regression or real-time gesture
following [7]. Supporting such tasks will require different
ways to assess the performance of a pipeline in ESP.

Focus on “‘Small Data:” The interactions in ESP are opti-
mized for interactive, real-time training and classification us-
ing a small number of training examples and features. This
restricts the applicability of the interfaces. Many recent ad-
vances in machine learning use orders of magnitude more
data and features, where individual review of features and
training examples becomes infeasible. Such approaches will
require entirely different visualizations. We posit that the
space of “small data” ML is still rich enough for many ap-
plications, and remains underserved.

Cost of Generality: ESP aims to support a broader range of
application scenarios than prior systems such as MAGIC [3]
or Exemplar [24]. Ideally, ESP authors should thus be able to
provide re-implementations of these tools by writing appro-
priate ESP examples. However, to limit the work for authors,
our API also seeks to insulate example authors from UI de-
tails. This abstraction prevents example authors from imple-
menting advanced interaction techniques, such as Exemplar’s
visual interpretation of double thresholds. The tradeoff that
limiting effort for example authors also limits expressivity is
fundamental to our approach.

No Embedded Runtime: While ESP focuses on maker
projects, which frequently focus on embedded microcon-
trollers, our current implementation still requires a desktop
PC to run the real-time classification. We started an effort
to port ESP to embedded systems, including initial cross-
compilation for the Raspberry Pi and the execution of trained
pipelines on embedded processors (e.g. ARM Cortex M4).

Only Evaluated Experience of Example Users: A core con-
tribution of our work is to shift support of specific applica-
tion scenarios from ESP system authors to expert community
members who create examples. While we have informally

1222

DIS 2017, June 10-14, 2017, Edinburgh, UK

discussed our approach with several educators and example
authors in the Arduino community, we have not yet formally
evaluated whether the API we provide is expressive and com-
plete enough for authors.

FUTURE WORK
Here we discuss two larger areas for future work on scaffold-
ing novice use of machine learning.

Supporting the Definition of Machine Learning Pipelines
As we noted in the introduction, the process of feature en-
gineering is often one of the most difficult aspects of apply-
ing machine learning to a particular domain. As a result, in
our work thus far, we chose not to focus on the problem of
helping non-expert users author machine learning pipelines
from scratch, instead relying on experts to encode them in ex-
amples. Supporting machine learning novices in the process
of pipeline definition seems ripe for future research, whether
through the exploration of automated approaches to feature
selection, interfaces to help users define appropriate features
for themselves, or repositories of pipelines showcasing vari-
ous approaches.

Pipeline Composition

Feedback from our workshop participants suggested the im-
portance of applying multiple machine learning approaches
with an application domain. Within the general area of ges-
ture recognition, participants mentioned recognition of peri-
odic gestures, extracting the speed at which a gesture was
performed, and orientation-independent recognition — all of
which likely require different pipelines. This suggests the im-
portance of exploring interfaces for the composition or com-
parison of multiple pipelines.

CONCLUSION

In this paper, we’ve shown how an example-centric interface
can support machine-learning novices in applying machine
learning to a wide range of real-time sensor-based applica-
tions. With our ESP system, machine-learning experts au-
thor code examples that encode a classification pipeline for a
particular application domain, together with domain-specific
heuristics. The ESP interface provides users with pipeline-
agnostic visualizations and operations for the iterative collec-
tion of training data and pipeline customization. We high-
lighted the flexibility of ESP through the description of our
development of four sample applications across different sen-
sors and machine learning classifiers. The results of our one-
day workshop suggested that ESP allows machine learning
novices to apply and adapt expert-authored pipelines to their
own uses. Finally, we suggested potential future research di-
rections. In short, we feel that an example-based approach
has great potential to make machine learning accessible to
makers of a wide range of interactive systems.

ACKNOWLEDGEMENTS
This work was supported in part by TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, and by NSF
CNS 1505773 and IIS 1149799. Thanks to Nick Gillian and
the workshop participants!

Craft & Making 2 (Outputs)

REFERENCES

1.

10.

11.

12.

Amershi, S. Designing for Effective End-User
Interaction with Machine Learning. PhD thesis,
University of Washington, 2012.

. Arduino Forum. https://forum.arduino.cc/, 2017.

[Online; accessed 16-January-2017].

. Ashbrook, D., and Starner, T. Magic: A motion gesture

design tool. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’ 10,
ACM (New York, NY, USA, 2010), 2159-2168.

. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,

S. R. Example-centric programming: Integrating web
search into the development environment. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *10, ACM (New
York, NY, USA, 2010), 513-522.

. Brodley, C. E., and Friedl, M. A. Identifying mislabeled

training data. Journal of Artificial Intelligence Research
11 (1999), 131-167.

. Bullock, J., and Momeni, A. ml.lib: Robust,

cross-platform, open-source machine learning for max
and pure data. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
NIME ’15 (2015), 265-270.

. Caramiaux, B., Montecchio, N., Tanaka, A., and

Bevilacqua, F. Adaptive gesture recognition with
variation estimation for interactive systems. ACM Trans.
Interact. Intell. Syst. 4,4 (Dec. 2014), 18:1-18:34.

. Cheng, L.-P., Hsiao, F--L., Liu, Y.-T., and Chen, M. Y.

irotate grasp: Automatic screen rotation based on grasp
of mobile devices. In Adjunct Proceedings of the 25th
Annual ACM Symposium on User Interface Software
and Technology, UIST Adjunct Proceedings *12, ACM
(New York, NY, USA, 2012), 15-16.

. Cohn, G., Gupta, S., Froehlich, J., Larson, E., and Patel,

S. N. Gassense: Appliance-level, single-point sensing of
gas activity in the home. In Proceedings of the 8th
International Conference on Pervasive Computing,
Pervasive’10, Springer-Verlag (Berlin, Heidelberg,
2010), 265-282.

Dey, A. K., Hamid, R., Beckmann, C., Li, I., and Hsu,
D. A cappella: Programming by demonstration of
context-aware applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI 04, ACM (New York, NY, USA, 2004),
33-40.

Domingos, P. A few useful things to know about
machine learning. Commun. ACM 55, 10 (Oct. 2012),
78-87.

Fails, J., and Olsen, D. A design tool for camera-based
interaction. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 03,
ACM (New York, NY, USA, 2003), 449-456.

1223

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

DIS 2017, June 10-14, 2017, Edinburgh, UK

Fiebrink, R., Trueman, D., and Cook, P. R. A
meta-instrument for interactive, on-the-fly machine
learning. In NIME (2009), 280-285.

Fogarty, J., Au, C., and Hudson, S. E. Sensing from the
basement: A feasibility study of unobtrusive and
low-cost home activity recognition. In Proceedings of
the 19th Annual ACM Symposium on User Interface
Software and Technology, UIST *06, ACM (New York,
NY, USA, 2006), 91-100.

Fourney, A., and Terry, M. Picl: Portable in-circuit
learner. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology,
UIST *12, ACM (New York, NY, USA, 2012), 569-578.

Froehlich, J. E., Larson, E., Campbell, T., Haggerty, C.,
Fogarty, J., and Patel, S. N. Hydrosense:
Infrastructure-mediated single-point sensing of
whole-home water activity. In Proceedings of the 11th
International Conference on Ubiquitous Computing,
UbiComp "09, ACM (New York, NY, USA, 2009),
235-244.

Gillian, N., and Paradiso, J. A. The gesture recognition
toolkit. J. Mach. Learn. Res. 15, 1 (Jan. 2014),
3483-3487.

Ginosar, S., De Pombo, L. F., Agrawala, M., and
Hartmann, B. Authoring multi-stage code examples with
editable code histories. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software
and Technology, UIST *13, ACM (New York, NY, USA,
2013), 485—494.

Greenberg, S., and Fitchett, C. Phidgets: Easy
development of physical interfaces through physical
widgets. In Proceedings of the 14th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’01, ACM (New York, NY, USA, 2001), 209-218.

Gupta, S., Reynolds, M. S., and Patel, S. N. Electrisense:
Single-point sensing using emi for electrical event
detection and classification in the home. In Proceedings
of the 12th ACM International Conference on
Ubiquitous Computing, UbiComp *10, ACM (New
York, NY, USA, 2010), 139-148.

Guyon, L., Matic, N., and Vapnik, V. Discovering
informative patterns and data cleaning. In AAAI
Workshop on Knowledge Discovery in Databases
(1994).

Harrison, C., Schwarz, J., and Hudson, S. E. Tapsense:
Enhancing finger interaction on touch surfaces. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST 11,
ACM (New York, NY, USA, 2011), 627-636.

Harrison, C., Tan, D., and Morris, D. Skinput:
Appropriating the body as an input surface. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *10, ACM (New
York, NY, USA, 2010), 453-462.

https://forum.arduino.cc/

Craft & Making 2 (Outputs)

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

Hartmann, B., Abdulla, L., Mittal, M., and Klemmer,
S. R. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI *07,
ACM (New York, NY, USA, 2007), 145-154.

Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A., and Gee, J.
Reflective physical prototyping through integrated
design, test, and analysis. In Proceedings of the 19th
Annual ACM Symposium on User Interface Software
and Technology, UIST *06, ACM (New York, NY, USA,
2006), 299-308.

Project Jupyter. http://jupyter.org/, 2017. [Online;
accessed 16-January-2017].

Klemmer, S. R., Li, J., Lin, J., and Landay, J. A.
Papier-mache: Toolkit support for tangible input. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *04, ACM (New
York, NY, USA, 2004), 399-406.

Kong, N., Grossman, T., Hartmann, B., Agrawala, M.,
and Fitzmaurice, G. Delta: A tool for representing and
comparing workflows. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI *12, ACM (New York, NY, USA, 2012),
1027-1036.

Kumar, R., Talton, J. O., Ahmad, S., and Klemmer, S. R.
Bricolage: Example-based retargeting for web design. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *11, ACM (New
York, NY, USA, 2011), 2197-2206.

Lee, B., Srivastava, S., Kumar, R., Brafman, R., and
Klemmer, S. R. Designing with interactive example
galleries. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI 10, ACM
(New York, NY, USA, 2010), 2257-2266.

Li, H., and Li, Y. Gesture coder: A tool for
programming multi-touch gestures by demonstration. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *12, ACM (New
York, NY, USA, 2012), 2875-2884.

Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G.,
and Hartmann, B. Design lessons from the fastest
q&a site in the west. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI 11, ACM (New York, NY, USA, 2011),
2857-2866.

Martin, F. G. Ideal and real systems: A study of notions
of control in undergraduates who design robots. In In Y.
Kafai and M. Resnick (Eds.), Constructionism in
Practice: Rethinking the Roles of Technology in
Learning, Citeseer (1996).

Martin, F. G. Real robots don’t drive straight. In AAAI
Spring Symposium: Semantic Scientific Knowledge
Integration (2007), 90-94.

1224

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

DIS 2017, June 10-14, 2017, Edinburgh, UK

Maynes-Aminzade, D., Winograd, T., and Igarashi, T.
Eyepatch: Prototyping camera-based interaction through
examples. In Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’07, ACM (New York, NY, USA, 2007), 33-42.

mlpack C++ machine learning library.
http://www.mlpack.org/, 2017. [Online; accessed
16-January-2017].

Oney, S., and Brandt, J. Codelets: Linking interactive
documentation and example code in the editor. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *12, ACM (New
York, NY, USA, 2012), 2697-2706.

Patel, K., Bancroft, N., Drucker, S. M., Fogarty, J., Ko,
A.J., and Landay, J. Gestalt: Integrated support for
implementation and analysis in machine learning. In
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’ 10,
ACM (New York, NY, USA, 2010), 37-46.

Patel, S. N., Robertson, T., Kientz, J. A., Reynolds,

M. S., and Abowd, G. D. At the flick of a switch:
Detecting and classifying unique electrical events on the
residential power line. In Proceedings of the 9th
International Conference on Ubiquitous Computing,
UbiComp 07, Springer-Verlag (Berlin, Heidelberg,
2007), 271-288.

Reynolds, D. A. Speaker identification and verification
using gaussian mixture speaker models. Speech
Commun. 17, 1-2 (Aug. 1995), 91-108.

Ritchie, D., Kejriwal, A. A., and Klemmer, S. R. D.tour:
Style-based exploration of design example galleries. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST °11,
ACM (New York, NY, USA, 2011), 165-174.

Sadler, J., Durfee, K., Shluzas, L., and Blikstein, P.
Bloctopus: A novice modular sensor system for playful
prototyping. In Proceedings of the Ninth International
Conference on Tangible, Embedded, and Embodied
Interaction, TEI 15, ACM (New York, NY, USA,
2015), 347-354.

Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R.,
Turner, J., and Landay, J. A. Enabling always-available
input with muscle-computer interfaces. In Proceedings

of the 22Nd Annual ACM Symposium on User Interface
Software and Technology, UIST *09, ACM (New York,

NY, USA, 2009), 167-176.

Sato, M., Poupyrey, 1., and Harrison, C. Touché:
Enhancing touch interaction on humans, screens, liquids,
and everyday objects. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’12, ACM (New York, NY, USA, 2012), 483-492.

http://jupyter.org/
http://www.mlpack.org/

Craft & Making 2 (Outputs)

45. Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala,
M., and Heer, J. Revision: Automated classification,
analysis and redesign of chart images. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST *11, ACM (New York,
NY, USA, 2011), 393-402.

46. scikit learn: Machine Learning in Python.
http://scikit-learn.org/, 2017. [Online; accessed
16-January-2017].

47. Tong, S., and Chang, E. Support vector machine active
learning for image retrieval. In Proceedings of the Ninth
ACM International Conference on Multimedia,
MULTIMEDIA 01, ACM (New York, NY, USA, 2001),
107-118.

1225

48.

49.

50.

DIS 2017, June 10-14, 2017, Edinburgh, UK

Tong, S., and Koller, D. Support vector machine active
learning with applications to text classification. Journal
of machine learning research 2, Nov (2001), 45-66.

Villar, N., Scott, J., Hodges, S., Hammil, K., and Miller,
C. .net gadgeteer: A platform for custom devices. In
Proceedings of the 10th International Conference on
Pervasive Computing, Pervasive’12, Springer-Verlag
(Berlin, Heidelberg, 2012), 216-233.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw,
D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D.,
et al. The htk book. Cambridge university engineering
department 3 (2002), 175.

http://scikit-learn.org/

	Introduction
	Related Work
	User Interfaces for Machine Learning
	Working with Examples
	Machine Learning for Real-Time Sensor Data

	The ESP System
	Visualizing Sensor Data
	Calibrating Sensors and Checking Signal Quality
	Managing Training Data
	Scoring Training Data
	Visualizing Classifier Results
	Customizing Pipeline Parameters
	Validating Pipeline Correctness
	Reading Sensor Data and Outputting Pipeline Results

	ESP API for Example Authors
	Machine Learning Pipeline
	Calibration Specifications
	Training Sample Heuristics
	Pipeline Tuning
	Input and Output Data Streams

	Sample ESP Applications
	Application 1. Gesture Recognition
	Application 2. Swept-Frequency Capacitive Sensing
	Application 3. Speaker Identification
	Application 4. Color Sensing

	Evaluation
	Workshop Participants and Structure
	Discussion
	Provided Insight into Real-World Use of Machine Learning
	Demonstrated Successful Transfer of Provided Examples to Users' Tasks
	Suggested the Accessibility of Example Modification
	Provided Feedback on ESP Heuristics

	Limitations
	Future Work
	Supporting the Definition of Machine Learning Pipelines
	Pipeline Composition

	Conclusion
	Acknowledgements
	REFERENCES

