
Turning Coders into Makers:
The Promise of Embedded Design Generation

Rohit Ramesh
University of Michigan
Ann Arbor, MI, USA
rohitram@umich.edu

Richard Lin
University of California at Berkeley

Berkeley, CA, USA
richard.lin@berkeley.edu

Antonio Iannopollo
University of California at Berkeley

Berkeley, CA, USA
antonio@berkeley.edu

Alberto
Sangiovanni-Vincentelli

University of California at Berkeley
Berkeley, CA, USA

alberto@berkeley.edu

Björn Hartmann
University of California at Berkeley

Berkeley, CA, USA
bjoern@eecs.berkeley.edu

Prabal Dutta
University of California at Berkeley

Berkeley, CA, USA
prabal@berkeley.edu

Part Selection

Idea

Verification

void loop {
 led = 1;

Deploy and
Debug

#pragma edg
 led(red)

Describe
Hardware

Manual Design and Schematic Entry

Parse

Control
Logic

LED
Button

Synthesis

SMT
Encode Graph

Decode

SMT
Solve

Control
Logic

LED

Button
MCU

High-level
Circuit Netlist

Block
Instantiation

Automatic Step
Manual Step

Design

+3.3v

D0
D1

GND

Arduino

... Placement,
Routing, and
Fabrication

Vf=1.2V

Ith≤20mA

EDG
Design
Flow

Traditiona
Design
Flow

Netlist-level
Schematic

Completed
Board

?

This PaperAnnotated
Code

Control
Firmware

(possibly automated)

MCU

ButtonLED

Libraries
Datasheets

Reading

Library
Creation

Figure 1: The Embedded Design Generation (EDG) Methodology. In contrast, with traditional embedded development methods, which rely
on significant user skill, EDG only requires a high-level specification to generate an electrically correct circuit that satisfies user requirements.
While EDG is a larger methodology, this paper focuses on the synthesis of high-level block diagrams from user specifications. In particular our
prototype only implements those portions of the system that directly interact with the synthesis step. We both manually generate the specification
needed, instead of extracting it from existing code, and manually create a circuit netlist from the output block diagram.

ABSTRACT
As personal fabrication becomes increasingly accessible and pop-
ular, a larger number of makers, many without formal training,
are dabbling in embedded and electronics design. However, exist-
ing general-purpose, board-level circuit design techniques do not
share desirable properties of modern software development, like
rich abstraction layers and automated compiler checks, which facil-
itate powerful tools that ultimately lower the barrier to entry for
programming, by allowing a higher level of design—separating spec-
ification from implementation—and providing automated guidance
and feedback. In this paper, we present a novel methodology for
embedded design generation that allows the generation of complete

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCF 1́7, June 12-13, 2017, Cambridge, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4999-4/17/06. . . $15.0
https://doi.org/10.1145/3083157.3083159

designs from high-level specifications. We present an implemen-
tation capable of synthesizing a variety of examples to show that
our approach is viable. Starting from user-specified requirements
and a library of available components, our tool encodes the design
space as a system of constraints. Off-the-shelf solvers then reason
over these constraints to create a block diagram with sufficient
information to generate the device firmware and circuit netlist.

CCS CONCEPTS
• Computer systems organization → Embedded hardware;
Embedded software; • Hardware → Software tools for EDA;
Theorem proving and SAT solving; PCB design and layout;

KEYWORDS
Type System, Synthesis, Embedded Design, Makers, Satisfiability
Modulo Theorem, Software Defined Hardware
ACM Reference format:
Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli,
Björn Hartmann, and Prabal Dutta. 2017. Turning Coders into Makers: The
Promise of Embedded Design Generation. In Proceedings of Symposium on
Computational Fabrication, Cambridge, MA, USA, June 12-13, 2017 (SCF 1́7),
10 pages.
https://doi.org/10.1145/3083157.3083159

https://doi.org/10.1145/3083157.3083159
https://doi.org/10.1145/3083157.3083159

SCF 1́7, June 12-13, 2017, Cambridge, MA, USA R. Ramesh et al.

1 INTRODUCTION
Modern software development practices and tools have allowed
programmers to become more productive with less effort and less
knowledge of low-level details, largely thanks to high-level ab-
stractions, expressive programming languages, and compile-time
correctness checks. Similarly, automated layout tools, logic and
high-level synthesis, and hardware construction languages have
led to analogous improvements in integrated circuit design. How-
ever, while board-level design tools have come a long way since the
days of pen-and-paper schematics and literal tape-outs, significant
knowledge of electronics design, circuit theory, and tool operation
is still required to realize a full embedded project.

As physical fabrication costs today are already affordable and
continue to fall, we argue that the most significant barrier to the
creation of embedded devices is now in the design phase. Students,
creative designers, and generally those without electronics training
or practice have a difficult path ahead of them when they need to
build custom prototypes and proof-of-concept hardware.

At the same time, the maker movement has demonstrated wide-
spread interest in many kinds of small-scale fabrication by non-
professionals, including that of embedded devices. Though Arduino,
Raspberry Pi, and similar projects have shown that embedded de-
sign is approachable by novices [Gibb 2010], they do so only by
trading off the flexibility afforded from using discrete components
for the encapsulation provided by hardware modules and isolated,
non-interoperable ecosystems.

Drawing on inspiration from the software and integrated circuit
design communities, similar strategies—namely, higher levels of
abstraction, correct-by-construction generation, and automated
correctness checks—can be applied to the hardware design space
to reduce the skill floor required for embedded design [Mellis et al.
2016]. Furthermore, we claim that tools driven by a computational
approach to design will be able to reason in a way that encapsulates
low-level detail while retaining the flexibility provided by a wide
selection of discrete components.

To that end, we propose a novel methodology, Embedded Design
Generation (EDG) which exploits advances in constraint solvers to
allow the automated generation of functionally correct-by-cons-
truction1 board-level designs from a high level specification.

Tools based on EDG would only require that the user annotate
their embedded software with simple requirements and, from that
specification, synthesize the final circuit diagram, bill of materi-
als, and firmware. Software APIs, electrical properties of circuits
(e.g. Kirchhoff’s current and voltage laws), and other low level de-
tails are combined with the user input into a system of constraints.

Existing constraint solvers can then generate designs which
are functionally correct, electrically sound, and satisfy the user
specification. To show that this both works and is computationally
feasible, we build a prototype tool and test it with a variety of
examples from different domains.

Figure 1 provides an overview of our proposed design flow and
compares it to current embedded design practices. EDG abstracts
away, through automation, much of the electronics expertise needed
for tasks like parts selection, circuit design, and verification. In

1We do not consider timing or other performance constraints in this paper as the focus
is to empower designers who do not have to produce industrial strength boards.

addition, Figures 2 to 6, 9 and 10 are all a part of a running example
where we describe the construction of a simple device with a single
LED and button.

2 RELATEDWORK
EDG builds on prior work in “electronic design automation” (EDA)
by specializing the Platform-Based Design (PBD) methodology
[Sangiovanni-Vincentelli 2007] for maker-scale embedded devel-
opment. PBD is a methodology which has been successfully used
to create synthesis tools in a number of domains, including inte-
grated circuit (IC) development and automotive engineering. EDA
community has incrementally raised the abstraction level of many
embedded development tasks and by using insights from PBD and
synthesis tools in other domains, we contribute to that progress.

2.1 General EDA
General-purpose board-level circuit design tools have largely not
moved beyond graphical schematic capture, where users place elec-
tronic components and connect their pins together. In mainstream
tools, hierarchical blocks allow some degree of abstraction by group-
ing low-level components together, but their lack of parameteriza-
tion limits re-use. Additionally, while electronic design automation
(EDA) tools feature electrical verification checks, these are of lim-
ited utility to makers. Matrix-based connection legality checks (for
example, checking input-output directionality), though ubiquitous
in design suites, are rarely used, non-extensible, catch only small
classes of bugs, and have a high false-positive rate. Higher-end
design suites often feature technologically advanced checks, like
electromagnetic compatibility (EMC) or radio frequency interfer-
ence (RFI), but these generally require significant skill to operate.

There has been some work towards building board design tools
better suited for makers. For instance, PHDL [Nelson et al. 2012]
is a Verilog-like language for describing netlists that allows some
parameterization of blocks and better design entry. However, like
Verilog, it is only a static description of a circuit.

JITPCB [Bachrach et al. 2016] takes the concept further and
embeds a hardware construction language in a general purpose pro-
gramming language, allowing circuit generators instead of simple
parameterized blocks. However, like PHDL, it does not have a model
of the underlying design space, preventing it from catching many
errors. JITPCB also does not reason over voltage, current, band-
width, or other properties needed to perform useful verification of
a design, something our tool does.

EDASolver [EDASolver 2016] aims to be a synthesis tool for
microcontroller based embedded systems. When given a tree that
describes the basic structure of an embedded device, EDASolver
can choose specific components to generate a circuit fitting that
broad structure. Unlike JITPCB, it does have some understanding
of the electrical properties of an embedded system, and can use that
to choose valid components from a pool of parts. As EDASolver
has neither published source code nor a technical paper, we are
unable to fully characterize its capabilities and limitations, but its
modeling of electronics does not appear to be extensible beyond
voltage and current limits.

While both JITPCB and EDASolver have some ability to choose
specific components from vague specifications and automate the

Turning Coders into Makers: The Promise of Embedded Design Generation SCF 1́7, June 12-13, 2017, Cambridge, MA, USA

assignment of individual pins, these features are constrained by
their inability to reason over the topology of a circuit. Our tool, and
likely any tool that follows the EDG methodology, is capable of not
only choosing components as needed but also adding elements to
the topology of a circuit. This means our tool can create new power
domains, insert amplifiers and buffers, and infer the need for IO ex-
panders whenever required to create a valid design. Fundamentally,
we reason over the space of possible designs and the requirements
without the need to tightly constrain the topology of possible solu-
tions. As a result, even our rudimentary tool can compensate for
limitations in parts or complexities in a specification in much the
same way that an engineer might.

2.2 PBD and Domain-Specific Tools
In Platform-Based Design’s (PBD) terminology, our methodology
maps user input to a set of library components according to well-
defined composition rules that can be verified statically. PBD-based
tools solve the synthesis problem by opportunistically composing el-
ements from a library to generate systems of constraints which can
be solved by external solvers. For instance, METRO II [Davare et al.
2013] allows for general model integration and architecture explo-
ration, where the mapping process between specification and plat-
form is validated through simulation. Likewise, PYCO [Iannopollo
et al. 2016] synthesizes a complete specification for a system from a
partial set of Linear Temporal Logic (LTL) constraints and a library
of components with LTL contracts. Although reminiscent of these
techniques, the approach taken for EDG does not require the use
of LTL or other logic languages.

Some techniques related to our approach have been also used in
program synthesis. Brahma [Gulwani et al. 2011; Jha et al. 2010]
synthesizes loop-free programs over bitvectors out of a library of
simpler functions. This allows Brahma to generate software from
a sparse specification of boolean logic constraints. Gvero et al.
[2013] propose the use of types in a program to synthesize valid
expressions which are then suggested to the programmer.

Robotics-oriented design tools like EMLab [Bezzo et al. 2015]
and ROSLab [Mehta et al. 2016, 2014] solve similar problems to EDG
in that domain. EMLab is a block-level development tool for robotic
electronics that uses an SMT based verification mechanism similar
to our own, however it does not extend that to provide synthesis.
ROSLab provides a similar pathway from code to circuitry, however
unlike our tool, it is limited to custom-made hardware elements that
support their custom chaining protocol. In contrast, EDG works
with off-the-shelf electronics in order to reduce the cost of creating
a library of parts and enable the fast integration of new components.

Finally, tools aiding interactive device design largely also follow
the pattern of automatically figuring out details from a high-level
design, albeit in more constrained domains. For instance Midas
[Savage et al. 2012] automatically designs capacitive touch layouts
given user-specified sensor type, shape, and position. Likewise,
PaperPulse [Ramakers et al. 2015] adds interactive electronics ele-
ments to paper crafts from a library of widgets.

3 METHODOLOGY
The goal of Embedded Design Generation is to create better abstrac-
tions for developing embedded devices and tools that can perform

MCU

LED
LED

driver

Control
Logic

SW
modules

HW
modules

 #include "edg.h"

//EDG preamble
edgModule myLed = Led("red")
edgModule myButton = Button()

void loop() {
 myLed = 0;
 if (myButton == 1) {
 myLed = 1;
 ...

Button
Button
driver

Vin

Figure 2:Code can be a specification for a device. The code to the
left, the control logic, specifies a device in which a light blinks when
a button is pressed. It is also the software that is eventually run on
that device, the annotations in the EDGPreamble specify the hardware
infrastructure needed to make the software function as intended. The
block diagram to the right describes one possible device that matches
that specification, by meeting all the hardware requirements in and
being able to run the control logic. Due to our focus on the synthesis
process, the code shown here is a mockup that shows one possible
structure for a specification.

robust verification of device designs. However, better verification
requires our tool to reason about the relationship between hardware
and software. Verifying the electrical properties of a thermometer
does no good if that thermometer has no way to send its data to the
designer’s software. Our key insight is that many of the design’s
hardware requirements are reflected in the code, for example in
required libraries and pin assignments. Yet the fundamental logic
of the device, how it functions at runtime, is rarely reflected in the
hardware. This asymmetry suggests that higher level abstractions
for embedded development should be similar to embedded code.

If we want to be able to describe the device at a higher level,
we can capture the most important parts of its function and con-
struction in its code. We can specify how the device acts at runtime,
as well as the hardware infrastructure needed for the device to
function. Figure 2 shows a stylized example of this, where many of
the implicit hardware requirements that are expressed in user code
are rendered as explicit declarations for a design generation tool
to use. The software in figure 2 is a specification for the hardware
and the runtime operation of the device.

To make this kind of high-level abstraction useful, we must be
able to compile it into the firmware and circuitry needed to con-
struct an embedded device. However, firmware and circuit diagrams
are too low-level for efficient synthesis. Instead we represent the
result as a block diagram, like the one in figure 2, which can be
easily turned into a final design. Likewise, we need to be able to tell
if those block diagrams actually describe correct devices, so that we
do not generate broken or invalid designs. A type system gives us a
way to construct the blocks for real-world parts and an algorithm to
decide whether any given block diagram is correct. Finally, we need
to choose a single valid device from the space of possible devices.
We do this by constructing a design space model, which captures
a wide range of possible designs in ways that existing constraint
solvers can reason about.

The Embedded Design Generation methodology is built around
these three core concepts:
Block Diagrams capture the conceptual structure of a device
across both hardware and software boundaries, by taking elements
of the final design and representing them as blocks with connec-
tivity information. These diagrams are an intuitive yet powerful

SCF 1́7, June 12-13, 2017, Cambridge, MA, USA R. Ramesh et al.

Library of Typed Blocks
w/ Implementations

User-Provided
Control Logic

SMT solver
execution

Completed
Block Diagram

SMT Encode

SMT Encode

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

Design Space
Model

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

SMT Decode

SMT Solution MCU

LED
LED

driver

Control
Logic

SW
modules

HW
modules

Button
Button
driver

Vin

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

Figure 3: Design Generation at a High Level. EDG tools use existing constraint solvers to perform synthesis. The tools convert knowledge
about the design space and control logic specification into constraint satisfaction problems whose solutions are block diagrams describing valid
device designs. These block diagrams completely specify the design of an embedded device and can be easily converted to more useful formats.

5v USB

3.3v
Out

GPIO1
GPIO2

...

...

Arduino
Pro MicroButton

LED

Vin

Out

In

Figure 4: Convert a block diagram into circuitry by linking
implementations together. Instantiating the block diagram from
figure 2 requires taking implementation details associated with each
block, in this case a relevant sub-circuit, and connecting them together
based on the links between their blocks.

model for working with systems, and can capture device struc-
ture, resources, and many of the other relationships found between
elements of a design.
The Type System defines rules for how we transcribe the real
world properties of circuits and software into blocks and their type
signatures. It also gives us type checking, a process that determines
whether any block diagram describes a valid device.
The Design Space Model is a system of constraints suitable for
general-purpose solvers, built from a library of blocks and their
type signatures. This model can then be used to generate a complete,
working, block diagram for a device from a specification.

Figure 3 shows our methodology for design generation, which
exploits the growing speed and increasing expressive power of
constraint satisfaction problem (CSP) solvers. We convert a library
of blocks, with corresponding type signatures, into a monolithic set
of constraints that model the space of potential designs made up of
those blocks. These constraints are then composed with constraints
derived from the control logic to produce a CSP whose space of
valid solutions is the space of valid block diagrams that meet our
specification. We then pass this CSP to the solver and decode the
result into a block diagram that will successfully typecheck.

Block diagrams are ideal representations because they are easy
to convert into the design files needed to fabricate a device. Figure 4
shows how the final circuit can be created by connecting individual
block implementations along the links between them. Similarly,
figure 5 shows how the firmware can be instantiated with template
replacement operations that pull from code snippets provided by
connected blocks.

#include "edg.h"

//EDG Preamble
edgModule myLed = Led("red")
edgModule myButton = Button()

void loop() {
myLed = 1;
...

}

(a) Original Control Logic

#include "led.h"
#include "button.h"

//EDG Preamble
var myLed = initLED(GPIO2);
var myButton = initButton(GPIO1);

void loop() {
myLed = 1;
...

}

(b) Instantiated Firmware

Figure 5: Convert a block diagram to firmware by filling in
templates. Instantiating software is a simple template replacement
operation. Figure 5a is a mockup of user-provided control logic for the
device. Figure 5b is the code after we replace the EDG-provided tem-
plate elements with the concrete implementations provided by other
blocks. Note that the code outside of these templates is unmodified.

Block diagrams also work at many levels of fidelity. In general,
blocks can be composed of smaller blocks until one recurses down
to single instructions or individual circuit elements. Our current
tool works with relatively large blocks made up of entire libraries or
breakout boards. This allows us to abstract away questions of timing
delay, electromagnetic interference, and many other phenomena
that become evident at smaller scales. Large blocks also mean there
is a smaller space of possible configurations for solvers to reason
over, making their immediate use more feasible. As solvers grow
faster and more expressive, EDG tools can move to using finer
granularity models with smaller blocks.

We structure each block diagram around the notions of blocks,
ports, and links. As we have seen, blocks represent realizable ele-
ments of our final design and each has a number of ports which
represent specific capabilities, relationships, or resources a block
may have. Links are then the connections between ports that repre-
sent the transfer of resources, usage of capabilities, or other rela-
tionships between blocks. For instance, the connection of a serial
line or the use of a software API.

A block diagram must have all the information needed to instan-
tiate a device but many parts have properties and settings that are
not solely defined by their connections. Consider the LED in fig-
ure 4, which could be annotated with information about its color. To
allow the block diagram to represent this information, blocks, ports,
and links all have concrete types, which are structures made up of

Turning Coders into Makers: The Promise of Embedded Design Generation SCF 1́7, June 12-13, 2017, Cambridge, MA, USA

powerSink
 voltage: [?V, ?V]
 current: [1mA, 2mA]
 limitVoltage: [0V, 12V]

digitalSource
 voltage: [0V, ?V]
 current: [0A, 0A]
 limitCurrent: [0A, 0A]
 ...

vin outButton

out.voltage.max = vin.voltage.max

PORTS
CONSTRAINTS

Figure 6: Type signatures are constraints on their elements.
While elements of a design are given concrete types, the blocks on
their own are usable in a variety of settings. Type signatures are simply
the conditions under which a block will work as intended, presented
as constraints over the concrete type of a block. A type system is
the set of rules for how to map real-world properties into types and
type signatures, such that a block diagram which typechecks can
be instantiated into a working device. In this case we constrain the
expected input and output voltages of a button to be equal, a limitation
on the possible concrete types that button may have.

named primitives—like integers, boolean values, and strings—or
nested substructures. Concrete types allow each block to specify the
information needed to instantiate it as well as additional properties
useful in other phases of design generation.

The block diagram alone is not enough for synthesis, since we
require a way to determine whether any given block diagram will
result in a valid device. The type system gives us a way to generate
blocks and their type signatures, constraints over those blocks, so
that we can check the correctness of an entire block diagram. As
in figure 6, type signatures annotate blocks, ports and links with
constraints that limit the concrete types they may have within in a
block diagram. Then, type checking ensures that each element of
the design satisfies its type signature. In section 4.2 we explore how
we constructed a type system for our prototype tool that accurately
detects and rejects invalid designs with this procedure.

Finally, Embedded Design Generation requires that we are able
to turn a library of blocks and type signatures into a design space
model that our tools can reason over. In practice, we expect this
to take the form of a monolithic constraint satisfaction problem
to which we can add the specifications, usually in the form of a
control logic block, for any particular synthesis task. This single
model can then be optimized or added to, as new parts become
available or new limitations in the design space are found. We build
the Design Space Model by generating a CSP for each block that
might be included in an output design, and then adding variables
that determine whether any pair of ports is connected. The solver
can then choose which connections exist and give us the final block
diagram, with valid concrete types for each block, link, and port.
While optimizations can be layered over this, we believe that any
design space model will have this core structure.

4 EDG PROTOTYPE ARCHITECTURE
Our prototype tool implements the EDG methodology described
in the previous section, with a focus on synthesizing devices from
relatively large blocks at a level high above individual resistors and
ICs. We implemented our tool in Haskell and used Z3 [De Moura
and Bjørner 2008] as the underlying constraint solver.2

2Our code and the results of our experiments are available at https://lab11.github.io/
edg-sat-prototype/appendix/scf2017.

PORT p:

 used :: Bool: Indicates whether the port is used in the final design

 connected :: Bool: Indicates whether the port is connected to another port

 class :: String: Identifier used to constrain which ports can connect to each other

 type :: [fields]: List of fields to be translated to SMT variables

 constraints::[expr]: List of formulas over the type of the port.
 Must be true for system to typecheck
IMPLICIT CONSTRAINTS:
 connected => used:
 Ensures that a port is part of the design if connected to any other port
 forall c in constraints, used => c:
 Only requires the solver to satisfy the constraints if the port is being used

Figure 7: Ports use implicit constraints to capture connectiv-
ity. The implicit constraints in each port allow us to relax the con-
straints on the SMT solver. The first constraint says that if the port is
connected to another then the port must be used in the output block
diagram. Along with the corresponding constraints from figure 8, this
ensures that every element has a flag to show whether it is used in
the final design. The second implicit constraint tells the SMT solver
that none of the type signature’s constraints need to be satisfied if the
element is not used , minimizing its work.

BLOCK/LINK b:
 UID :: String: Unique identifier for the block
 used :: Bool: Indicates whether the block is in the final design
 ports :: [port]: List of ports attached to this block
 type :: [fields]: List of fields to be translated as SMT variables
 constraints::[expr]: List of formulas over the type of the block and its ports.
 Must be true for system to typecheck
IMPLICIT CONSTRAINTS:
 forall p in Ports, p.used => used:
 Ensures that a block is part of the design if any of its ports are part of the design.
 forall c in constraints, used => c:
 Only requires the solver to satisfy the constraints if the block is being used

Figure 8: Blocks and links have identical representations in
our tool. Despite their stylistic differences, both blocks and links
capture relationships between ports, along with some internal data
and constraints. This allows us to turn connections between modules
via links into one-to-one relationships between ports on modules and
ports on links, simplifying the process of constructing an SMT problem.

4.1 Blocks, Links, and Ports
As in the general methodology, our prototype uses blocks, links, and
ports to represent possible designs for embedded devices. Figures 7
and 8 illustrate the principal data structures used in our tool. The
user provides their input in the form of control logic which we
manually encode as a block that must appear in the final design.

4.2 Type Signatures
Each block, link, and port in our library contains a type signature,
i.e. a set of bounds on the concrete type an element may have in
a valid block diagram. In a block diagram concrete types are data
structures composed of named fields, each linked to a value. These
values can be boolean, integers, floats, strings, UIDs or another
nested set of field-value pairs.

Our tool’s internal representation for type signatures is shown
in figures 7 and 8. These structures capture all the pieces of in-
formation needed to generate the SMT representation of a design
element, with the majority of the constraints simply being stored
as expressions that translate directly into SMT constraints. As in
figure 6 each constraint provides a way to express the ambiguity in
a type signature, since each block has many valid concrete types
and can therefore work in a variety of different designs. The con-
straints are arbitrary expressions consisting of boolean expressions,

https://lab11.github.io/edg-sat-prototype/appendix/scf2017
https://lab11.github.io/edg-sat-prototype/appendix/scf2017

SCF 1́7, June 12-13, 2017, Cambridge, MA, USA R. Ramesh et al.

LED
API

Button
APIControl

Logic

Button
API

LED
API

GPIO
API

GPIO
API

Button
Driver

LED
Driver

Arduino
HAL

GPIO1
API

GPIO2
API

Control
Registers

5v USB

3.3v
Out

GPIO1
GPIO2

...

...

Arduino
Pro Micro

...

Firmware

Hardware

Button

LED In

Out
Vin

Figure 9: There are symmetries between the hardware and
firmware elements of a design.Many of the hardware elements of
a design are paired with corresponding firmware elements, as in the
case of an LED and its driver code. These pairs tend to have identical
structure in both domains, even if there are other components that
only exist in one domain.

ordering operators, linear arithmetic operators, and references to
values found in the concrete type of that element.

In other cases the constraints can be used to specify that a value
falls in some range, that there exists an equality which must be
preserved, or any other condition that is representable as an expres-
sion in our solver. These expressions can capture many complex
behaviors, like the assignment of pins to functions on a microcon-
troller, ranges of voltages and currents, and even the nesting of
interfaces where our tool has to infer additional parts.

We choose to limit constraints on numerical values to linear
arithmetic because non-linear relationships that cannot be con-
servatively approximated by linear ones are relatively rare given
the fidelity of our tool. Since Z3 and other SMT solvers are much
slower when working with non-linear constraints, we choose to
limit ourselves to the faster option.

4.2.1 Design Space Model. Our prototype naively constructs a
design space model from its library of blocks and links. We rely on
the fact that constraints in type signatures are almost identical to
the equivalent SMT expression.

All the type signature fields in figures 7 and 8 are transformed
into sets of constraints. Each flag in the element and value in the
type becomes a variable the SMT solver is capable of assigning.
Then we add constraints between those variables to match those
in the type signatures. From this state, we generate a large adja-
cency matrix where each cell is an unassigned boolean value that
determines whether a particular pair of ports is linked. If ports
are linked, their types are set equal and they are marked as being
connected. This lets us simulate a one-to-one connection between
ports on a block and ports on a link. We then extract this adjacency
matrix from the SMT solver’s solution and use it to construct the
block diagram by walking the resulting graph and recovering each
block’s concrete type.

4.3 SMT encoding, solving, and decoding
Working from the control logic and the design space model, our
tool encodes the complete synthesis problem as a system of boolean
and linear arithmetic constraints which are then solved by an SMT

Figure 10: Our representation with an integrated view of
hardware and firmware. This combines the circuit design and
firmware drivers of each peripheral from figure 9 into a single block.
In this case the firmware and hardware blocks for the Arduino, button,
and LED are combined into a single block representing each compo-
nent. Note that pure hardware and firmware elements still do exist.

solver. Blocks, links and ports are all translated to equivalent SMT
constraints as described in the previous subsection. The control
logic is treated like any other block and added to the CSP, though
with the additional requirement that it be used in the final design.
Once the encoding is complete, our tool generates an SMT-LIB
v2.0 compatible file which is then passed to the SMT solver. If the
solver is able to find a solution to the system of constraints, it is
decoded into data structures where all the type signatures have
been resolved to concrete types. Finally, the resulting network of
blocks is presented to the user as a block diagram describing a
device that can run the control logic.

5 TYPE SYSTEM DESIGN
As connection legality essentially drives circuit synthesis, the prop-
erties and constraints captured in the type signatures are especially
important. In our prototype, we attempt to model the parameters
needed to ensure that the circuit is electrically valid, programati-
cally valid, and meets user requirements.

5.1 Software and Hardware Modeling
As a complete embedded design tool, our prototype must model
both the hardware (circuits) and software (user code and drivers).
While it is common to think of them as completely separate domains,
as in figure 9, they are usually heavily intertwined in practice.

Most peripherals ultimately expose a firmware API andmost elec-
trical components are controlled to some degree by the firmware.
As in figure 10, our representation combines the hardware and
firmware domains in ports and blocks when appropriate.

Compared to separate representations, this reduces the number
of ports and blocks that the solver needs to search through, improv-
ing performance. This combined model accurately represents how
many APIs control electrical connections and drivers are usually as-
sociated with a device, without additional complicated constraints
to tie domains together.

5.2 Ports and Links
As synthesis is interface driven, components are almost completely
defined by their ports. Our type system models common electrical
ports, including several digital communications networks, as well
as arbitrary firmware APIs.

5.2.1 Firmware Ports. Firmware ports define pure firmware in-
terfaces, APIs. They are modeled as either producers or consumers

Turning Coders into Makers: The Promise of Embedded Design Generation SCF 1́7, June 12-13, 2017, Cambridge, MA, USA

with a type, like LEDs or temperature sensors, and optional data,
like sensor resolution. Ports on the control logic are the starting
point for generating a design. Additional constraints prevent hard-
ware referenced by one piece of code from being split between
different controllers.

5.2.2 Electrical Ports. Electrical ports define a pure electrical
interface, which does not interact with the firmware domain. Our
type system only has power ports, which define either an always-on
voltage source or device power input.

Power ports capture voltage levels and current flows through a
port. Both are modeled as ranges to capture device tolerances, as in
the output of a wall wart, and runtime variation, like when an LED
is on or off. These represent the full spectrum of expected circuit
states during operation.

We also specify voltage and current limits as ranges, where the
expected operating range must be contained within the tolerable
range. While upper limits are useful for absolute maximum ratings,
ranges capture lower limits, like minimum operating voltage or
minimum current draws. Despite being a highly conservativemodel,
this encodes the most important information needed for power
compatibility checking.

Our current type system gives all components a common ground,
so that power ports are single-ended voltage sources referenced to
an implicit universal ground. This limitation is mostly for simplicity,
but captures most beginner and intermediate designs. Advanced
features like isolation domains require additions to our type system.

5.2.3 Controlled Ports. Controlled ports define an electrical
port controlled with a firmware API. The simplest example is the
microcontroller-driven GPIO, which is described as a digital signal.

Digital ports have all the properties of power ports including the
ability to supply power. Thismodels the common usage ofmicrocon-
troller GPIOs to switch small loads, like LEDs, while generalizing to
any controlled load. We also capture voltage thresholds that check
both signal level compatibility and thresholds on switched loads.

5.2.4 Digital Communications Ports. Digital communications
ports are a variant of the bidirectional digital port for common
communications protocols. Many digital communications protocols
require multiple wires, which we bundle as a single port. This is
for efficiency reasons: all the wires travel together, and modeling
each pin as a separate port creates extra connections that increase
the search space and hurt synthesis performance. Our type system
models ports for several communications buses including I2C, SPI,
and UART. Each bus checks for signal level compatibility as well as
bus-specific properties like I2C address uniqueness.

5.3 Components
5.3.1 Peripherals. Most components representing peripheral

devices are structured as adapters that provide one interface and
require another in order to function correctly.

One such example is the controlled LED, whose hardware is
just the standard LED circuit with a ballasting resistor. We model
this as a two-port element: an LED API producer port, and a GPIO
consumer port. The GPIO port also models important electrical
characteristics like current and voltage limits.

As an adapter-style component, ports on both sides are required
to be connected. While a LED without an electrical input is useless,
the requirement for an API port prevents synthesis from placing
extraneous, unrequested LEDs. Most other peripheral components,
like buttons, temperature sensors, or LCD displays, are similar.

True adapter components also exist. The GPIO expander requires
a I2C slave connection and provides extra GPIOs. Likewise, a digital
amplifier requires a power supply and low-power digital output
and produces a new digital output at power supply voltages.

5.3.2 Firmware. Our type system also models pure firmware
blocks in the same way. For example, a FAT32 library provides a
file system API and consumes a low-level nonvolatile memory API.

5.3.3 Microcontrollers. Microcontrollers are structured differ-
ently because they serve as the control source for devices they
provide interfaces but do not have requirements aside from power.
Otherwise, they are modeled like every other component and are
largely defined by their ports.

6 EVALUATION
We create a number of embedded devices by manually generating
the control logic block’s type signature, using our prototype tool to
synthesize a design, and manually instantiating each design to test
its correctness. Each device was synthesized with three separate
libraries of varying size.

Our full library is used for all examples, except where noted, and
consists of these components:
• Microcontrollers: Arduino Pro Micro 3.3 V, Arduino Trinket 3.3 V
• Basic peripherals: tactile switch with pull-up, LED with resist-or,

12V lit dome switch with pull-up, 12V fan
• Device peripherals: Sparkfun 16x2 serial LCDs (3.3 V and 5V

versions), SD card with SPI interface, Sparkfun OpenLog
• Sensors: TMP102 I2C temperature sensor, QRE1113 reflectance

sensor with output resistor
• Interfaces: I2CGPIO expander, high-side digital amplifier, TB6612-

FNG dual motor driver, L7805 voltage regulator
• Software: FAT32 filesystem driver

The library contains a total of 73 blocks and links. This is a highly
constrained set that is likely not very representative of the libraries
any production system would use. However, it should suffice to
gain a broad idea of the performance characteristics of our tool
and accurately capture how our tool responds to limitations in the
library of available blocks.

We first examine a number of simple test cases. Then we look
at how our tool responds to restrictions on available parts, both
in terms of small changes and instances where the device is radi-
cally changed. Finally, we look at the performance of our tool as it
synthesized all the designs described.

6.1 Basic Synthesis Tasks
We synthesize a number of simple devices to show the range of
domains EDG may be useful for and to analyze the results.

6.1.1 Blinking LED. We synthesize the simple light and button
combination that we have been using as a running example. This
device has a single LED and a single button that blinks the LED

SCF 1́7, June 12-13, 2017, Cambridge, MA, USA R. Ramesh et al.

(a) Interface Converters (b) Interface Converters and GPIO Expander (c) GPIO Expander and Dome Switches

Figure 11: Three Versions of Simon. These three designs are generated from identical control logic blocks. Each design could be generated
from code similar to the EDG preamble found in figure 2, where each required module is turned into a port connecting to that peripheral. Despite
their radically different construction these designs are functionally identical, differing in only the size of the buttons and minor timing variations.

(a) Simon (b) Line-Follower

Figure 12: Physical realization of Simon and line-following
robot. The left figure shows the three Simon variants on a large
breadboard. The left section is the initial synthesis result (11a), using
a microcontroller and discrete LEDs and switches. The center section
is the second result (11b), where the system is forced to use a pin-
constrained microcontroller and must infer a GPIO expander. The
right section is the final result (11c), using inferred digital amplifiers to
drive external dome switches. The right figure shows the line-following
robot, which successfully generates a circuit that correctly integrates
the pre-selected chassis and motors.

when pressed. The blinking light has long been the “Hello, World”
of embedded hardware design and seemed a fitting place to start.

We use this design as an initial test case as we developed our
tool and type system because it captures many of the most common
constraints in embedded development. Any synthesized design has
to keep a coherent chain of control from the control logic to each
peripheral, a chain that captures software relationships, hardware
relationships, and relationships that jump between those domains.
This example also captures basic power management as the tool
has to ensure that voltage levels are correct and that current limits
are met. Our tools have synthesized many working versions of this
device, and those that we constructed functioned correctly.

6.1.2 Temperature Controller. This device is a basic control sys-
tem where a thermometer reads the local temperature, displays it
on a small LCD screen, and runs a fan when it is too hot. Here we
capture bus topologies like I2C, as well as a more complex power
system that could supply the 12V fan, 3.3 V microcontroller, and
3.3 V sensor. Our tools are able to synthesize this device while
avoiding pitfalls like mismatched power sources.

6.1.3 Line Following Robot. Our final basic design is a line-
following robot designed to stand on a specific chassis with pre-
mounted motors. Here we verify that we synthesize a device from
a more complete partial design. In this case, we knew both the code
we wished to run and the motors we wanted to use, so we specified
that all three components must be included in the design. Our tool
managed to correctly connect the motors to the microcontroller,
including adding motor drivers and the split-level power system
needed to use them.

Our tool does not distinguish between being asked to design a
device with just the control logic as a specification, three separate
blocks that must all be in the design, or some manually-designed
critical portion of a device that needs non-critical surrounding
infrastructure. This versatility means that in addition to the design
process we focus on in this paper, EDG-based tools can support
many other forms of interaction.

6.2 Inferring Missing Design Elements
One of the most useful features of the EDG methodology is that it
can infer additions to the topology of a device when the available
set of parts is limited.

To test this we design a simple datalogger that reads a tempera-
ture sensor and writes the result to an SD card. Our first synthesis
of this device produced a design that used the OpenLog breakout
board, a combination of SD card socket and preprogrammed chip
with a simple serial interface for SD card filesystem access

Then we run the synthesis process again after removing the
OpenLog from the library of available parts. This time, our tool
adds an SD card holder to the device and used a software FAT32
driver to provide a filesystem, showing that our tool can adapt
to accommodate constraints in the available pool of parts or non-
obvious interactions between interfaces.

6.3 Preservation of Function
The final design we synthesize is our own version of the Simon
electronic game. This device flashes four lights in a random order
and asks the player to press the corresponding buttons in that same
order. Our library supports two major options for synthesizing this
design: large buttons with built in LEDs or smaller discrete LEDs
and buttons in matching pairs.

Our initial attempt to synthesize this design resulted in a mix of
these two options, likely not what a designer would want. We had
to add a constraint to ensure that all the buttons used by device had

Turning Coders into Makers: The Promise of Embedded Design Generation SCF 1́7, June 12-13, 2017, Cambridge, MA, USA

a similar type. The resulting design, shown in figure 11a, consists of
four pairs of similar buttons and LEDs and a microcontroller with
sufficient IO pins to directly connect all peripherals.

After removing the large microcontroller from the library and
leaving only a pin-limited microcontroller, our tool created the
design in figure 11b. This design adds a GPIO expander to provide
enough pins to control all the peripherals.

Our final change is removing the driver that allowed us to use a
discrete LED and button pair as a single lit button. Figure 11c shows
the result, and we note that this device shares no parts in common
with our original version of Simon—instead accomplishing the same
task with a completely different implementation.

We constructed all three versions (see figure 12a) and they func-
tioned identically barring the difference in parts and some drift in
the timing. Our synthesis process preserves the key details of our
control logic, no matter the components used.

6.4 Performance

Blinky	
(10)

Feedback	
Fan	(20)

Robot	
(24)

Datalogger	
(14)

w/	FAT*	
(18)

Simon	
(39)

w/	
Trinket*	

(45)

w/	Dome*	
(41)

Minimal	 Lib 4.79 4.69 6.99 3.75 3.07 5.53 13.61 10.48
Intermediate	Lib 7.38 26.08 13.42 6.81 5.70 72.33 54.59 14.16
Full	Lib 56.30 57.10 99.95 61.58 42.40 184.62 187.88 67.65

0.00

60.00

120.00

180.00

Sy
nt
he

sis
	Ti
m
e	
(m

in
ut
es
)

Figure 13: EDG synthesis time for the discussed examples.
Each minimal library contains only the blocks necessary to synthesize
the design. The full libraries include all 73 of the encoded blocks, except
for Datalogger FAT*, Simon Trinket*, and Simon Dome* for which
the full library was constrained to make simpler designs impossible.
Each intermediate library is approximately half the size of the full
library. Times are expressed in minutes and the parentheses next to
each name contain the number of blocks and links in each design.

We provide synthesis runtime data for our designs to show both
the feasibility of our methodology and the scaling behavior.

Experiments were run on a server with dual-socket Intel E5-2667
CPUs (3.3 GHz, 8 physical cores per socket) and 192 GB of RAM.
Note that the computational time was dominated by Z3 which is
single-threaded. All experiments used under 2 GB of RAM. Figure 13
shows the synthesis time for all the experiments. Every design was
synthesized using three libraries with different sizes. As expected,
our tool performance depends both on the size of the library and
the complexity of the solution, represented by the number of blocks
used for each design. Larger libraries or solutions usually resulted
in longer runtimes. The biggest designs required several tens of
components and a runtime up to three hours which is reasonable
compared to the time required to perform the same tasks manually.
However, we believe that our tool’s performance can be drastically
improved, as we discuss in the next section.

7 DISCUSSION
We believe that future work will further support our hypothesis that
the EDG methodology is a powerful and feasible way to improve
embedded development tools.

7.1 Performance and Optimization
Ultimately, the tool we implemented is just a prototype to demon-
strate that the EDG methodology is fundamentally feasible. While
runtimes for even our limited library of components are not as fast
as we would like, there are many possible optimizations.

Performance of existing solvers has improved over the years
through advancements in the basic boolean SAT techniques [Heule
et al. 2016], and SMT solver theories [Conchon et al. 2017]. Recent
years have also shownmajor improvements in the expressive power
of constraint solvers, including techniques like counterexample-
guided inductive synthesis [Jha and Seshia 2017]which allow solvers
to incorporate new domains of reasoning through a feedback pro-
cess. Communities in these fields are active and we do not believe
this trend will stop anytime soon.

Additionally, we believe we can greatly improve our tool’s per-
formance by exploiting a more efficient SMT encoding of the design
space model. Currently the design space model is naively trans-
lated to an SMT equivalent, without leveraging symmetries, pre-
computed solutions, or user insight.

Even if, ultimately, full synthesis against a large library is infea-
sible we believe the EDG methodology still holds promise. The inte-
grated representation of electronic components with firmware dri-
vers eliminates the often-manual step of mapping pins to firmware,
while the rich type system allows automated electrical verification
to a greater degree than existing matrix-based connectivity checks.
Synthesis at a smaller scale is still important, whether for ensuring
the thoroughness of the type system, or for automating design
within a constrained environment.

7.2 Type System Fidelity
The type system determines connection legality and its thorough-
ness determines the correctness of EDG’s output. While the model
for our prototype is largely based on our experiences as embedded
designers, a more formal treatment of which properties are rele-
vant is desirable. In particular we would like to develop a formal
composable ontology for elements of an embedded system that
integrates well with EDG.

Additionally, information from datasheets is insufficient for syn-
thesis, occasionally even contradictory. Strict compatibility checks
using datasheet-provided specifications often produces false posi-
tive errors. For instance, logic voltage thresholds are usually given
as a single value under arbitrary test conditions. Using that value
directly would make many reasonable designs unsynthesizable, as
the specification conditions are excessive for the digital signaling
methods our tool models. Instead, we use less conservative bounds
that are accurate given the low frequency conditions our model
assumes. However, higher accuracy models would be possible with
more precise datasheets, especially if specifications were given as
simple mathematical functions.

Our limited library also obviates the need to encode the physical
details of components. For example, both a weak indicator LED and

SCF 1́7, June 12-13, 2017, Cambridge, MA, USA R. Ramesh et al.

a lighting-grade power LED would satisfy a user requirement for a
LED. Additional constraints like brightness, power draw, or form
factor are necessary to fully capture user intent.

7.3 Usability
EDG proposes an input very different from the traditional electron-
ics and embedded design flow. While it requires less electronics
expertise to build a functional device, a larger question is where
best to draw the line between automated processes and user input.
Alternatively, hybrid interactive approaches may be desirable. For
example, an EDG based assistive tool might ask a designer, “I see
your parts are not voltage-level compatible, would you like me to
insert a regulator?” Future user studies can illuminate the trade-offs
between these different strategies in the electronics design domain.

Embedded hardware development also does not end with board
fabrication, and debugging poses significant challenges [Mellis et al.
2016]. EDG’s richer data model, containing information like periph-
eral topology and expected voltages, can support novel assistive
debugging strategies. Approaches include automatically generated
self-test routines for peripherals or interactive guided debugging.

Finally, a comprehensive, complete set of libraries ultimately
forms the basis for EDG. Building such libraries is far from painless,
currently involving the manual, time-consuming translation of
datasheet specifications to part constraints. Better languages for
encoding part data could increase accessibility, while formalisms
(like better type systems) can reduce the likelihood of mistakes.

8 CONCLUSION
This paper describes Embedded Design Generation, a methodology
for developing usable, maker oriented tools for embedded develop-
ment. EDG focuses on using existing constraint solvers to search
a space of possible designs for systems matching a given specifi-
cation. We described how this model facilitates the development
of tools that can convert software specifications of devices into
realizable designs. We also developed a prototype tool built on EDG
and showed that it is capable of synthesizing simple devices more
effectively than many tools of similar scale. This includes being
able to infer complex circuit topologies to manage power, interface
expansion, and signaling. Our tool is also able to infer the changes
to software structure needed to provide interfaces the user asks for.
We synthesized multiple concrete devices and physically built each
of them to show the correctness of the design. Our most represen-
tative tests took a few hours to synthesize, less time than many
novices would take to complete the same task.

While our prototype is not yet a broadly usable embedded de-
velopment tool, we believe that it sheds light on the capabilities
of Embedded Design Generation, reinforcing our hypothesis that
existing constraint solvers are approaching the speed and expres-
sive power needed to act as the foundation for a new space of
maker-oriented embedded-design tools.

9 ACKNOWLEDGEMENTS
We would like to thank Sanjit Seshia and Mark Horowitz for their
insightful advice and feedback over the course of this project, as
well Daniel Fremont for his advice on encoding problems for SMT

solvers. This work was supported in part by STARnet, a Semi-
conductor Research Corporation program sponsored by MARCO
and DARPA; the National Science Foundation under grant(s) CPS-
1239031; the NSF/Intel Partnership on Cyber-Physical System Secu-
rity and Privacy under award proposal title “Synergy: End-to-End
Security for the Internet of Things: NSF Proposal No. 1505684”;
DARPACRAFT; and ExCAPE: Expeditions in Computer Augmented
Program Engineering (NSF grant CCF-1139138).

REFERENCES
Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan W Haldane, and Richard

Lin. 2016. JITPCB. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on. IEEE, 2230–2236.

Nicola Bezzo, Peter Gebhard, Insup Lee, Matthew Piccoli, Vijay Kumar, and Mark Yim.
2015. Rapid co-design of electro-mechanical specifications for robotic systems. In
ASME 2015 International Design Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference. American Society of Mechanical
Engineers, V009T07A009–V009T07A009.

Sylvain Conchon, David Déharbe, David M. Heizmann, and Tjark Weber. 2017. SMT-
COMP 2016:. (March 2017). http://smtcomp.sourceforge.net/2016/index.shtml

Abhijit Davare, Douglas Densmore, Liangpeng Guo, Roberto Passerone, Alberto L.
Sangiovanni-Vincentelli, Alena Simalatsar, and Qi Zhu. 2013. metroII: A Design
Environment for Cyber-physical Systems. ACM Trans. Embed. Comput. Syst. 12, 1s,
Article 49 (March 2013), 31 pages. https://doi.org/10.1145/2435227.2435245

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340.

EDASolver. 2016. EDASolver: Welcome to Functional EDA. (Jan. 2016). https://
edasolver.com

Alicia M Gibb. 2010. Newmedia art, design, and the Arduino microcontroller: A malleable
tool. Ph.D. Dissertation. Pratt Institute.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Syn-
thesis of Loop-free Programs. SIGPLAN Not. 46, 6 (June 2011), 62–73. https:
//doi.org/10.1145/1993316.1993506

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete
Completion Using Types and Weights. SIGPLAN Not. 48, 6 (June 2013), 27–38.
https://doi.org/10.1145/2499370.2462192

Marijin Heule, Matti Järvisalo, and Tomář Balyo. 2016. The International Sat Competi-
tion Wepage. (July 2016). http://www.satcompetition.org/

Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. 2016. Con-
strained Synthesis from Component Libraries. In 13th International Conference on
Formal Aspects of Component Software (FACS). Besancon, France.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-Guided
Component-Based Program Synthesis. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering (ICSE). 215–224.

Susmit Jha and Sanjit A. Seshia. 2017. A theory of formal synthesis via inductive
learning. Acta Informatica (2017), 1–34. https://doi.org/10.1007/s00236-017-0294-5

Ankur Mehta, Nicola Bezzo, Peter Gebhard, Byoungkwon An, Vijay Kumar, Insup
Lee, and Daniela Rus. 2016. A Design Environment for the Rapid Specification and
Fabrication of Printable Robots. Springer International Publishing, Cham, 435–449.
https://doi.org/10.1007/978-3-319-23778-7_29

Ankur M Mehta, Joseph DelPreto, Benjamin Shaya, and Daniela Rus. 2014. Cogen-
eration of mechanical, electrical, and software designs for printable robots from
structural specifications. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on. IEEE, 2892–2897.

David A. Mellis, Leah Buechley, Mitchel Resnick, and Björn Hartmann. 2016. Engag-
ing Amateurs in the Design, Fabrication, and Assembly of Electronic Devices. In
Proceedings of the 2016 ACM Conference on Designing Interactive Systems (DIS ’16).
ACM, New York, NY, USA, 1270–1281. https://doi.org/10.1145/2901790.2901833

Brant Nelson, Brad Riching, and Josh Mangelson. 2012. Using a Custom-Built HDL for
Printed Circuit Board Design Capture. PCB West 2012 Presentation. (2012).

Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: an integrated approach
for embedding electronics in paper designs. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. ACM, 2457–2466.

Alberto Sangiovanni-Vincentelli. 2007. Quo Vadis, SLD? Reasoning About the Trends
and Challenges of System Level Design. Proc. IEEE 95, 3 (March 2007), 467–506.
https://doi.org/10.1109/JPROC.2006.890107

Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann. 2012. Midas: fabricating custom
capacitive touch sensors to prototype interactive objects. In Proceedings of the 25th
annual ACM symposium on User interface software and technology. ACM, 579–588.

http://smtcomp.sourceforge.net/2016/index.shtml
https://doi.org/10.1145/2435227.2435245
https://edasolver.com
https://edasolver.com
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1145/2499370.2462192
http://www.satcompetition.org/
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/978-3-319-23778-7_29
https://doi.org/10.1145/2901790.2901833
https://doi.org/10.1109/JPROC.2006.890107

	Abstract
	1 Introduction
	2 Related Work
	2.1 General EDA
	2.2 PBD and Domain-Specific Tools

	3 Methodology
	4 EDG Prototype Architecture
	4.1 Blocks, Links, and Ports
	4.2 Type Signatures
	4.3 SMT encoding, solving, and decoding

	5 Type System Design
	5.1 Software and Hardware Modeling
	5.2 Ports and Links
	5.3 Components

	6 Evaluation
	6.1 Basic Synthesis Tasks
	6.2 Inferring Missing Design Elements
	6.3 Preservation of Function
	6.4 Performance

	7 Discussion
	7.1 Performance and Optimization
	7.2 Type System Fidelity
	7.3 Usability

	8 Conclusion
	9 Acknowledgements
	References

