
Interactive Flexible Style Transfer for Vector Graphics
Jeremy Warner Kyu Won Kim Björn Hartmann

UC Berkeley UC Berkeley UC Berkeley
Berkeley, CA, USA Berkeley, CA, USA Berkeley, CA, USA

111-111-1111

free delivery on your first order

LEONARD’s

delivery special

Source Target

Styling Interface

Output

is Open!

Leonard’s

Leonard’s
This week only!

2pm — 10pm

30%
off

111-111-1111

=u;;�7;Ѵb�;u��om��o�u�Cuv|�ou7;u

LEONARD’s

delivery special

Figure 1: VST generates new output graphics by transferring visual styles from source graphics onto target graphics. The styling
interface lets designers customize which styles to transfer, flter which elements to stylize, and preview the new stylized output
graphics. The output graphics retain a similar structure to the target graphics while bearing styles from the source graphics.

ABSTRACT
Vector graphics are an industry-standard way to represent and
share visual designs. Designers frequently source and incorporate
styles from existing designs into their work. Unfortunately, popular
design tools are not well suited for this task. We present VST, Vector
Style Transfer, a novel design tool for fexibly transferring visual
styles between vector graphics. The core of VST lies in leveraging
automation while respecting designers’ tastes and the subjectivity
inherent to style transfer. In VST, designers tune a cross-design
element correspondence and customize which style attributes to
change. We report results from a user study in which designers used
VST to control style transfer between several designs, including
designs participants created with external tools beforehand. VST
shows that enabling design correspondence tuning and customiza-
tion is one way to support interactive, fexible style transfer.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606751

CCS CONCEPTS
• Computing methodologies → Computer graphics; Image
manipulation; Graphics systems and interfaces.

KEYWORDS
vector graphics, style transfer, graphic design, creativity support
tools, human-AI collaboration, computational design tools
ACM Reference Format:
Jeremy Warner, Kyu Won Kim, and Björn Hartmann. 2023. Interactive
Flexible Style Transfer for Vector Graphics. In The 36th Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’23), October 29–
November 01, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3586183.3606751

1 INTRODUCTION
Vector graphics are an industry-standard way to represent and share
a broad range of designs. As a design medium, vector graphics ofer
compelling advantages, including scalability and precision. Vector
graphic designs store information about each graphical element that
they contain. This information enables editing the design at a higher
level of semantics when compared to pixels. Many vector graphics
design tools have achieved success supporting designers working
in this medium (e.g., Adobe Illustrator, Figma, Canva, Sketch).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606751
https://doi.org/10.1145/3586183.3606751
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3586183.3606751&domain=pdf&date_stamp=2023-10-29

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

Designers often edit vector graphics’ overall appearance or style
while retaining their underlying content and structure. In this work,
when we write style, we refer to the defning visual properties of a
design’s elements (e.g., color, shape, size, and font). Many alternative
and valid defnitions of this broad term exist. Style editing tasks
arise in multiple situations, such as applying inspirations from a
mood board, updating existing graphics to a new visual identity, or
exploring multiple alternative style variations. For example, both
a novice designer seeking to apply styles from a more polished
design to their work and an experienced designer creating several
variations of a similar design to present to a client for feedback face
this task. This complex task requires many selection and editing
operations for diferent groups of objects. Updating a design to
conform to a new visual style can be exceptionally tedious and limits
the exploration of diferent styles, even for experienced designers.

One potential solution is to use document-level themes or rules
that consistently apply visual attributes to classes of objects. This
approach is standard across many design and presentation software
tools. For example, web pages use CSS (Cascading Style Sheets) to
enable document-level styling, but these style-content links must
be manually created and maintained. A notable downside of using
document themes or stylesheets is their rigidity. Compelling themes
require element class information and pre-planning, introducing
viscosity [15] into the authoring process. Despite CSS support in
SVG [62] via the <use> tag [42], most vector graphics avoid it.

Another promising direction is to automatically transfer visual
styles between graphics using information on how two given de-
signs relate to each other. However, this approach often fails to
transfer styles as each designer uniquely intends. This failure stems
from two sources: 1) the accuracy limitations of the algorithm and
2) the inherent subjectivity around good style and varying tastes
that designers may have. A fully automated approach may transfer
styles in undesired or unpredictable ways. The lack of adequate
designer controls is a clear barrier to levering automation [49].

A tool should enable rapid iterating on diferent possible style
transfer results to address the shortcomings of a fully automatic
style transfer approach. Our research aims to combine the benefts
of automation with efective controls for customizing and exploring
design variations., Our approach combines automatically gener-
ated design correspondences with interactive control of how and
where to transfer styles. We leverage prior work [54] on generat-
ing an automatic correspondence between vector graphics. This
method yields a between-design element correspondence (Fig. 2)
and element-wise similarity along multiple dimensions.

We present a new design tool, VST, short for Vector Style Transfer.
VST provides designers with an interface to visualize and customize
how style fows across designs (Fig. 3). VST displays a dynamic list
of element styles, allowing designers to easily copy, reset, and cus-
tomize element style attributes (see Appendix C for all attributes).
With VST, designers can map and remap example Source element
styles onto contextually similar elements. VST also features fast
and fexible ways to identify, select, and style Target elements.
The Output canvas re-renders the stylized Target graphics in
real-time with any changes, providing immediate visual feedback.

Conceptually, VST expands the eyedropper or element-wise style
copy-paste interactions to groups of elements. VST can infer many
element relations directly, omitting the need for explicit element

structure or class information. Our combined automation-powered
interactive style transfer approach means that designers can get the
best of both worlds – their style defnitions can both be based on
ad-hoc demonstrations and quick to apply fexibly across designs.

To evaluate VST’s style transfer capability, we recruited six de-
signers to transfer styles between nine designs. Each designer partic-
ipating in the study successfully used VST to interactively transfer
styles to their satisfaction and make nine new Output designs.
In a follow-up design replication study, we recruited four expert
designers to each manually replicate six of these Output designs in
their preferred design tool. The results from this preliminary study
suggest that someone using VST may reduce the time and work for
this style transfer task compared to experienced designers using
industry-standard tools. Our contributions include the following:

(1) VST, a design tool that introduces a novel user interface
for interactive, user-guided, fexible style transfer for vector
graphics. Its key interaction principles are: a) enabling users
to edit computed correspondences at multiple levels, and b)
enabling users to customize how attributes are transferred
between designs across the correspondence.

(2) Two user studies that demonstrate: a) that designers can
successfully transfer styles between graphics with VST, and
b) that designers without VST can spend more time and
efort to produce equivalent design results.

2 RELATED WORK
The most relevant prior work follows several themes: supporting
creative processes with automation, inferring design structures,
automatic transfer techniques, and other advanced vector graphics
design tools. We review each of these in turn.

2.1 Supporting Creative Processes with AI
While automation is powerful, gracefully integrating it into existing
creative practices demands care. Regarding working with AI as a
design material, scholars have elaborated on the need for retain-
ing control [45, 49, 50, 55, 59, 68]. For GUI design, Dayama et al.
present a method for interactive layout transfer, where the layout
of a source design is transferred automatically using a selected
template layout while complying with relevant guidelines [6]. In
photography, researchers have provided mechanisms for guiding
photographers to optimize image aesthetics [35] and to fnd ideal
portrait lighting conditions [11]. Goal-oriented transformations can
also be applied to existing designs (e.g., improving accessibility)
[69] or to produce alternative designs for diferent viewports [21].

Our rationale for using element relationships between designs as
a primary mechanism for transfer is that this mirrors how designers
tend to work already when manually transferring styles. Highly
related to our line of work are feedforward and example-driven cor-
rections. Feedforward work refers to showing the user the output or
result of their action before it happens–a preview of applying difer-
ent interface actions [10, 29, 61]. For example, OctoPocus provides
dynamic guidance to bolster users’ ability to learn stroke-based ges-
tures [2]. Example-driven corrections and interaction models like
those in FlashMeta [46] or programming-by-demonstration disam-
biguation models [41] provide alternative techniques that address
similar problems. Feedforward and inherent feedback can promote

Interactive Flexible Style Transfer for Vector Graphics UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

UI element functionality understanding to users, though comput-
ing this information fast enough for live, interactive contexts can
be challenging. With that said, cluing in authors on their actions’
impact is valuable. For example, the Lightspeed rendering pipeline
enabled interactive prototyping of professional 3D graphics, en-
abling more design variation exploration [47]. One approach might
leverage lower-fdelity previews of variations when interacting
with automation, such as design galleries. We avoid using design
galleries as our early prototypes showed the varying complexity
and breadth were visually overwhelming. For an analogy in text
editing: VST spell-checks the entire document, while feedforward
suggests autocompletion options given what is already written.

Example-based corrections generate a program that satisfes all
demonstrated changes, iteratively growing more complex. Example-
based style retargeting for websites provides a successful analog to
vector graphic style transfer in HTML/CSS [3, 34]. Example galleries
can efectively support open-ended design authoring, where styles
come from potentially multiple sources [36]. While the document-
object-model hierarchy is essential to styling web pages, such group-
ing structures and labels are entirely optional and often absent in
vector graphics. Groups may be constructed arbitrarily (e.g., for
editing convenience) rather than having any consistent semantic
meaning. Designers can encode hierarchical information through
groups but frequently opt to style elements directly [50]. Bringing
interactive style transfer to vector graphics is a unique problem.

2.2 Inferring Design Structures
Researchers have used several approaches to infer underlying or
implicit structures in visual designs. Traditionally, this work pri-
marily operates on some structured representation (like HTML
or SVG). For user interfaces, large libraries have helped to char-
acterize and infer document structure [7, 33]. Linking styles via
direct manipulation and element cloning provide a clear view and
control of an element’s style properties [20]. There is also work
to recognize higher-level design patterns through designs by in-
ducting grammars [57]. For the domain of D3 visualizations, Hoque
et al. map data types onto shapes/axes to help search for relevant
designs [22]. Harper et al. showcase tools for deconstructing and
restyling a D3 visualization by extracting the data and modifying
visual attributes of marks [16]. More recent work also focuses on
inferring design structure from images directly. Computer vision
techniques are improving on reverse engineering user interface
models directly from screenshots [12, 53, 64]. Similar work using
vision-based methods has helped leverage attention towards an-
swering questions and understanding mobile UIs [38, 52, 56]. Reddy
et al. use diferentiable compositing to identify pattern instances
within a design [48]. Scene graphs have also characterized struc-
tural relationships within and between 3D environments [14]. For
vector graphics, Shin et al. demonstrate a technique using graph
kernels to fnd relationships between elements of designs [54]. We
leverage this preexisting automatic technique to compute a corre-
spondence between design elements (like those shown in Fig. 2).
The contribution of this work centers on our novel design tool
that goes beyond pure algorithmic automation by enabling fexible
interactions between the capabilities of such an algorithm and the
designer’s high-level styling goals.

2.3 Automatic Transfer Techniques
While automatic style transfer techniques can generate impressive
image transformations, they are generally functional as theme selec-
tions. Due to the broad range of shape primitives, graphic designs
do not immediately lend themselves to this document-level style
transfer approach. The selective extraction and transfer of specifc
styles are too precise to be encoded in a one-dimensional slider
[24, 28]. The variations of vector designs also make mapping onto
an otherwise standard template difcult (e.g., facial key points) [58].
Additionally, text can be used to edit image content and style di-
rectly [4]. While layout is not our tool’s focus, prior work highlights
optimization techniques that can be used to automatically format
text documents [23]. ImagineNet restyles mobile apps with neural
style transfer and updating assets in place [13]. To be stylized with
image-based techniques, vector graphics must frst be rasterized,
losing future object-level awareness and scaling abilities. The state
of the art in automatic vector generation includes leveraging pixel-
based difusion models [27] by leveraging a diferentiable vector
graphics representation [39]. DeepSVG uses GANs to generate and
interpolate between SVG icons and shares a large-scale SVG dataset
[5]. Kotovenko et al. model a painting using discrete strokes to
recreate style transfer better [32]. Within font, some work shows
the possibility of even inferring and transferring style between font
glyphs [8, 40]. These techniques often give users little to no control
of how the style is transferred. Our work focuses on optimizing the
potential value that these automatic approaches can provide by in-
troducing meaningful high-leverage interactions to customize and
control generated output while retaining the core vector graphics
representation that designers are familiar with working with.

2.4 Vector Graphics Design Tools
Several techniques for authoring or adjusting vector graphics exist
and inform this work. Object-Oriented Drawing introduces a new
way to create and style elements directly on the canvas [65]. DataInk
supports cloning and binding user-generated symbols to data, facil-
itating lightweight restyling [66]. Sketch-n-Sketch links drawing
code and vector graphics, letting users directly edit the SVG in a can-
vas, modifying the code which generates it [18]. For mathematical
diagramming, Penrose uses layout energy-minimization techniques
coupled with a language for specifying explicit styles and content
of what to render [67]. Falx uses user demonstrations and program
synthesis to create new visualizations [63]. Existing tools can even
convert web designs into a vector layout [9]. Para supports bind-
ing procedural art generation constraints with graphics, including
cases where there are many-to-many constraints [26]. A follow-up
project, Dynamic Brushes, combined procedural programming into
brush behavior and design, enabling more custom expression [25].
Other design tools have looked at supporting design layout [30, 44],
fashion [60] and design coloring [17, 70].

3 VECTOR STYLE TRANSFER
When transferring styles between vector graphics, designers may
identify an inspirational style they want to copy from a Source
design. Next, in a Target design, they may identify design elements
they would like to stylize. Then, they will update the stylistic at-
tributes of those relevant Target elements using the Source style

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

Figure 2: An overview of automated design correspondence. To relate design elements, we frst construct a graph from each given
design, where the vertices are primitive design elements (e.g., shapes, text, images) and edges are semantic relationships (e.g.,
same fll, containment, same font). Once the Source and Target graphs are constructed, we then compute a correspondence
between the two designs’ elements using the technique previously detailed in [54]. This automatically generated correspondence
is VST’s basis for (a)how to fnd similar elements within a design (e.g., for easier selection/styling) and (b) identifying which
elements are similar to each other across designs (e.g., determining which initial styles to transfer). Each Target element is
linked to a single Source element. Only a subset of links between these designs’ elements are shown.

as a reference. Alternatively, they may frst focus on the Target
design they wish to change and pull stylistic infuences in from
a range of Sources, exploring possible variations. Generally, this
styling is an iterative and fexible process that involves reasoning
about (a) which elements correspond to each other across designs and
(b) which style attributes to transfer. There is subjectivity regarding
the most desired application of style, and higher-level considera-
tions like the overall cohesion of the Target design after styles
have transferred further complicate this task. The resulting Out-
put design has the style of one design and the content/structure
of another – though this distinction is still inherently subjective.
Still, this task (using examples to update existing graphics with new
visual styles) is expected in the graphic design process [19, 31, 37].

3.1 Design Goals
A high-quality element correspondence is one way to enable fast
and efective style transfer for vector graphics designs. To provide
designers with fexible control over style transfer is to provide them
with tools to control the correspondence between designs. More-
over, to be worthwhile, the resulting designs should be of satisfying
quality and faster to generate than existing tools, especially when
considering the cost of learning to use a new tool. Grounded in
our literature review and personal experience editing graphics, we
created these design goals for Vector Style Transfer (VST):

DG1 Let designers powerfully tune design correspondences.
DG2 Enable fexible control over which styles are transferred.
DG3 Reduce the work and time needed for transferring styles.

Our vision for how the functionality of VST best fts into existing
processes is as a plugin or new tool in existing vector graphics

design software. Designers could select an object group and copy
their style. Then, they could select any other group within their
design document and apply that style – without manually selecting
each element subset. Additionally, they could flter which styling
attributes they would like to copy. This work could either be used
as a starting point to render a design in several alternative styles
or to make a set of designs adhere to a single style.

3.2 Exemplar Scenario
We will demonstrate VST’s functionality with an exemplar scenario
involving vector style transfer. Consider Xavier, a designer hired
by a local Italian restaurant, Leonard’s. After a recent renovation,
the restaurant is set to have a grand re-opening. Xavier has created
a new fyer to help them advertise, which the business manager
approves. To unify the brand’s style, the business manager also asks
him to create new versions of several existing graphics, including
menus and a special delivery advertisement. These designs should
look like they all refer to the same restaurant.

This style unifcation process Xavier faces involves many re-
peated manual edits and cross-references. Instead of manually en-
suring exact visual consistency, he opens VST and loads in both
graphics (Source: the new fyer, Target: the previous advertise-
ment). VST computes a correspondence between elements of these
two designs and automatically copies styles between matches. This
correspondence technique ensures a one-to-many mapping from
the Source elements to the Target elements. This ensures that ev-
ery Target element will be matched, while some Source elements
may not be initially matched. Xavier then sees the Output canvas
update with newly stylized graphics (Fig. 3).

Interactive Flexible Style Transfer for Vector Graphics UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

(A) Source (B) Target (C) Output (D) Customization

Figure 3: An overview of the VST interface, including (A) the Source graphics (where the style is sourced from), (B) the Target
graphics, (C) the Output canvas (the current style transfer result), and (D) customization controls for matching element styles
across canvases and fltering which style attributes to copy or modify. Designers can flter this list of attributes (shown in D)
based on the current selection to do more focused editing or instead modify shared style attributes across the entire design.

For each Target element, styles are copied from the most simi-
lar Source element as determined by the design correspondence
algorithm [54]. In addition to seeing the updated target graphics, a
list of changed style attributes is displayed on the right-hand side
of the interface (Fig. 3D). The breadth of style attributes and the
range of possible valid matches between elements makes using a
fully automatic approach difcult. The inherent subjectivity of style
also means this frst attempt will not always be correct, especially
for more complex and open-ended designs.

Xavier immediately detects outlier text elements that are visually
misaligned with the Source style directly on the Output canvas
(Fig. 3). Designers are trained to use gestalt principles of perception
to organize a design. Incorrect style transfer will lead to visual
violations of these principles, which are often easy to detect [43].
This means that some elements likely have been ‘mismatched’ by
the correspondence algorithm (Fig. 4). Using the Source canvas
(Fig. 3A), Xavier can then specify which Source element the in-
correctly styled text felds should visually match. When he presses
the Transfer Source Style to Target button (Fig. 10), VST renders
styles from the Source element onto the Target selection in the
rightmost Output canvas (Fig. 3C). Behind the scenes, VST ap-
plies these fxes to a copy of the original correspondence, avoiding
recomputing the entire correspondence after updates.

Still, manually selecting each target element to update is tedious.
To enable faster transfer, designers can double-click on any Target
element to select similar elements, as determined by the design
correspondence. Repeatedly double-clicking an element iteratively
grows the set of selected Target elements. This feature mirrors the
multi-click selection in other media, like toggling between word-
sentence-paragraph selections within a text document. Here, we
use the underlying within-document element-wise similarity score
to intelligently add elements most similar to the currently active

selection. A similarity score is computed for each element relative to
the currently selected elements, and the elements with the highest
score is added to the active selection. Double-clicking on a Source
element conversely selects all Target elements currently matched
to that element, which shows how style fows from the Source to
Target design. The customization panel shows a pane of similar
elements, where Xavier can preview this selection (Fig. 10).

Despite Xavier updating the Source-Target correspondence,
the resulting Output design still has some problems. For example,
while the font and color are corrected, the copied font size makes
some elements not ft neatly in the new design (Fig. 11). Once
matched, VST has controls for customizing which specifc style
attributes are transferred. To focus on the desired element, he clicks
Show Filtered Style to only see the styling applied to the text element
(Fig. 11). He toggles the fontSize attribute, resetting that element’s
font size and updating the Output canvas. Similar attribute values
are grouped in this view to make selecting and editing easier. He
continues this style transfer process until he is satisfed with the
quality of the new design. Internally, these changes build up a
list of attribute transformations to apply to the Target design.
The customization pane can highlight just the modifed attributes,
summarizing stylistic changes at a glance. Finally, Xavier downloads
the Output graphics from VST as an SVG fle to save his work.

3.3 Implementation
We used ReactJS to build the VST interface and deployed our proto-
type online. Vector graphics are rendered using FabricJS, a vector
graphics library leveraging the HTML5 canvas backbone. SVG fles,
such as those exported from industry-standard design tools like
Sketch, Figma, Canva, and Adobe Illustrator, can be directly im-
ported. Once VST has imported the input Source and Target

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

graphics, we compute a correspondence between the two designs
using a comparison technique introduced by Shin et al. [54]. This
technique represents each design as a multigraph (rather than a typi-
cal parent-child hierarchy tree) to support matching elements across
a broader range of similar attributes. Vertices are primitive design
elements (e.g., shapes, text, images), and edges represent semantic
relationships between elements (e.g., alignment, containment, same
fll). This correspondence contains per-element similarity scores
across several dimensions (e.g., color, shape, size, and text). In our
implementation, correspondences between 20 or fewer elements are
generally computed in real-time (< 1s). Though slower, our study’s
larger design pairs are still tractable to match, with the largest pair
(185 total elements) taking about 100s. Our example set’s average
matching time per design pair (across Style Transfer Tasks 1 and
2) is 7.78s. Once obtained, match information can be exported and
saved for later use. A version of VST for styling pre-matched design
pair examples is available at: https://berkeleyhci.github.io/vst/.

4 EVALUATIONS
Style preferences are subjective, which means that making absolute
statements about a style transfer tool’s performance is difcult. Still,
we sought to evaluate three key research questions:

RQ1 How would designers use VST for style transfer?
RQ2 Could VST stylize realistic, open-ended designs?
RQ3 Could VST reduce the time or work of styling?

4.1 Style Transfer Evaluation
Method – To answer RQ1 and RQ2, we ran an exploratory study
with six experienced designers (D1-6). Before the study began, we
asked designers to create a new design from a given prompt with
their preferred design tool. The prompt requested a single menu
page design for a local restaurant’s (Leonard’s) mobile phone appli-
cation. The goal was to include designer-provided source graphics
to create a more realistic style transfer scenario. More methodology
details are available in Appendix A, and more information about
the participant’s background is in Appendix B.

Task 1: Basic Graphics Pairs – After an interface demo and
the opportunity to ask questions, designers used VST to transfer
styles between fve pairs of example designs that the authors pre-
pared. The design pairs we chose for designers to transfer from
are shown in Fig. 5 (T1.1-5). We chose these graphics to capture a
breadth of diferent graphic design domains (e.g., art, infograph-
ics, UI mockups). We instructed designers to apply styles from the
Source to the Target graphics to make the Source and Output
as stylistically similar as possible. Once satisfed, they would save
the Output graphics and move on to the next pair.

Task 2: Open-Ended Transfer – To observe how VST han-
dled styling more open-ended realistic designs (RQ2), designers
transferred styles from their externally created designs onto three
new related templates (T2.1-3). In these tasks, the Source was a
menu page created by each designer before the study with their
preferred design tool. We matched their designs to three new tem-
plate pages (a loading screen, a reviews page, and a checkout cart),
all for Leonard’s mobile app. The generated output design corre-
spondences (Fig. 2) were not hand-tuned at all before the study.

Figure 4: The black lines show an initial correspondence
between the elements of the Source and Target designs.
The green lines show an alternative, more desired set of links.
When users select their desired Source and Target elements
and press Transfer Source Style, VST will update these links,
redirecting the fow of visual styles across designs.

4.2 Style Transfer Results
Our style transfer evaluation study found that designers could
use VST to control style transfer across basic designs (RQ1), even
generating variety in their Output designs from the same inputs.
Those designers successfully used VST to fexibly transfer styles
from more realistic, open-ended designs created with external tools
(RQ2). We take this as an indication that VST enabled the style
transfer it was designed to support. Each designer participating in
the study (D1-6) used VST to generate eight new Output designs
successfully. Designers also answered Likert-scale questions regard-
ing their experience with VST (Fig. 8). Style transfer examples from
the evaluation are shown in Figures 5 and 6.

Designers, despite never using a similar interface before, used
VST’s features to both (a) modify design correspondences (DG1)
and (b) flter and edit styles per correspondence (DG2). Software
instrumentation revealed that almost all designers on almost all
tasks used VST to tune computed correspondence matches. On
average, designers performed 6 such corrections per task. While
making these corrections, designers used the functionality to select
similar elements to the ones they manually selected. On average,
designers performed 7.3 similarity selections and spent about 4.8
minutes per task. As a reminder, designers were only instructed to
match the styles to the best of their ability – not to do so as quickly
or efciently as possible. We showcase additional, more complex
VST graphics made outside of this study in the Appendix (Fig. 12)
and in our paper’s accompanying project video.

VST let designers tune design correspondences (DG1). Over-
all, designers appreciated the style transfer control that VST pro-
vided them. The designers’ Likert-scale responses indicated they
could produce designs they were satisfed with (Fig. 8). Most design-
ers could see themselves using the tool again and found VST fexible
enough to perform style transfer as they intended. Their verbal
remarks are corroborated by the frequency with which they used
the correspondence correction feature (Average: � : 6.0, Standard
Deviation: � = 3.8) and attribute editing feature (� : 24.0, � = 17.3).

https://berkeleyhci.github.io/vst/

Interactive Flexible Style Transfer for Vector Graphics UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 5: Task 1 (Style Transfer) – Basic Graphics Pairs. Here,
designers D1-6 used VST to transfer styles from the Source
to the Target graphics. Both Source and Target designs
were provided to the designers. In simpler cases, the design
transfer result is uniform across designers (T1.1-3). Still, de-
spite each designer starting from the same pair of designs,
variations arose in more complex design pairs (T1.4-5).

VST enabled fexible control of style transfer (DG2). The de-
signers created a wide variety of designs, even when given the same
input graphics (Fig. 5). For their own provided graphics, design-
ers reproduced a consistent theme across a set of provided vector
graphics templates (Fig. 6). Several designers remarked on the con-
venience of reusing visual styles directly. D4: Very fun! Appealing
to a visual thinker who values efciency and hates repeatedly doing
the same things. Magical, "it read my mind!" kind of feeling. While
most found it clear how to use the diferent parts of the prototype
to achieve their desired style transfer, there was also feedback that
the transfer results were sometimes surprising. This surprise likely
stemmed from having multiple ways to style elements (e.g., tuning
the correspondence vs. what styles the correspondence transfers).

Designers enjoyed applying broad changes. Designers val-
ued the ability to apply broad style changes quickly. D3: I was
impressed by how well the system generated its "best guess" when I
selected the "Copy All." I also thought it was easy to learn and intu-
itive. It had tools that worked similarly to design software I already
used (like dragging values to change the font size). D5: I liked how
efcient the transferring process was in closely replicating the desired
style with just a button. Even if it wasn’t completely accurate, the
toggle buttons under Copy All made fne-tuning specifc aspects of
design elements easy – I could defnitely see how this interface could
reduce the amount of time that a designer would need to update
designs. Designers also appreciated directly selecting similar ele-
ments easily, which helped broader styling. D4: Being able to select
multiple elements precisely is very nice.

Correspondence-based transfer presents novel controls.
No designer reported using a similar style transfer design tool
before this study. D6: I have not used anything that performed this
exact function before, but I’ve used a tool to try to analyze an image
and fnd out what fonts were used. It was not as reliable as this tool.

Figure 6: Task 2 (Style Transfer) – Open-Ended Transfer. Be-
fore the study, we gave designers (D1-6) a prompt for a menu
design with specifc elements without any style instructions.
The column header shows designs that they brought into
the study (Sources), and the row header shows design tem-

plates (Targets). The inner table shows new designs created
by applying styles from their externally created Source de-
sign onto previously unseen Target templates. Inspecting
each column shows a unifed visual style inherited from the
Source document, while rows show the Target structure.

While most designers (4/6) indicated an interest in using the tool
again, others were hesitant, citing VST’s deviation from the types of
tools they were familiar with. Some designers recognized the value
of a style transfer tool: D4: I have manually copied styles and have
had other humans manually copy my own. When successful, this tool
manages to give you that feeling of empathy and creative connection
(“Wow, the other designer understood my aesthetic and was able to
replicate it! I feel they really understand my vision”). When it is not
successful, it is easier and less stressful to correct than a human might
be. Plus, it is faster than asking another designer, fewer resources,
less risk, and when it is successful, high reward!

4.3 Design Replication Evaluation
Method – To answer RQ3, we ran a follow-up study. Our goal
with this study was to compare the time and work required for
style transfer in VST with that of an expert using industry-standard
design software. We recruited four new expert designers as replica-
tion designers (RD1-4). More information about their background
is in Appendix B. They were tasked with recreating a subset of the
Output graphics from the previous study (T2.1-3) in their preferred
design tool (Adobe Illustrator). Given that VST is a novel design
tool there are no users with equivalent VST expertise comparable

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

Figure 7: Design Replication Task – A new set of expert designers (replication designers RD1-4) replicated six reference designs
(RT1-6) from the previous style transfer evaluation tasks (Fig. 6) using two diferent starting points: Basic and Auto. The frst
approach involved using Illustrator to transform the Basic input design to the replication goal. The second approach again
used Illustrator, but instead has the algorithmic output (Auto) as the starting point. We provided the RDs with source styles and
target structures from the previous study in vector form and a reference image of the replication goal for both approaches.

to the RDs’ Illustrator skill. To approximate the performance of an
expert VST user, the authors used VST to generate the same Out-
put designs using the same input materials provided to the RDs.
This data is labeled VST in Table 1. Further methodology details
are in Appendix A. We report the comparison between these three
design replication methods in our results.

Task: Design Replication – We selected six Output design ex-
amples from Fig. 6 for this designer to replicate in Illustrator (Goal
in Fig. 7). We selected designs to include both graphics from every
task (T2.1-3) that we gave the original designers and to include one
example per designer (D1-6). We provided the RDs with the Source
and Target vector graphics fles and an image of the generated
Output (created initially by D1-6). The RDs were then tasked with
transforming the Target graphics to resemble the provided Out-
put. To measure what human adjustment is needed when working
with the automatically stylized designs, we also asked the RDs to
replicate the Output starting with the initial automatically stylized
Output graphics from VST. These graphics (Auto) are created by
copying all styles using the initial automatic Source and Target
correspondence. We asked the RDs to transform the now-partially
stylized Target graphics to resemble the Output image. Any dif-
ference between these two sets (Basic and Auto) would highlight
the algorithm’s impact on the task time and work. To compare the
potential of VST and existing tools, the authors also replicated the
same Output designs from the previous study using VST (RT1-6).
The same input materials were used as in the Illustrator replication:
the Source and Target vector graphics fles and an Output image.

4.4 Design Replication Results
In our study, using VST to transfer styles was faster than expert
replication designers (RD1-4) transferring styles within their pre-
ferred design tool (RQ3). The RDs also performed more edit and
selection operations using Illustrator than the authors using VST.

We report total work as a combination of selection and edit op-
erations. On average, the RDs spent 534 seconds replicating from
scratch (Basic) and 774 seconds replicating from the output of the
correspondence algorithm (Auto). In comparison, the authors re-
quired, on average, 129 seconds to match styles using VST. A plot
of the duration for each task is shown in Fig. 9. Stats averaged over
all tasks (RT1-6) are shown in Table 1. Each replication designer
also reported the style replication task as difcult and tedious.

Transferring styles with existing tools is tedious. After
replicating the designs in Fig. 7 (RT1-6), the RDs reported on their
experience by answering Likert-scale (ranging from 1-7) and open-
ended survey questions. They reported that using Illustrator for this
style matching task is tedious for both starting points, with Auto
slightly more tedious than Basic (Average (�): 6.8 → 5.8, Standard
Deviation: ������ = 1.3, ����� = 0.5). The associated scale labels
were: 1-Not tedious at all and 7-Extremely tedious. They also reported
starting from Auto was less fun than Basic (�: 2.0 → 3.8), with 1-Not
fun at all and 7-Extremely fun (������ = 1.0, ����� = 0.8).

Editing from Auto was not faster than Basic. Combining
automated style transfer with existing design software tools may
even hinder designer performance. The RDs reached roughly the
same Likert-scale level of satisfaction with their fnal designs’ qual-
ity from both the Basic and Auto starting points (������ = 4.3, �����
= 4.5), with 1-Completely dissatisfed and 7-Completely satisfed
(������ = 1.0, ����� = 1.0). However, they reported that generating
the desired Output was harder with Auto than Basic (�: 6.3 → 5.0),
with 1-Not difcult at all and 7-Extremely difcult (������ = 1.0,
����� = 0.8). These stats match their written feedback: RD1: Edit-
ing the auto fles is harder – there’s more variance in the output, and
sometimes unnecessary properties were added from the automatic
transfer. RD2: In the standard [Basic] fle, editing elements is more
straightforward, while for the modifed [Auto] one, I spent some extra

Interactive Flexible Style Transfer for Vector Graphics UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

I was satisfied with the quality of design produced.

I could see myself using the tool again.

The tool was flexible enough to let me perform style transfer in the way I intended.

The results of style transfer were predictable.

It was clear to me how to use different parts of the tool to achieve my desired result.

Strongly Disagree

Neutral

Strongly Agree

Disagree

Agree

Figure 8: Summary of Likert survey data from designers D1-6.

time cleaning. RD4: I largely had a similar approach to both design
fles, though the original [Basic] one tended to be easier.

Replication designers wanted transfer tools like VST. After
briefy interacting with VST at the end of the study, all RDs were
genuinely interested in trying out an Adobe Illustrator plugin with
similar functionality (� = 6.25, � = 1.0), with 1-Not at all interested
and 7-Extremely interested. RD4: The prototype looks very interest-
ing! RD1: I would defnitely try it when I want to apply vector-based
styles to my design. When asked about if and where they would
fnd VST useful: RD1: I can see how this tool would be benefcial for
tasks like redesigning an existing UI or early-stage exploration. When
asked about other similar tools they have used: RD2: In Figma,
we save the font/color as a library preset, then when we change the
setting, it automatically updates the components. RD3: The style
transfer prototype is more adaptive than design components because
fles that I need to change may not have a component system.

5 DISCUSSION
The success of VST demonstrates the value of two key design
goals that are relevant as recommendations for other automation-
powered correspondence-based transfer tools: include the ability
to fexibly tune generated design correspondences (DG1) and include
the ability to fexibly customize what correspondences do (DG2).

Tuning Generated Design Correspondences. Providing pow-
erful and convenient ways to tune correspondences avoids requir-
ing users to make each mapping manually (DG1). In VST, this
functionality is represented by our Selecting Similar feature, the
ability to view and select elements sharing any of the same values
in the customization pane, and the Similarity Threshold feature
(which lets users quickly preview selections).

Customizing Correspondence Functions. Customizing a cor-
respondence retains the fexibility of a manual approach, ensuring
that designers still have control (DG2). The domain will ultimately
specify what is reasonable to transfer per correspondence. Gener-
ally, the designer should be able to control what happens when
two objects are linked. In VST, we achieve this through our cus-
tomization panel, where designers can copy, reset, and customize
attribute values. We also provide fexible ways to flter this list (e.g.,
by active selection and showing modifed/all attributes).

The Cost of Automation – One notable point in our results
is that starting with the algorithm’s output (Auto) did not make
replication easier. In fact, the RDs reported that starting with the
automatically generated algorithm output was more difcult and

Table 1: Replication work data – usage statistics averaged
over replication tasks RT1-6 (see Fig. 7). The Basic and Auto
columns show aggregate data collected from the four expert
replication designers (RD1-4), while the VST column shows
data from the paper authors using VST to replicate designs.

Basic Auto VST
Task Duration Mean 532 774 129

S.D. 341 347 80
Work Operations Mean 265.7 383.5 30.3

S.D. 167.8 159.2 18.9
Attribute Edits Mean 80.0 113.1 13.0

S.D. 59.9 77.8 8.7
Selection Updates Mean 185.7 270.4 17.3

S.D. 122.8 185.7 12.1

less fun. Simply throwing automation into existing tools and pro-
cesses may backfre. This is backed by our quantitative results: the
Auto designs, on average, required more work to style than the
corresponding Basic starting point (Basic: 265 operations, Auto: 383
operations). This is jarring, as applying the style transfer algorithm
should have the opposite efect — otherwise, why apply it at all?

First, applying a semi-correct transformation reduces cohesion
in the design. The lack of cohesion commonly found in Auto designs
reduces the efciency of applying gestalt principles. This makes
selecting similar elements to style them together harder. Second,
the vast scope of the copied attributes may introduce new work.
Incorrectly changing an attribute does not create new work if it al-
ready needs to be changed. However, if part of a Source style is not
desired in the Output graphics, those attributes must be manually
reset to their original Target value. Current design software fails
to support this type of style transfer interaction. In contrast, VST
features convenient ways to quickly select and explore element
styles (double-clicking an element/selection, precision selection
controls, visually selecting via the same attribute value). Current
correspondence algorithms do not seem to reduce the total work in
style transfer otherwise. This is especially true for more complex
examples where correspondence accuracy is often lower.

6 LIMITATIONS AND FUTURE WORK

6.1 Limitations
VST is not a general-use vector graphics editing platform. The SVG
standard is complex; even industry-standard platforms like Inkscape
and Adobe Illustrator may render the same graphics diferently. Still,
some missing features limited how useful VST was for designers in
its current state. Users wanted more advanced layering/z-reordering
for sub-selections in complex design areas. Additionally, the current
correspondence structure usage limits elements to inheriting styles
from one Source element unless manually mixed with other styles.

We also did not measure the impact of algorithm matching perfor-
mance on this task. Informally, study participants D1-6 updated the
correspondence an average of six times per task, though our study
instrumentation did not record the number of adjusted elements
per update. In Shin’s prior work [54], the average match accuracy
was 95% (ranging from 78—100%). However, their evaluation [54]

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

Figure 9: Plots of the duration, edits, and selections data from the design replication (RT1-6). Along each recorded measure
(duration, edits, and selections), the authors using VST outperformed all four expert designers using Adobe Illustrator in
replicating the stylized designs. The Basic and Auto plots also include ticks showing the standard error for each task computed
over RD1-4. VST was only used once per task to obtain a baseline, so there are no comparable ticks to show.

was performed with the Source as an element group within a Tar-
get design, rather than a separate design. Explicitly varying the
match quality and leveraging diferent matching techniques are
opportunities for future work. Another limitation of this work is
the smaller scale of the surveyed designer population (10 unique
designers across both studies). For our design replication study, we
worked with four expert designers. While this smaller study size
allowed us to deepen the level of feedback and data we gathered,
future studies could evaluate a larger expert population to get ad-
ditional feedback. Future work could conduct a larger-scale study
with more designers to potentially collect insights into a broader
set of behaviors that designers exhibit. Also, when comparing VST
to other tools, the authors have more awareness of the replication
goal and task, which likely improves their relative performance.
Another evaluation could train experienced designers with VST
and have them replicate graphics from the original study.

6.2 Future Work
Images can naturally add vibrancy to a design, though VST’s style
transfer only applies to vector graphics. One future direction is
sourcing vector styles directly from images. RD1: It would be great
to apply bitmap styling to my vector design. This use case is more
common in my workfow. This requires converting the image to
vector graphics or a novel style extraction technique. Some fea-
tures (e.g., colors) are simple to extract, while other features like
paths, gradients, shapes, and fonts are potentially much harder to
source from an image correctly. For image-to-vector graphics con-
version, some research methods [51] and commercial tools [1] exist.
However, these methods tend to optimize pixel-based similarity
to the source image over a consistent output structure or element
resolution. The internal document complexity makes determining
correspondences much more challenging. Rasterizing vector graph-
ics is a lossy process with no perfect inverse. Still, given the ubiquity
of image-based inspiration, a vector styling tool that uses images
as a styling source is an exciting future direction.

Better correspondence algorithms may reduce the need for a cor-
rective interface like VST. Consider automatic speech transcription

as an analogy: under a certain accuracy threshold, manually tran-
scribing speech is easier than correcting a low-quality generated
transcript. The work required to fx the algorithm’s output exceeds
that of simply creating that same output manually. There is room
for improvement in design correspondence accuracy for vector
graphics. However, even with the best algorithm, some cases will
still need manual tuning. This ambiguity stems from the inherent
subjectivity around good style and varying designer tastes.

Primarily, our style transfer with this prototype addresses ele-
ment size, font, stroke, and fll. While designers can modify other
features, this feature subset visually dominates the result. A com-
plete list of transferrable properties is in Appendix C. Future work
could serve as a larger-scale multi-design style linter or unifcation
technique where many designs are edited simultaneously. The de-
sign layout and structure are held constant throughout our style
transfer process. Applying the layout from source to target is an
exciting and relevant next direction.

7 CONCLUSION
We presented a novel design tool called VST (Vector Style Trans-
fer) for fexibly transferring styles across vector graphics designs.
We conducted two studies to investigate (1) how designers may
use correspondence-based transfer tools like VST and (2) the po-
tential of these tools in relation to traditional industry-standard
design tools (e.g., Adobe Illustrator). The frst study, an open-ended
style transfer evaluation, revealed that despite not previously using
any similar tools, experienced designers could efectively trans-
fer styles even across graphics independently created using other
design tools. The second study, a preliminary design replication
evaluation, suggests that tools like VST may reduce the time and
work required to transfer styles across designs compared to tra-
ditional design tools. These expert designers also found directly
editing automatically stylized graphics more difcult and tedious
than the original baseline design templates. This work provides two
design recommendations for future design tools to support fexible
user control: enable tuning generated design correspondences and
customizing how these correspondences transform designs.

Interactive Flexible Style Transfer for Vector Graphics UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

REFERENCES
[1] Adobe. 2022. Adobe Express: Convert Images to SVG. Adobe. Retrieved August

10, 2022 from https://www.adobe.com/express/feature/image/convert/svg
[2] Olivier Bau and Wendy E. Mackay. 2008. OctoPocus: A Dynamic Guide for

Learning Gesture-Based Command Sets. In Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology (Monterey, CA, USA) (UIST
’08). Association for Computing Machinery, New York, NY, USA, 37–46. https:
//doi.org/10.1145/1449715.1449724

[3] Edward O. Benson and David R. Karger. 2013. Cascading Tree Sheets and Re-
combinant HTML: Better Encapsulation and Retargeting of Web Content. In
Proceedings of the 22nd International Conference on World Wide Web (Rio de
Janeiro, Brazil) (WWW ’13). Association for Computing Machinery, New York,
NY, USA, 107–118. https://doi.org/10.1145/2488388.2488399

[4] Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2023. Instructpix2pix:
Learning to follow image editing instructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE Computer Society,
Los Alamitos, CA, USA, 18392–18402.

[5] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020.
Deepsvg: A hierarchical generative network for vector graphics animation. Ad-
vances in Neural Information Processing Systems 33 (2020), 16351–16361.

[6] Niraj Ramesh Dayama, Simo Santala, Lukas Brückner, Kashyap Todi, Jingzhou
Du, and Antti Oulasvirta. 2021. Interactive Layout Transfer. In 26th International
Conference on Intelligent User Interfaces (College Station, TX, USA) (IUI ’21).
Association for Computing Machinery, New York, NY, USA, 70–80. https://doi.
org/10.1145/3397481.3450652

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (Québec City, QC,
Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA,
845–854. https://doi.org/10.1145/3126594.3126651

[8] Praveen Kumar Dhanuka, Nirmal Kumawat, and Nipun Jindal. 2019. Vector based
glyph style transfer. In ACM SIGGRAPH 2019 Posters. Association for Computing
Machinery, New York, NY, USA, 1–2.

[9] divRIOTS. 2023. html.to.design. divRIOTS. https://www.fgma.com/community/
plugin/1159123024924461424/html.to.design

[10] Tom Djajadiningrat, Kees Overbeeke, and Stephan Wensveen. 2002. But how,
Donald, tell us how? On the creation of meaning in interaction design through
feedforward and inherent feedback. In Proceedings of the 4th conference on Design-
ing interactive systems: processes, practices, methods, and techniques. Association
for Computing Machinery, New York, NY, USA, 285–291.

[11] Jane L. E, Ohad Fried, and Maneesh Agrawala. 2019. Optimizing Portrait Lighting
at Capture-Time Using a 360 Camera as a Light Probe. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology (UIST
’19). ACM, Association for Computing Machinery, New York, NY, USA, 221–232.
https://doi.org/10.1145/3332165.3347893

[12] Shirin Feiz, Jason Wu, Xiaoyi Zhang, Amanda Swearngin, Titus Barik, and Jefrey
Nichols. 2022. Understanding Screen Relationships from Screenshots of Smart-
phone Applications. In 27th International Conference on Intelligent User Interfaces
(Helsinki, Finland) (IUI ’22). Association for Computing Machinery, New York,
NY, USA, 447–458. https://doi.org/10.1145/3490099.3511109

[13] Michael H. Fischer, Richard R. Yang, and Monica S. Lam. 2020. ImagineNet:
Restyling Apps Using Neural Style Transfer. CoRR abs/2001.04932 (2020).
arXiv:2001.04932 https://arxiv.org/abs/2001.04932

[14] Matthew Fisher, Manolis Savva, and Pat Hanrahan. 2011. Characterizing
Structural Relationships in Scenes Using Graph Kernels. In ACM SIGGRAPH
2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Associ-
ation for Computing Machinery, New York, NY, USA, Article 34, 12 pages.
https://doi.org/10.1145/1964921.1964929

[15] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-
gramming environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[16] Jonathan Harper and Maneesh Agrawala. 2014. Deconstructing and Restyling D3
Visualizations. In Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for
Computing Machinery, New York, NY, USA, 253–262. https://doi.org/10.1145/
2642918.2647411

[17] Lena Hegemann, Niraj Ramesh Dayama, Abhishek Iyer, Erfan Farhadi, Ekaterina
Marchenko, and Antti Oulasvirta. 2023. CoColor: Interactive Exploration of Color
Designs. In Proceedings of the 28th International Conference on Intelligent User In-
terfaces (Sydney, NSW, Australia) (IUI ’23). Association for Computing Machinery,
New York, NY, USA, 106–127. https://doi.org/10.1145/3581641.3584089

[18] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 281–292.
https://doi.org/10.1145/3332165.3347925

[19] Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P Bailey. 2009.
Getting inspired! Understanding how and why examples are used in creative
design practice. In Proceedings of the SIGCHI conference on human factors in
computing systems. Association for Computing Machinery, New York, NY, USA,
87–96.

[20] Raphaël Hoarau and Stéphane Conversy. 2012. Augmenting the Scope of In-
teractions with Implicit and Explicit Graphical Structures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)
(CHI ’12). Association for Computing Machinery, New York, NY, USA, 1937–1946.
https://doi.org/10.1145/2207676.2208337

[21] Jane Hofswell, Wilmot Li, and Zhicheng Liu. 2020. Techniques for Flexible
Responsive Visualization Design. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3313831.3376777

[22] Enamul Hoque and Maneesh Agrawala. 2020. Searching the Visual Style and
Structure of D3 Visualizations. IEEE Transactions on Visualization and Computer
Graphics 26 (2020), 1236–1245.

[23] Nathan Hurst, Wilmot Li, and Kim Marriott. 2009. Review of Automatic Document
Formatting. In Proceedings of the 9th ACM Symposium on Document Engineering
(Munich, Germany) (DocEng ’09). Association for Computing Machinery, New
York, NY, USA, 99–108. https://doi.org/10.1145/1600193.1600217

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-
to-image translation with conditional adversarial networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. IEEE Computer
Society, Los Alamitos, CA, USA, 1125–1134.

[25] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending
manual drawing practices with artist-centric programming tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 1–13.

[26] Jennifer Jacobs, Sumit Gogia, Radomír Mech, and Joel R Brandt. 2017. Supporting˘
expressive procedural art creation through direct manipulation. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 6330–6341.

[27] Ajay Jain, Amber Xie, and Pieter Abbeel. 2023. Vectorfusion: Text-to-svg by
abstracting pixel-based difusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. IEEE Computer Society, Los
Alamitos, CA, USA, 1911–1920.

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for
real-time style transfer and super-resolution. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part II 14. Springer, IEEE Computer Society, Los Alamitos, CA, USA,
694–711.

[29] Victor Kaptelinin and Bonnie Nardi. 2012. Afordances in HCI: Toward a Mediated
Action Perspective. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Austin, Texas, USA) (CHI ’12). Association for Computing Ma-
chinery, New York, NY, USA, 967–976. https://doi.org/10.1145/2207676.2208541

[30] Kotaro Kikuchi, Mayu Otani, Kota Yamaguchi, and Edgar Simo-Serra. 2021. Model-
ing Visual Containment for Web Page Layout Optimization. In Computer Graphics
Forum, Vol. 40-7. Wiley Online Library, Wiley Online Library, New York, NY,
USA, 33–44.

[31] Janin Koch, Magda Laszlo, Andres Lucero, and Antti Oulasvirta. 2018. Surfng for
Inspiration: digital inspirational material in design practice. In Design Research
Society International Conference. Design Research Society, DRS, New York, NY,
USA, 1247–1260.

[32] Dmytro Kotovenko, Matthias Wright, Arthur Heimbrecht, and Björn Ommer.
2021. Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes, In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 1, 12191–12200. https://doi.org/10.1109/CVPR46437.2021.01202

[33] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,
Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New
York, NY, USA, 3083–3092. https://doi.org/10.1145/2470654.2466420

[34] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and Scott R. Klemmer. 2011.
Bricolage: Example-Based Retargeting for Web Design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC,
Canada) (CHI ’11). Association for Computing Machinery, New York, NY, USA,
2197–2206. https://doi.org/10.1145/1978942.1979262

[35] Jane L., Kevin Y. Zhai, Jose Echevarria, Ohad Fried, Pat Hanrahan, and James A.
Landay. 2021. Dynamic Guidance for Decluttering Photographic Compositions.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(Virtual Event, USA) (UIST ’21). Association for Computing Machinery, New York,
NY, USA, 359–371. https://doi.org/10.1145/3472749.3474755

[36] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R. Klem-
mer. 2010. Designing with Interactive Example Galleries. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia,

https://www.adobe.com/express/feature/image/convert/svg
https://doi.org/10.1145/1449715.1449724
https://doi.org/10.1145/1449715.1449724
https://doi.org/10.1145/2488388.2488399
https://doi.org/10.1145/3397481.3450652
https://doi.org/10.1145/3397481.3450652
https://doi.org/10.1145/3126594.3126651
https://www.figma.com/community/plugin/1159123024924461424/html.to.design
https://www.figma.com/community/plugin/1159123024924461424/html.to.design
https://doi.org/10.1145/3332165.3347893
https://doi.org/10.1145/3490099.3511109
https://arxiv.org/abs/2001.04932
https://arxiv.org/abs/2001.04932
https://doi.org/10.1145/1964921.1964929
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1145/3581641.3584089
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/2207676.2208337
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/1600193.1600217
https://doi.org/10.1145/2207676.2208541
https://doi.org/10.1109/CVPR46437.2021.01202
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/1978942.1979262
https://doi.org/10.1145/3472749.3474755

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

USA) (CHI ’10). Association for Computing Machinery, New York, NY, USA,
2257–2266. https://doi.org/10.1145/1753326.1753667

[37] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R Klemmer.
2010. Designing with interactive example galleries. In Proceedings of the SIGCHI
conference on human factors in computing systems. Association for Computing
Machinery, New York, NY, USA, 2257–2266.

[38] Gang Li and Yang Li. 2023. Spotlight: Mobile UI Understanding using Vision-
Language Models with a Focus. arXiv:2209.14927 [cs.CV]

[39] Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020.
Diferentiable Vector Graphics Rasterization for Editing and Learning. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.

[40] Raphael Gontijo Lopes, David R Ha, Douglas Eck, and Jonathon Shlens. 2019. A
Learned Representation for Scalable Vector Graphics. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV) 1, 1 (2019), 7929–7938.

[41] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User Inter-
action Models for Disambiguation in Programming by Example. In Proceedings
of the 28th Annual ACM Symposium on User Interface Software and Technology
(Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New
York, NY, USA, 291–301. https://doi.org/10.1145/2807442.2807459

[42] MDN contributors. 2023. <use> - SVG: Scalable Vector Graphics | MDN. https:
//developer.mozilla.org/en-US/docs/Web/SVG/Element/use. [Online; accessed
6-July-2023].

[43] Kevin Mullet and Darrell Sano. 1996. Designing visual interfaces. ACM SIGCHI
Bulletin 28, 2 (1996), 82–83.

[44] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. DesignScape:
Design with Interactive Layout Suggestions. In Proceedings of the 33rd annual
ACM conference on human factors in computing systems. Association for Comput-
ing Machinery, New York, NY, USA, 1221–1224.

[45] Srishti Palani, David Ledo, George Fitzmaurice, and Fraser Anderson. 2022. ”I
Don’t Want to Feel like I’m Working in a 1960s Factory”: The Practitioner Per-
spective on Creativity Support Tool Adoption. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
379, 18 pages. https://doi.org/10.1145/3491102.3501933

[46] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Induc-
tive Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery,
New York, NY, USA, 107–126. https://doi.org/10.1145/2814270.2814310

[47] Jonathan Ragan-Kelley, Charlie Kilpatrick, Brian W Smith, Doug Epps, Paul
Green, Christophe Hery, and Frédo Durand. 2007. The lightspeed automatic
interactive lighting preview system. In ACM SIGGRAPH 2007 papers. Association
for Computing Machinery, New York, NY, USA, 25–es.

[48] Pradyumna Reddy, Paul Guerrero, Matt Fisher, Wilmot Li, and Niloy Jyoti Mitra.
2020. Discovering pattern structure using diferentiable compositing. ACM
Transactions on Graphics (TOG) 39 (2020), 1–15.

[49] Quentin Roy, Futian Zhang, and Daniel Vogel. 2019. Automation Accuracy
Is Good, but High Controllability May Be Better. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3290605.3300750

[50] Quentin Roy, Futian Zhang, and Daniel Vogel. 2019. Automation Accuracy
Is Good, but High Controllability May Be Better. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3290605.3300750

[51] Othman Sbai, Camille Couprie, and Mathieu Aubry. 2018. Vector Image Gen-
eration by Learning Parametric Layer Decomposition. ArXiv abs/1812.05484
(2018).

[52] Eldon Schoop, Xin Zhou, Gang Li, Zhourong Chen, Bjoern Hartmann, and Yang
Li. 2022. Predicting and Explaining Mobile UI Tappability with Vision Modeling
and Saliency Analysis. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 36, 21 pages. https:
//doi.org/10.1145/3491102.3517497

[53] Chanon Seel-audom, Wassana Naiyapo, and Varin Chouvatut. 2017. A search for
geometric-shape objects in a vector image: Scalable Vector Graphics (SVG) fle
format. 2017 9th International Conference on Knowledge and Smart Technology
(KST) 1, 1 (2017), 305–310.

[54] Hijung V. Shin, Jeremy Warner, Björn Hartmann, Celso Gomes, Holger Win-
nemöller, and Wilmot Li. 2021. Multi-level Correspondence via Graph Kernels
for Editing Vector Graphics Designs. In Proceedings of Graphics Interface 2021
(GI 2021). Canadian Information Processing Society, Virtual Event, 97 – 107.
https://doi.org/10.20380/GI2021.12

[55] Minhyang (Mia) Suh, Emily Youngblom, Michael Terry, and Carrie J Cai. 2021.
AI as Social Glue: Uncovering the Roles of Deep Generative AI during Social
Music Composition. In Proceedings of the 2021 CHI Conference on Human Factors

in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 582, 11 pages. https://doi.org/10.1145/
3411764.3445219

[56] Amanda Swearngin and Yang Li. 2019. Modeling mobile interface tappability
using crowdsourcing and deep learning. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, 1–11.

[57] Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman,
and Radomír Měch. 2012. Learning Design Patterns with Bayesian Grammar
Induction. In Proceedings of the 25th Annual ACM Symposium on User Interface
Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12). Association
for Computing Machinery, New York, NY, USA, 63–74. https://doi.org/10.1145/
2380116.2380127

[58] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and
Matthias Nieß ner. 2018. Face2Face: Real-Time Face Capture and Reenactment of
RGB Videos. Commun. ACM 62, 1 (dec 2018), 96–104. https://doi.org/10.1145/
3292039

[59] Josh Urban Davis, Fraser Anderson, Merten Stroetzel, Tovi Grossman, and
George Fitzmaurice. 2021. Designing Co-Creative AI for Virtual Environ-
ments. In Creativity and Cognition (Virtual Event, Italy) (C&C ’21). Associ-
ation for Computing Machinery, New York, NY, USA, Article 26, 11 pages.
https://doi.org/10.1145/3450741.3465260

[60] Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha
Kumar, and David Alexander Forsyth. 2018. Learning Type-Aware Embeddings
for Fashion Compatibility. ArXiv abs/1803.09196 (2018).

[61] Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing
the Bridge over Norman’s Gulf of Execution: Revealing Feedforward’s True
Identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New
York, NY, USA, 1931–1940. https://doi.org/10.1145/2470654.2466255

[62] W3C SVG Working Group. 2018. Scalable Vector Graphics (SVG) 2. https:
//www.w3.org/TR/SVG2/. [Online; accessed 6-July-2023].

[63] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article
106, 15 pages. https://doi.org/10.1145/3411764.3445249

[64] Jason Wu, Xiaoyi Zhang, Jef Nichols, and Jefrey P Bigham. 2021. Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots. In The 34th Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 470–483.
https://doi.org/10.1145/3472749.3474763

[65] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
Oriented Drawing. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 4610–4621. https://doi.org/10.1145/
2858036.2858075

[66] Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, Bruno De Araujo, and Daniel
Wigdor. 2018. DataInk: Direct and Creative Data-Oriented Drawing. In Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3173574.3173797

[67] Katherine Q. Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan
Aldrich, Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical
notation to beautiful diagrams. ACM Trans. Graph. 39 (2020), 144.

[68] Nur Yildirim, Alex Kass, Teresa Tung, Connor Upton, Donnacha Costello, Robert
Giusti, Sinem Lacin, Sara Lovic, James M O’Neill, Rudi O’Reilly Meehan, Eoin
Ó Loideáin, Azzurra Pini, Medb Corcoran, Jeremiah Hayes, Diarmuid J Cahalane,
Gaurav Shivhare, Luigi Castoro, Giovanni Caruso, Changhoon Oh, James Mc-
Cann, Jodi Forlizzi, and John Zimmerman. 2022. How Experienced Designers
of Enterprise Applications Engage AI as a Design Material. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA,
Article 483, 13 pages. https://doi.org/10.1145/3491102.3517491

[69] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jefrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and
Jefrey P Bigham. 2021. Screen Recognition: Creating Accessibility Metadata for
Mobile Applications from Pixels. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 275, 15 pages. https:
//doi.org/10.1145/3411764.3445186

[70] Nanxuan Zhao, Quanlong Zheng, Jing Liao, Ying Cao, Hanspeter Pfster, and
Rynson W. H. Lau. 2021. Selective Region-Based Photo Color Adjustment for
Graphic Designs. ACM Trans. Graph. 40, 2, Article 17 (apr 2021), 16 pages.
https://doi.org/10.1145/3447647

https://doi.org/10.1145/1753326.1753667
https://arxiv.org/abs/2209.14927
https://doi.org/10.1145/2807442.2807459
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/use
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/use
https://doi.org/10.1145/3491102.3501933
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/3290605.3300750
https://doi.org/10.1145/3290605.3300750
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.1145/3491102.3517497
https://doi.org/10.20380/GI2021.12
https://doi.org/10.1145/3411764.3445219
https://doi.org/10.1145/3411764.3445219
https://doi.org/10.1145/2380116.2380127
https://doi.org/10.1145/2380116.2380127
https://doi.org/10.1145/3292039
https://doi.org/10.1145/3292039
https://doi.org/10.1145/3450741.3465260
https://doi.org/10.1145/2470654.2466255
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/3173574.3173797
https://doi.org/10.1145/3491102.3517491
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3447647

Interactive Flexible Style Transfer for Vector Graphics UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

A METHODOLOGY DETAILS
Style Transfer Evaluation – Four designers used Figma to gener-
ate their initial designs they brought into the study, while the other
two designers used Adobe Illustrator. After designers responded
to the prompt, we hosted an hour-long Zoom session with each
designer. We instrumented the interface to log relevant events with
timestamps (e.g., loading, saving, editing). We sought to gather
rich commentary and refection from designers as they engaged
with the prototype. We invited designers to verbally share any
thoughts on their experience and highlight any surprising inter-
actions throughout the study. While we recorded usage times per
example, designers were not told this nor instructed to be as ef-
fcient as possible. The designers moved on only after indicating
satisfaction with the relative appearance of their stylized Output
graphics. Finally, designers answered a brief survey about their ex-
perience using VST, including Likert-scale (Fig. 8) and open-ended
questions. Designers sent all styled designs and an interface usage
log to the authors and received a $30 Amazon gift card.

Design Replication Evaluation – We conducted this study
remotely over Zoom in a 3-hour session for each designer. Unlike
the style transfer evaluation, the RDs were asked to work as swiftly
and efciently as possible. Once the RDs reported they were satis-
fed with the similarity between their replication graphics and the
reference Output image, they would save their fle and move on
to the following example. While the RDs participated in our study,
we recorded their screen, an audio log of the call, application edit
history, and mouse activity. From this data, we recorded the number
of selections (including selection adjustments like shift-clicking or
clicking the background to clear the selection) and attribute edits
(per selection—so, for example, modifying the fll of a group counts
as one edit). We also recorded the time spent on each example task,
measured from when all input fles were opened to the last save of
the output fle. Finally, the RDs were shown, briefy used VST, and
flled out a survey based on their experiences. The RDs received
a variable Amazon gift card. The amount was prorated based on
their required completion time (rated at $30/hour).

B PARTICIPANT BACKGROUNDS
Style Transfer Evaluation (D1-6) – We recruited designers via
design-oriented email lists at a large research university. Designers
included undergraduates (4), Ph.D. students (1), and design pro-
fessionals (1). Each participating student had completed multiple
design internships, bolstering their relevant experience. Their pre-
ferred tools included Figma, Adobe Illustrator, and Canva. They
had an average of 4.7 years of design experience (2–10 years).

Design Replication Evaluation (RD1-4) – We recruited from
the same design community as before, now selecting only the most
experienced designers. All RDs had professionally worked as de-
signers. One was the instructor for a university course teaching
students how to use Illustrator, and another held a residence in a
design lab guiding student projects. These designers had, on aver-
age, 6.5 years of design experience and used Illustrator daily. None
of these expert designers participated in the original study.

C TRANSFERRABLE SVG ATTRIBUTES
The SVG attributes that VST can transfer are: (Color-Based)
fll, stroke, strokeWidth, textBackgroundColor, (Text-Based) line-
Height, textAlign, text (i.e., string content), (Font-Based) fontSize,
fontFamily, fontStyle, fontWeight, and (General) opacity, padding.

D CUSTOMIZATION UI TECHNIQUES
Also see our online demo: https://berkeleyhci.github.io/vst/

After

Transfer

Before

Figure 10: The Customization UI shows the Source and Tar-
get selections and similar Target elements. The similarity
controls [-/set/+] can adjust the selection to the desired Tar-
get elements. Once satisfed with the Source-Target map-

ping, pressing Transfer Source Style will transfer all styles
from the Source elements to the active Target selection.

Before

Toggle

After

Figure 11: The Customization UI also provides fne-grained
control over which styles to transfer. Element style attributes
can be copied, reset, or customized for each set of similar
values. This list can be fltered only to show styles for the
current selection and only to show modifed attributes. The
UI also features the Copy All and Copy None buttons – Copy
All blindly copies all styles for every matched element (e.g.,
the fully automatic output), and Copy None restores the Out-
put graphics to the original Target state.

https://berkeleyhci.github.io/vst/

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Warner, et al.

Figure 12: Additional graphics generated by transferring styles with VST.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Supporting Creative Processes with AI
	2.2 Inferring Design Structures
	2.3 Automatic Transfer Techniques
	2.4 Vector Graphics Design Tools

	3 Vector Style Transfer
	3.1 Design Goals
	3.2 Exemplar Scenario
	3.3 Implementation

	4 Evaluations
	4.1 Style Transfer Evaluation
	4.2 Style Transfer Results
	4.3 Design Replication Evaluation
	4.4 Design Replication Results

	5 Discussion
	6 Limitations and Future Work
	6.1 Limitations
	6.2 Future Work

	7 Conclusion
	References
	A Methodology Details
	B Participant Backgrounds
	C Transferrable SVG Attributes
	D Customization UI Techniques

