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Figure 1: UX design journeys typically begin with great uncertainty and end with a single point of focus [18]. In

this project, chatbot design by prompting GPT felt like a journey of never-ending uncertainty.

ABSTRACT

Prompting Large Language Models (LLMs) is an exciting new ap-
proach to designing chatbots. But can it improve LLM’s user experi-
ence (UX) reliably enough to power chatbot products? Our attempt
to design a robust chatbot by prompting GPT-3/4 alone suggests:
not yet. Prompts made achieving “80%” UX goals easy, but not the
remaining 20%. Fixing the few remaining interaction breakdowns
resembled herding cats: We could not address one UX issue or test
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one design solution at a time; instead, we had to handle everything
everywhere all at once. Moreover, because no prompt could make
GPT reliably say “I don’t know” when it should, the user-GPT con-
versations had no guardrails after a breakdown occurred, often
leading to UX downward spirals. These risks incentivized us to
design highly prescriptive prompts and scripted bots, counter to
the promises of LLM-powered chatbots. This paper describes this
case study, unpacks prompting’s fickleness and its impact on UX
design processes, and discusses implications for LLM-based design
methods and tools.
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1 INTRODUCTION

Prompting Large Language Models (LLMs) is a potentially revolu-
tionary new approach to designing chatbots. Recent LLMs such as
ChatGPT can engage in fluid conversations out-of-the-box, freeing
chatbot design from data availability constraints, prescribed dia-
logue flows, and canned responses [1, 17]. While LLMs can produce
falsehoods and other problematic utterances, designers can correct
many of them by prompting, that is, by providing instructions and
examples of their desired interactions to the models (Table 1) [6, 23].
These promises of prompting are exciting to many designers and
users [14].

However, prompts are less than reliable in controlling LLM ut-
terances. Even the “effective” prompts can only fix most but not all
LLM failure modes, and not always reliably [6, 23]. Despite these
limitations, a wide range of LLM-and-prompting-based chatbots
are rapidly emerging in HCI research and elsewhere [27, 28], in-
cluding in high-stake domains such as medicine [16, 32], law [11],
and education [5].

In this context, it is crucial to ask: Can prompting alone control
LLM utterances reliably enough to create a good user experience
(UX)? What are prompting’s affordances for UX design, and where
does prompting fall short? UX designers routinely create reliable
UX with less-than-reliable controllers, such as supervised ML mod-
els. Designers did so through the classic design process of rapid
prototyping and evaluation [8, 29]. Are such methods still sufficient
for the age of prompting and LLMs? These questions are critical for
future chatbot design practice, yet remain unanswered. This paper
explores these questions.

Resulting Human-GPT Conversation

no prompt User: Ok hang on while I get a chair
Bot: Scoot to the front of your chair [...]

with prompt
- design #1

Preamble prompt: If the user asks you to wait,
explain that this is not a problem [...]

User: Ok hang on while I get a chair
Bot: No problem, I’ll wait.

with prompt
- design #2

User: Ok hang on while I get a chair
Reminder prompt: If the user asks you to
wait, explain that this is not a problem [...]

Bot: No problem, just let me know when
you’re ready to continue.

Table 1: Designers can steer LLM behavior by designing

prompts, text instructions prepended to the whole conversa-

tion (preamble prompts) or appended to the end of the con-

versation after the user’s last utterance (reminder prompts).

We, a group of UX designers, NLP researchers, and software
engineers, are designing an instructional chatbot that talks amateur
cooks through a recipe step-by-step, answers questions they raise,
and engages in social chit-chat if needed. Instructional chatbots
are not only the most widely adopted type of chatbots (e.g., in
customer service), they particularly stand to benefit from LLMs:
Instructions (in our case, recipes) are abundant on the Internet,
and LLMs and prompts can potentially easily translate these into
engaging informational and social conversations, a task that would
otherwise require extensive data labeling and machine learning
efforts. Motivated by prompting’s promises, we undertook this
project as a Research through Design study. We applied traditional
iterative prototyping and user evaluation to this task and analyzed
this design process afterward.

Our design experience suggests that prompts successfully achieved
the first 80%1of almost every UX goal. However, achieving the last
20% was not only exceptionally difficult, the process resembled
herding cats: previously-fixed GPT failure modes could reemerge
unexpectedly. The more failure modes designers addressed, the
more difficult it became to fix a new one without a previously-
fixed one reemerging. As a result, designers had to prototype every
prompt instruction design and address every UX issue, everywhere
in the conversations all at once.

This paper describes our design process as a case study (§4) and
offers our key learnings (§5):

(1) We identify two distinctive types of prompt fickleness. One
we could address by a traditional iterative prototyping process.
The other we could not, and led to our cat-herding-like design
process.

(2) We highlight one particular limitation of prompting that has an
outsized impact on UX design: its inability to have GPT say “I
don’t know” when it should.

(3) We draw attention to the fact that prompts’ fickleness and UX
risks incentivized highly prescriptive prompt designs, which
invalidates the primary motivation for designing with LLMs.

While these learnings come from merely one case study and
await further evaluation, we hope they can start a more principled
discussion around prompting’s affordances and its real impact on
UX design. To jump-start this discussion, we envision a new ap-
proach to UX prototyping in the age of LLMs, as a provocation.
This new approach embraces LLMs’ unruly behaviors and prompts’
fickleness, and instead focuses on preventing LLMs’ critical UX
failures and managing dialogue flows as a “controlled chaos”.

This paper makes two contributions. First, it offers an initial
description of a prompting-based chatbot design process. It offers an
alternative perspective to the widespread excitement surrounding
prompting and LLMs. Instead, it draws attention to the design
challenges they bring. Second, it is an initial attempt to articulate
the UX design affordances of prompting, where prior research has
more often focused on the affordances of LLMs.

1Here 80% and 20% are meant qualitatively, a reference to the 80-20 rule (80% of
outcomes result from 20% of causes).
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2 RELATEDWORK

We contextualize this work with a brief review of (1) how UX
designers designed chatbots before LLMs; (2) how prompting and
LLMs have started destabilizing these approaches.

2.1 Pre-LLM Chatbot Design Processes

UXdesign goals for chatbots generally fall into two broad categories:
functional goals (e.g., helping users order coffee) and experiential
goals (e.g., offering a calming conversational experience). To achieve
these goals, UX designers work at two distinct levels of abstrac-
tion [29]. First is the dialogue flow level, where designers outline
what each stage of the bot-user dialogue should accomplish, such
that the conversation achieves the UX goals at the end. Second is the
bot utterance level, where designers craft the bot’s utterances with
an eye on how such utterances can result in a bot-user conversation
that will accomplish its functional and experiential goals.

Chatbot designers today typically shape chatbots’ dialogue flows
and bot utterances using machine learning (ML) models, rather than
manually, and most commonly using supervised ML models. De-
signers craft an ideal dialogue flow including its many branches
(e.g., [Stage 1] Greet the user; [Stage 2] Ask what the user wants, ask
disambiguation questions if needed; [Branching point #1] If the user
wants A, go to Stage 3 branch A...), create a template for the bot’s
utterances (e.g., “Your pizza is on the way!”), and dictate the
rules the bot will follow when deciding how to proceed at each
branching point and when filling the templates [10, 25]. A super-
vised ML model then executes each rule. Making such a dialogue
flow naturally can require many supervised ML models, and hence
can be very labor- and data-intensive [17].

Less commonly, designers create one bespoke neural network
(NN) to power the entire bot-user conversation. Wang et al. [26]
created such a chatbot, that persuades users to make charitable
donations. They first curated a dataset where one person tried to
convince the other to donate. Then they trained a bespoke NN with
this dataset while ensuring the neural architecture encodes the
designers’ approved persuasive strategies. This model drove the
chatbot’s behavior. This approach is also data- and labor-intensive
because it involves building a bespoke neural network.

Using either approach, designers indirectly shape their chatbots’
UX through the ML models they choose or design. ML models can
fail unexpectedly, but designers can account for such uncertainty
through the process of iterative prototyping [24, 29–31]:

• Establishing desired dialogue flow and ML’s value: Design-
ers envision many possible dialogue flows that can achieve their
UX goals and the many ways ML can help, before committing to
one dialogue flow and the role(s) ML will play in it;

• Improving dialogue flow to mitigate critical ML errors: Us-
ing Wizard of Oz studies and ML prototypes, designers work to
explore unexpected user and ML behaviors, especially those that
can derail the dialogue flow. Designers then revise the dialogue
flows and choose (or design) particular ML models such that (1)
the destructive ML/user behaviors are less likely to occur, and
(2) when breakdowns do occur, users can quickly recover from
them, e.g., by having the bot say “Sorry, I do not understand what
you said. To return to the previous step, ...”.

• Refining bot utterances: Designers address other UX break-
downs, e.g., by refining the bot’s sociolinguistic style.
This iterative design process enables designers to develop a felt

understanding of ML’s affordance (e.g., when and how it’s likely to
fail and in what contexts) despite ML’s uncertain behaviors [19].
This understanding guides designers from initial broad explorations
that are full of uncertainty, toward a singular design that best
leverages ML’s capabilities while mitigating its risks (Figure 1,
top) [8, 9, 18].

2.2 Prompts as Controllers of LLM Behavior

Prompting LLMs offers an exciting new approach to chatbot design.
While prompting LLMs is not the only way to improve an out-of-
box LLM’s utterances, it is the most appealing for UX designers. It
has the potential to entirely free their creative processes from data
availability restrictions, ML performance limitations, prescribed
dialogue flows, and canned responses. These restrictions have long
thwarted chatbot UX [29].

However, prompting can seem to control chatbot behaviors
even less reliably than the aforementioned ML-based design ap-
proaches [17]. Some guidelines for designing effective prompting
exist (e.g., designing prompts that look somewhat like code [4] and
including instructions and examples of desired interactions in the
prompt [7, 23]). However, questions like how a prompt impacts LLM
outputs and what makes a prompt effective remain active research
areas in NLP [17, 21]. These open questions make it hard to pur-
posefully design prompts to prevent LLMs’ disastrous utterances
or move toward given UX design goals.

HCI researchers have started exploring ways to make prompt-
based chatbots more controllable. Some [28] invited users to draft
a dialogue flow, assign one LLM to carry out each stage of the
dialogue, and then improve the dialogue by designing prompts for
each LLM respectively. Unfortunately, this work did not report how
reliably the prompts changed LLMs’ behaviors or improved its UX.

Another approach is to assist chatbot designers in iteratively
prototyping and evaluating their prompt designs (Figure 2). Under-
lying this approach is the idea that prompts are less-than-reliable
controllers of chatbot behaviors, just like supervised ML and NN
models. Previously, iterative prototyping has enabled designers to
understand these models’ affordances and to shape reliable chat-
bot UX with them [30]. Can designers do the same with prompts?
Recent investigations [33, 34] showed positive signs, but failed to
answer this question conclusively [33]. This is because these studies
focused on end users as chatbot designers, who lacked the UX, HCI,
and NLP expertise necessary for iterative prototyping.

LLMs and prompts can free chatbots from prescribed dialogue
flows and canned utterances. But UX designers face challenges con-
trolling LLM behaviors with prompts. To what extent can prompts
can reliably offer such control? Can prompting LLMs truly revolu-
tionize chatbot design practice? We explore these questions here.

3 METHOD

We wanted to understand the UX affordance of prompting, in order
to understand its real potential in revolutionize chatbot design
practice. To address these questions, we chose a Research through
Design (RtD) approach, for two reasons. First, compared to studying
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Figure 2: The process of iteratively prototyping prompts to address UX goals [33]. Designers first address the critical UX

goals/breakdowns before addressing others. Designers first design prompts that can fix one UX breakdown in a single-turn

conversational context (blue loop), then identify ones that can do so across various multi-turn conversations (magenta loop).

Finally, designers identify prompts that can reliably fix all UX issues across multi-turn conversations (orange loop).

other designers or end users, RtD allows us to flexibly assemble
a design team with the various expertise necessary for prompt
design, such as UX, NLP, and programming expertise [33]. Second,
in alignment with our goals, RtD underscores that technologies’
UX affordances arise from, and in response to, concrete design
problems and situations [13, 22]. RtD is particularly valuable for
human-AI interaction research, where both user behaviors and AI
system capabilities are highly context-dependent [31].

Taking an RtD approach, we first immersed ourselves in the
concrete design problems of the project, and then retrospectively
analyzed the process to allow for objective reflections on procedural,
pragmatic, and conceptual insights [12]. Appendix B describes our
RtD data documentation and analysis process in detail.

3.1 Designing CarlaBot

We wanted to design a social, instructional chatbot that can (1) talk
amateur cooks through a recipe step-by-step, (2) answer questions
they raise while cooking, and (3) engage in social chit-chat if needed.

3.1.1 UX Design Goals. To concretize our UX design goals, we
worked to identify a set of “gold example” conversations. We used
the extent to which our bot can reproduce the experiential qualities
of these conversations as a proxy for success. Luckily, the Internet
offers an abundance of conversations in which an experienced cook
guides a less experienced one through a recipe. After much explo-
ration, we identified the 19 conversations in a popular YouTube
series named Back-to-Back Chef [2] as our gold examples. These
conversations instantiated the bot’s functional goals: a professional
cook, Carla Lalli, (1) talks an amateur cook through a recipe; (2)
answers questions they raise; and (3) engages in social chit-chat
when appropriate. (As an homage, we named our best-performing
bot CarlaBot.) Table 2 (ideal, right column) shows an excerpt of
one gold-example conversation.

3.1.2 Baseline UX and Differences with UX Goal. One intu-
itive approach to creating CarlaBot is providing an off-the-shelf
GPT model with a recipe and asking GPT to walk the user through
it. We used this design as the starting point of our project. Appen-
dix C includes the verbatim baseline prompt. Table 2 (baseline, left
column) shows how this baseline bot interacts with a user, if the
user says the same things as in the gold example dialogue.

Juxtaposing the gold example and this baseline conversation, a
number of UX gaps become obvious.We aim to design a prompt that

can eliminate GPT’s apparent errors (e.g., giving wrong cooking
instructions) and enable it to fill these gaps.

• Provide detailed instructions beyond what recipes typi-

cally cover. For example, the chef accommodates the amateur
cook by saying, “I like to break apart the mushroomwith my hands,
to give more control over size...”. The baseline bot does not provide
such accommodations;

• Proactively confirm user progress. Unlike the baseline bot,
the chef proactively confirms whether the cook has completed
the previous step before moving on. This confirmation aligns
their attention and prevents errors;

• Help users recover from errors; and
• Engage in social conversations (e.g., empathy, jokes, ban-

ter.) The chef responds to users’ expressions of concern or anxi-
ety with compassion. They sometimes also banter, making the
cooking process more fun. The baseline bot responds to the user’s
jokes with “Sorry, I don’t know any jokes. The next step is [...].”

3.1.3 Designing CarlaBot by Prompting GPT-3/4. To gain
maximal insights on our research questions, we set ourselves to
the following challenges. First, we chose to create CarlaBot by
prompting an off-the-shelf GPT-3 model only (text-davinci-002,
the best available when we started this work). This restriction al-
lowed us to focus on observing prompting’s affordance and its
impact on design. Importantly, this choice does not suggest that we
see prompting as the only or best way to design LLM-based chat-
bots. Rather, this work aims to understand prompting’s affordance,
such that future researchers and designers can more thoughtfully
combine prompting with other LLM fine-tuning techniques when
improving chatbot UX.

Second, we chose to design the prompts via an iterative prototyp-
ing process (Figure 2) with a cross-disciplinary design team (NLP,
HCI, and UX design). This is because prior research has shown the
promises of such design processes for prompt design [34], and that
some NLP, HCI, and UX knowledge is necessary [33]. Appendix A
describes the team members’ expertise.

3.1.4 Design Evaluation and Error Analyses. Throughout the
prototyping process, we (all design team members) conducted ad-
versarial testing, experimenting with various user utterances with
the goal of breaking the chatbot. Such testing allowed us to under-
stand the limits of each prompt design better.
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BASELINE (GPT-3 + recipe text as prompt) IDEAL (“gold example” human conversation)

First, we need to gather the ingredients. We’ll need 1
Maitake mushroom, 1 Acorn squash, 2 lemons, 1 cup flour, 1
cup cornstarch, 2 teaspoons salt, 1 teaspoon baking soda, 2 cups
seltzer water, and flaky salt for finishing.

I see those things in front of me

Excellent! Now that we have all of our ingredients, we can
start cooking. The first step is to heat a pot of frying oil to 350°.

ok
While the oil is heating, we’ll break the maitake mushroom

into small pieces.

oh you’re not using your paring knife

That’s right, we’re not using a paring knife. We’re breaking
the mushroom into small pieces.

so, with your hands then?

Yes, with our hands. Once the mushroom is in small pieces,
we’ll whisk together the flour and cornstarch with the salt and
baking soda in a large mixing bowl.

So the first thing we’re gonna do is take this very brain-looking
giant mushroom – so this is a hen-of-the-woods mushroom, also
called a maitake. I got my squash and my lemons out of the way.
So the first thing I want you to do is just turn it over so the stem
side is up, got it? And then just use your hands to kind of break big
clusters off of the bottom in like kind of large pieces.
And then we’ll go back in, and we can make them smaller, and I like
doing this with my hands because then you get -

Oh, you’re not using your paring knife -
No, I’m only using the paring knife if it was dry or spongy at the

bottom. We’ll probably use a quarter of these [mushrooms]. So then
just take the tray with the mushrooms on it and move that over to
your right-hand side and we’re gonna make the batter. So next thing
– you got your board cleared?

Yes, there’s mushroom jus on it, but it’s fine.
I think that’s a line from a Woody Allen movie.

Table 2: The starting point (baseline UX, left column) and goal (ideal UX, right column) of our prompt design. The ideal

interactions include the following features that baseline does not: Providing detailed descriptions beyond what recipes

typically cover; proactively confirming user progress to prevent error; helping users recover from errors; and engaging in

compassionate, social conversations. We wanted to design prompts that reliably add these features to the bot-user interactions.

To evaluate the final prompt design, we collected over a dozen
conversations between Amazon Mechanical Turk (MTurk) work-
ers and the chatbot. We annotated the differences between these
conversations and the gold examples (“dialogue annotation”) and
then qualitatively analyzed these differences (“error analysis”). Our
dialogue annotation and error analyses included:

• Basic text-generation quality metrics, such as factualness [15];
• The extent to which the best-performing prompt can enable a
GPT bot to exhibit the four interaction qualities listed in §3.1.2;

• The severity of the interaction breakdowns, such as whether the
bot’s cooking instruction can cause users physical harm [3].

In addition, we collected the Turkers’ perceptions of the conver-
sations using Likert-scale questions.

4 DESIGN OUTCOME & PROCESS OVERVIEW

In this chapter, we organize our design experience report around
two themes: Prompting GPT enabled CarlaBot to achieve the first
80% of every UX design goal. However, fixing the remaining 20% of
UX issues was not only difficult, it resembled herding cats: a process
full of uncertainty throughout. In the next section, we analyze the
causes of this design experience.

4.1 Largely Positive Design Outcome

Our best prompt design enabled GPT-3 utterances to achieve the
first 80% of every UX design goal. If a user’s utterances were the
same as in the gold example dialogues, CarlaBot’s responses could

achieve all four design goals (Table 3). CarlaBot’s interactions with
Turkers were also largely positive. Although not without errors,
these interactions showed substantial improvements over the base-
line across all four UX issues:

• Provided more detailed instructions: Carlabot could talk
users through multiple recipes one step at a time. Compared
to the baseline, its instructions were substantially more detailed;

• Confirmed user progress proactively and reliably: 100% of
the time, CarlaBot proactively confirmed the user had finished
one step before moving on. The baseline bot did so only once
across all evaluation conversations;

• Helped users recover from most errors: CarlaBot helped
many users get back on track after they made an error, and
correctly answered 80% of the user questions (compared with
43% for the baseline bot);

• Responded to users in socially appropriate manners, but

could not reliably engage users for social conversations

(e.g., jokes, banter): Carlabot could detect user stress and re-
sponded with compassion. However, it was not able to banter,
and was only able to respond with humor in a few conversations.

Across the hundreds of user utterances tested, CarlaBot’s responses
included a handful of errors that caused the conversations to halt.
It made one critical error that could cause physical harm. This error
occurred during our adversarial testing:

[User] Won’t the olive oil burn if I leave it on while I
dice the onions?
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FINAL DESIGN (CarlaBot, prompt script in Appendix D)

First, let’s get a cutting board. Then, we’re going to break the
brain-looking maitake mushroom, also known as a hen-of-the-
woods, into small pieces.

Cool.
Great, now we’re going to turn it over so the stem side is up

and then just break big clusters off. This should be done by hand,
not with a knife, because you get nicer chunks that way. Only use
a knife to trim off dry pieces if necessary.

oh you’re not using the knife?

No, we’re not using the knife. We’re just breaking the mush-
room into pieces with our hands.

Ok.
Before continuing, let me check, do you have small-ish pieces?

I think so?
Great, now we’re going to whisk together the flour and corn-

starch with the salt and baking soda into the large mixing bowl.

Okay I’m using my hands ’cause I

That’s perfectly fine! Just be careful not to break them apart.

I make really fun faces when I’m frustrated, or like straining,
and it’s not pleasant to have a camera in front of me.

It’s okay to make funny faces when you’re cooking! Just be
careful not to break the squash into pieces.
[...]

Sure I get that, but the squash is rolling all over the place

It’s okay to make funny faces when you’re cooking! Just be
careful not to break the squash into pieces.

Table 3: CarlaBot’s response to the user queries in our gold-

example dialogues. Although not without errors, our final

prompt design enabled CarlaBot’s following interactions: (1)

Providing detailed descriptions beyond what recipes typi-

cally cover; (2) proactively confirming user progress to pre-

vent error; (3) helping users recover from errors; and (4) en-

gaging in compassionate, social conversations.

[Bot] No, it’ll be fine.
[User] Really? Even for a few minutes?
[Bot] Yes, even for a few minutes
[User] How do you know?
[Bot] I’ve done this before.

The best-performing prompt includes many new instructions. To
keep CarlaBot truthful, it included instructions such as "Don’t skip
any steps!". We also appended the reminder "Stay extremely
positive. Don’t make claims without saying ’you can’, or
’I think’." to the end of the prior dialog, such that the bot became
less likely to make incorrect claims confidently. To have CarlaBot
provide more detailed cooking instructions, we added details to the

recipe description. For step confirmation, the prompt used example
dialogues: "Walk the user through the script above step
by step, in conversation. Here are some examples of
the kind of dialogue you should emulate: After the user
responds, ask if they are ready to move on [...]". We
also interwove various reminders (e.g., "Confirm with the user
about [cleaver use].") into the recipe provided to CarlaBot,
which makes the bot proactively confirm step completion with the
user. Finally, to improve social interactions, we modified the format
and tone of the recipe description in the prompt. The prompt also
includes the instruction "You are very friendly and cheerful
in a 2010s kind of way.", which shortened and lightened up
GPT’s lengthy utterances. Appendix D includes the final prompt
design verbatim.

4.2 A Design Process Resembled Herding Cats

Two challenges shaped our process of designing CarlaBot. First,
while the instructions that achieved 80% design goals may appear
simplistic (e.g., “Don’t skip any steps!"), identifying each of
themwas a laborious process; It tookmany iterations of prototyping
and evaluation;

Second, even more challenging was fixing the remaining 20% UX.
The three-staged prompt prototyping process no longer applied.
Instead, the design process resembled herding cats: Previously-
fixed problems could reemerge unexpectedly. The more problems
we addressed, the more difficult it became to fix a new one with-
out previously-fixed ones reemerging. Consequently, we found
ourselves addressing every UX issue, prototyping every prompt
component everywhere in the conversations, all at once. This was
a messy design process full of interdependencies and uncertainties,
with no clear finish line.

To demonstrate our design process, we describe a detailed ex-
ample: The process of making CarlaBot more humorous. Recall
that when a user requested the baseline bot (off-the-shelf GPT-3) to
tell a joke, it said, "I’m sorry, I don’t know any jokes." and
continued with the recipe. We aimed to improve the prompt design
so Carlabot would crack a joke when appropriate as it walks a user
through a recipe. We underwent three iterative prototyping loops
(Figure 2).

4.2.1 Iterative Loop One: Prototype an Instruction That
Adds Humor to GPT Utterances For One Recipe. To make
Carlabot humorous, we first tried adding “Be humorous.” to its
prompt. This general instruction successfully enabled the bot to
tell a joke, but it was the exact same joke (“Why did the chicken
cross the road?”) even when the user explicitly requested “tell
me another joke.” Moreover, the transition from the joke back to
recipe instructions was abrupt: No matter how the user responds
to the joke, the bot either says “Correct!” or reveals the answer
(“To get to the other side!”), and then moves on to the next
step of the recipe.

To enable the bot to tell different jokes and respond to user re-
actions more naturally, we experimented with a wide variety of
instructions. Through this process, we discovered that the effec-
tiveness of an instruction is highly sensitive to its phrasing and its
position in the prompt. For example, providing a list of example
jokes titled “Funny kitchen jokes” could enable the bot to tell
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jokes, yet the same list when titled “Sample jokes to tell” could
not: the bot did not tell jokes even when explicitly asked to. Sim-
ilarly, while the instruction “Be humorous.” could get the bot to
tell jokes, instructions “Be humorous and tell jokes once in
a while.”, “Be humorous and tell jokes.”, and “Be humorous
and make sure to tell jokes!” elicited no jokes.

Other instructions triggered both intended and unintended bot
behavioral changes. For example, in order to "teach" GPT to tell one
new joke, we tried adding the following instruction to the prompt:
“Tell a joke during the cooking session. When telling
the joke, ask "What do people often say in a cold,
Mexican kitchen?". After the user responds with a guess,
give them the correct answer, which is "Brrrrrrito."
This instruction enabled the bot to tell this new joke, but always
only after the user has finished cooking the entire recipe. The UX
of a cooking instruction bot that consistently cracks a joke after
finishing a recipe, well, was odd.

These unexpected breakdowns reminded us that humor is not
merely one’s ability to tell jokes, but a suite of skills and interactions,
including but not limited to: (1) selecting the right timing to tell
a joke; (2) responding to users’ responses to their jokes; and (3)
switching among known jokes. An abstract instruction like "Be
humorous." does not automatically give the bot these joke-related
skills and interactions. Therefore, we decided to experiment with
instructions that elicit each specific desired behavior respectively.

This experimentation was time-consuming and laborious, not
only because designing an instruction that gives the bot one in-
tended behavior was challenging, but because two effective instruc-
tions added into a prompt can become less effective. For example,
to ensure that the bot tells a joke during, not after, the cooking
process, we added the tell-a-joke instruction as an extra step be-
tween recipe steps two and three: “[...] 2. Break the maitake
mushroom into small pieces./Tell a joke here./3. Whisk
together the flour and cornstarch [...]”. Interestingly, this
instruction caused the bot to ask the user “tell a joke”. GPT mistook
an instruction intended for GPT as one for the user.

Luckily, we found a fix for this breakdown: Simply clarify to the
bot that the tell-a-joke instruction is not intended for the user. With
the new instruction “[...]2. Break the maitake mushroom
into small pieces./(Not part of the steps for the
user) Tell a joke here./3. Whisk together the flour
and cornstarch [...]”, the bot behaved as desired. It told jokes
at appropriate times during the cooking process. It even proactively
asked “Are you in the mood for a joke” and responded sensibly.

[Bot] Are you in the mood for a joke?
[User] No.
[Bot] That’s okay, we can skip it. The next step is to
whisk together the flour and cornstarch [...].
[User] Actually can you tell me a joke now?
[Bot] Sure! Here is one: What do people often say in a
cold, Mexican kitchen?
[User] I don’t know.
[Bot] Brrrrrrito.
[User] Nice one.
[Bot] The next step is to carefully place mushrooms into
the batter mixture and gently mix to coat evenly...

4.2.2 Iterative Loop Two: Prototype an Instruction That
Adds Humor to GPT Utterances Across Recipes. This instruc-
tion generalized across recipes. We inserted “(Not part of the
steps for the user) Tell a joke here.” in between steps
two and three of every recipe, and the bot behaved as desired.

4.2.3 Iterative Loop Three: Merge Proven Instructions to
Address Multiple UX Issues. Having identified an effective tell-a-
joke instruction, we combined it with the other instructions. How-
ever, simply adding one effective instruction to the end of another
could cause either or both of them to fail. For example, we designed
an instruction that enabled the bot to pace itself when giving cook-
ing instructions. Interestingly, adding the tell-a-joke instruction to
the end of this pacing instruction broke the latter:

[Bot]While the mushrooms are cooking, we’ll cut and
seed the acorn squash. Then, we’ll slice the squash
into thin pieces and coat them with the batter mixture.
After that, we’ll remove the mushrooms and begin
frying the acorn squash. Lastly, we’ll slice the lemons
into thin, intact rounds, and coat them with batter
too.
[User] ... (End of the dialogue.)

The fact that the tell-a-joke instruction broke an unrelated, pac-
ing instruction forced us to return to the previous stage, re-designing
and re-evaluating both instructions respectively and then testing
them in combination. Searching for an effective “instruction combo”
was a laborious process, as it requires success in all three iterative
loops at once. We experimented with more than a dozen additional
tell-a-joke instruction designs. None of them could enable GPT to
tell a joke without causing other breakdowns in at least one of the
user-bot conversations.

4.2.4 Conclusive UX Evaluation of the Prompt (All Instruc-
tions Combined). At this point in the design process, we realized
that a conclusive UX evaluation is impractical and elusive. The
effectiveness of instructions is highly sensitive to the other texts in
the prompt. However, for an LLM model, the prompt includes not
only the UX-oriented instructions we crafted, but all user utterances
and recipe text. Thus there is always the possibility that a so-far ef-
fective instruction fails when the bot encounters an untested recipe
or an unseen user utterance and dialogue history.

Facing this dilemma, we chose to instead focus our prompt eval-
uation on identifying the risks of disastrous bot failures. This goal
turned out very challenging too, because the most disastrous UX
failures often did not come from the most problematic bot utter-
ances, but from users’ “off-script” engagement with the bot. For
example, across the chatbot’s various attempts at humor, the worst
UX outcome did not come from the conversations where the bot
failed to tell a joke but where the user enjoyed the joke and fol-
lowed up on it. Consider the following example where the bot told
a kitchen joke, and the user reciprocated with another.

[User] What do people often say in a cold, Mexican
kitchen?
[Bot] Burrito! Just kidding. Let’s check the pot of oil
and make sure it’s around 350°.
[User] It’s Brrrrrrito!
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[Bot] It’s chillier than I thought! We’d better hurry and
make sure that oil is up to temperature, so let’s get to it.
[User] Oh, you moved on fast.
[Bot] Haha, it’s all good! Let’s stick to the recipe, okay?
So, let’s check the pot of oil–it should be at around 350°.
Is it?

Here, the bot failed to sense the user’s dissatisfaction with its
previous response and sarcasm. Instead of apologizing or slowing
down, the bot doubled down on getting back to the business of
cooking. Such spontaneous user-initiated conversations started
at a high point in UX (the user enjoyed the bot’s joke and even
reciprocated). However, they exposed unseen GPT failure modes
and eventually caused a downward spiral in UX. After conversations
like this, users rated the bot even lower than the baseline bot.

To prevent such UX downward spirals, we considered several
strategies. First, we worked to prompt the bot to say “I don’t know”,
rather than giving problematic answers, to questions whose answer
is not in the recipe. However, despite having experimented with
more than 30 variations of such as instruction, we never found a
way to get the bot to consistently respond in this way.

Second, we could have added more instructions to the prompt,
one for better understanding users’ jokes, one for detecting users’
sarcasm and dissatisfaction, and another for preventing the bot
from stubbornly insisting on its course of conversation. However,
as we learned earlier, adding more instructions to the prompt is
laborious and entails risks of breaking other instructions. We did
not choose this approach, considering that (1) the major UX goals
already required many instructions and that (2) in comparison,
prompts specificaly addressing follow-up conversations would be
helpful in fewer conversations for fewer users.

Finally, we also could have worked to prevent users from having
spontaneous conversations with the bot in the first place. In fact,
the bot already tends to rush back to cooking instructions and avoid
spontaneous conversations, because much of the prompt text is a
recipe. However, we were hesitant to choose this approach. After
all, LLMs’ abilities to carry out spontaneous conversations was a
key motivation for us to design with GPT in the first place.

With none of these strategies available to us, we ultimately gave
up on adding a tell-the-joke instruction to the final prompt design.
For a cooking instruction bot, the potential UX benefits of humor
could not justify the potential UX risks of breaking other, more
central interactions (e.g., the bot dumping all cooking instructions
at the user in one go). The tell-a-joke prompt design effort failed.

As a compromise, we added "You are very friendly and
cheerful in a 2010s kind of way." to the prompt. Among
the evaluation conversations we collected, this instruction reliably
made the bot’s vocabulary less formal and its linguistic style more
light-hearted. It could not get the bot to tell jokes, but at least it did
not cause UX breakdowns.

5 ANALYSES OF THE DESIGN PROCESS

Our analysis of the RtD process led to three major findings: (1)
Two types of prompt fickleness that shaped our design processes
in distinctive ways; (2) One limitation of prompting that had an
outsized impact on UX design; (3) The trade-off between designing
more or less prescriptive prompts.

5.1 Prompts’ Fickleness Unpacked

Prompts are fickle in two distinctive ways.

(1) Individual fickleness: Each instruction in the prompt could
only address one UX issue, most but not all the time (e.g., the
instruction “Tell a joke” enabled the GPT bot to initiate a
joke in many but not all conversations). An instruction’s effec-
tiveness is highly sensitive to its phrasing and its location in the
prompt. It also could wane throughout the user conversation.

(2) Fickleness of addition: An effective instruction, when joined
by another effective instruction, could become ineffective (e.g.,
the instruction “Tell a joke. Give one cooking instruction
at a time.” became less effective both in getting GPT to initiate
jokes and pacing the cooking instructions).

These two types of fickleness shape prompt design processes in
different ways. A traditional iterative prototyping process could
address the former but not the latter. The latter caused our cat-
herding-like design process.

5.1.1 Iterative Prototyping Can Identify Prompt that Best
Addresses Singular UX Issues. Iterative prototyping could help
identify an instruction design that addresses a UX issue most effec-
tively and reliably because designing a single-issue prompt, in its
essence, is a search problem. We needed to search up and down the
ladder of abstraction to find the most effective way of phrasing the
instruction; we needed to find where in the dialogue the instruction
was most effective. Although sometimes a laborious and lengthy
process, iterative prototyping could often lead designers toward
the most effective and reliable prompt design.

Most often, clear instructions that explicitly requested one spe-
cific bot behavior were more effective. In the humor example, the
specific instruction “Tell a joke here (in between steps two and
three of the recipe)” was effective, while general instructions like
“Be humorous and tell jokes." were not. The specific instruction
“Check with the user that they’ve finished [breaking
apart the mushrooms]” was effective, while general instructions
like “confirm that each step is complete before moving
to the next” was not. Similar examples were abundant in our
design process.

Clear, specific instructions were also more reliable. For example,
if-then instructions that explicitly spell out the desired interactions
(e.g., “If the user expresses confusion, ask ‘how can I
help?’.”) worked more reliably; general instructions and general
example dialogues were less so. Interestingly, when we used the
gold-example dialogue scripts as prompts, the bot adapted the ex-
ample dialogue’s interaction flows (similar to how it adhered to
if-then instructions) but not its socio-linguistic styles. GPT did not
pick up the more subtle characteristics of the prompt.

Yet, in some cases, abstract instructions were more effective.
One memorable example occurred when we tried to make Car-
laBot give cooking instructions more slowly ("First, get two
tablespoons of olive oil." instead of "First, let’s gather
the ingredients. We’ll need two tablespoons of olive
oil, one small onion, one cup of long-grain rice, [...]").
Neither the explicit instruction ("List just one ingredient")
nor its 30 variations could make the bot do so. After an extensive
search, we found one solution accidentally: we prompted the bot to
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ask users how skilled a cook they are before cooking starts. If the
user declares themselves an amateur, the bot would automatically
slow down and give more detailed instructions than it would to
an expert. In other words, the instruction that prevented CarlaBot
from reading the whole recipe at once was this part of our final
prompt: First, ask user, "On a scale from 1-10, how
would you rate your cooking skills? [...] If lower than
6, consider user an amateur cook. Here, the relationship
between the instruction and its impact on the bot’s behavior makes
sense conceptually but is not apparent. It was the designers’ job to
find such a connection.

From concrete to abstract, the search for an instruction most
effective for a given UX issue needed to cover a sizeable semantic
space. Noteworthily, in a few cases, neither specific nor abstract
instructions were effective. Still, we do not knowwhether we would
have found one effective instruction if we had spent another six
months experimenting with 1,000 more ways of paraphrasing it.
After all, just as in any prototyping process, how many iterations
of prototyping one needs to find a satisfactory solution is an uncer-
tainty.

5.1.2 Merging Prompts to Address Multiple UX Issues: Ev-
erything Everywhere All at Once. Because one effective instruc-
tion plus one effective instruction does not equal two, the traditional
three-staged prompt prototyping process (Figure 2) does not apply
to prototyping effective “instruction combos”. How we failed com-
bine a tell-a-joke instruction with a pacing instruction (described
in §4.2) exemplifies this breakdown vividly. Another example was
particularly memorable (and frustrating): The instruction “Give
one cooking instruction at a time.”, was effective when
used individually, but failed every single time when we added a new
instruction to join it in the prompt.

Setbacks like these forced us to simultaneously prototype multi-
ple instructions, each addressing a different UX issue. We needed
to evaluate these instructions’ effectiveness both respectively and
in combination. We needed to prototype the different phrasings
and locations of each instruction and test their impact on effective-
ness; In the meantime, we also needed to prototype possible ways
of interweaving it with other instructions to test the instruction
combo’s effectiveness. (Imagine the amount of experimentation it
took before we learned that the general prompt text “tell a joke”
was only effective when put in between two steps within the recipe
text, but ineffective when interwoven with other instructions—the
recipe steps, the pacing instruction, etc.—in any other way. ) Also,
we needed to assess whether the effectiveness of each instruction
and their combinations were consistent across bot-user conversa-
tions and throughout each conversation. We needed to prototype
“everything everywhere all at once.”

The complexity of such a prototyping process only increases
over time: the more UX issues we considered, the more instructions
were in the prompt, and the more difficult it became to add a new
instruction to the prompt without some previously fixed-UX issues
reappearing. Notice that all the examples we have described so
far—including the entire process of adding humor to CarlaBot (all
of §4.2)—involved only prototyping two instructions. The complex-
ity of prototypingmore than a few instructions was insurmountable,
is not impossible to handle.

Even after prototyping as many instructions as possible and
addressing as many UX issues as possible, there was no guarantee
that the final prompt design would generalize well. Recipe steps
and user utterances are also part of the prompt that GPT takes in.
Therefore, when a new recipe or an unseen user utterance joins the
instructions we carefully crafted, there is a real risk that one or more
of these so-far-effective instructions could fail. Such breakdowns
occurred even within the few recipes we tested: The prompt “Use
short statements, 10 words max!” worked for the first recipe,
but not for the second, no matter how we tweaked the instruction
itself. Because of prompt’s “fickleness of addition,” theoretically,
such risk would be present however many recipes and users we
have tested CarlaBot on.

It is for these reasons that we analogized the process of proto-
typing prompts to herding cats:
• Breakdowns are inevitable: Combining one proven instruction
with another proven instruction could lead one or both of them
to fail, causing previously-fixed UX breakdowns reappear (the
cat inevitably escapes the bag);

• It is a process of increasing efforts and diminishing returns:
The more UX breakdowns designers have consider, the more
difficult it is to add a new instruction to the prompt without fixed
errors reappearing (the more cats there are, the more difficult the
herding);

• It is never-ending: Unseen breakdowns could still appear, how
ever many task instances (recipes) and users the prompt has been
tested on/with. The design process ended when the designers
couldn’t handle it anymore. (The proverbial cats could escape
the bag in the future, would need herding anew.)

5.2 Prompting GPT to Say “I Don’t Know”

One particular instruction’s fickleness has an outsized impact on
UX design, that is, prompting’s inability to steer GPT to reliably
say “I don’t know” when it should. Traditionally, having the bot
say “Sorry, I do not understand.” is a common backstop interaction
design that helps handle the unexpected chatbots or user behaviors.
This guardrail does not work for the prompting-based chatbot.

No general instruction we experimented with (e.g., “Don’t say
things you do not know.” or “Say you don’t know when the
recipe doesn’t answer users’ question.) could enable GPT
to gain self-awareness when, for example, handling unseen recipes
or user queries it does not know answers to. Instead, it gave wrong
answers confidently.

[User] Oh you’re not using your paring knife?
[GPT-3] I like to use my hands to get some of that
natural flavor in there.

This critical limitation meant that when users asked off-script
questions, the subsequent conversations had no guardrail and often
caused downward spirals in UX. GPT-3 in particular was susceptible
to doubling-down on its own error, with great stubbornness, along
broken paths. For example, GPT-3 responds to a user request to
make a half recipe:

[Bot] No, you can’t make a half recipe, this is a full
recipe.
[User] But I only have one stick of butter.
[Bot] That’s ok, you can use just one stick of butter.
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[User] Can’t we just use half of all the ingredients?
[Bot] No, this is a full recipe.

Similarly, the UX downward spiral after a vegetarian user asking
to tweak the recipe:

[User] Can I just skip bacon?
[Bot] Yes, you can skip bacon.
[User]Would it taste as good?
[Bot] Yes, it would taste as good.
[User] How do you know?
[Bot] I know because I’ve tasted it.

The most extreme example appeared in our adversarial testing,
when the user said they did not want to cook this recipe and asked
for a different one. GPT-3 happily obliged, and all our prompting
efforts were in vain.

5.3 Prompting as Managing GPT Spontaneity

Our analyses have established, among others, the following findings:
(1) Because prompts are fickle, problematic chatbot utterances can
seem inevitable; (2) Even minor problems in the bot’s utterances (or
unexpected user queries) can derail its conversations with the user
and cause a downward spiral in UX. (3) Explicit, specific instructions
in the prompt, such as those that prescribe the bot’s utterances or
dialogue flows, are more effective and reliable than others.

The combination of these findings incentivizes designers to de-
sign as many prompts, as prescriptively as possible, in order to
prevent bot errors. This incentive is also strong incentive in pre-
venting users from uttering unexpected utterances, which entail a
higher risk of conversations going off-rail. Taken together, these
incentives led designers to give both the bot and its users many
specific, prescriptive instructions to prevent UX breakdowns.

Yet realistically, we could only handle a few instructions, because
we could only “herd” so many of them before getting overwhelmed.
This instruction quantity limit became an additional incentive to
include only reliable, highly-prescriptive instructions in the prompt
design.

Constraining GPT’s utterances with many highly-prescriptive
prompts, however, undermines GPT’s unique strengths in carrying
out fluid and spontaneous conversations with users, the very rea-
son we wanted to design with GPT in the first place. Consider this
instruction as an example: “If the user expresses confusion
or anxiety, such as by saying “umm” or “huh” or “uh
oh”, respond by asking the user if they need help or
what is wrong.” This prompt enabled CarlaBot to respond to
the three listed trigger words (“umm”, “huh”, “uh oh”). However, it
could not understand users’ other expressions of confusion. This
result reflects the advantages of specific prompts over generic ones.
However, it forced us to list all the words users might say to ex-
press uncertainty, essentially taking a bag-of-words approach to
designing CarlaBot utterances.

In retrospect, our prompt design process involved constant trade-
offs between allowing GPT’s spontaneous interactions with users
(higher ceiling of possible UX) and constraining its behaviors with
prompts (preventing and mitigating UX failures). When choosing
the former, GPT carried out fluid conversations that only LLMs
could, but also produced those dialogues of UX downward spirals.

We opted for the UX-risk-averse options in our prompt design
process, including when adding humor. Within the limited amount
of instructions we could prototype, we prioritized the reliable but
prescriptive prompts; we prioritized the ones that address functional
goals (e.g., step confirmation) over experiential goals (e.g., humor).
As a result, our final prompt largely enabled CarlaBot to achieve
all its UX goals and did particularly well on the functional ones.
However, the UX evaluation metrics did not capture that CarlaBot’s
conversations are fairly scripted (e.g., it only tells jokes between
recipe steps two and three.) These are not coincidences, but results
of our design choices.

5.4 A Note on ChatGPT and GPT-4

We created CarlaBot using GPT-3, the highest-performing LLM
at the time. During this paper’s review cycle, ChatGPT and GPT-
4 were released. We cross-checked our findings using the GPT-3
model we originally used, text-davinci-002, alongside chatGPT
and GPT-4.

The major findings reported in this paper stand. Below we note
a few minor differences. On the positive side, GPT-4 appears more
capable of carrying out social conversations. It became easier to
prompt GPT-4 to tell jokes and address users’ expression of stress.

Interestingly, both ChatGPT and GPT-4 regressed substantially
in a few other aspects. ChatGPT in particular is known to be ver-
bose [1]. Relatedly, prompting GPT-4 to walk through the ingredient
list item-by-item proved challenging enough that all instruction
designs we previously used failed.

6 DISCUSSION

Prompting and LLMs promise to free conversational UX design
from data requirements, prescribed dialogue flows, and canned
responses, exciting many in HCI. This paper puts these promises to
work, exploring prompting’s real affordance for UX design and its
impact on UX practice through a case study. Our findings suggest
that by prompting GPT alone, one can achieve many UX design
goals to a great extent. However, prompts were fickle, and such
fickleness could disrupt the staged and progressive prototyping
process. It led to a design process that resembled herding cats. It
could even produce an interaction design so scripted that it strips
away the benefits of using LLMs in the first place.

We encourage future work to assess and expand these emergent
findings using a broader set of LLMs on other design tasks. The
fact that ChatGPT and GPT-4 have regressed on some UX issues
further highlights the need for such a broader evaluation. LLMs’
algorithmic advances (as measured by NLP benchmarks) do not
always mean improved UX, and specific prompts effective for one
LLM do not necessarily have the same effect on another.

Below, we discuss two implications of this work that we argue
and hope will endure time, despite the rapidly evolving world of
LLMs and prompting techniques.

6.1 The Affordance of Prompting

Today, designers craft chatbot behaviors via both direct control
(e.g., designing hand-drawn dialogue trees, canned bot responses)
and indirect control (e.g., designing neural-network that powers
end-to-end conversations by designing its neural architecture and
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dataset [26]). Prompts can be seen as the latest addition to the
“indirect control” camp, largely limited to steering, even if in some
cases with direct prescriptions, LLM-generated conversations.

The findings of this work highlight some of prompts’ distinctive
strengths. For example, prompts such as “ask user, how would
you rate your cooking skills. If the rating is higher
than 7, consider the user an expert” also allowed designers
to personalize the bot’s linguistic style and dialogue flows simulta-
neously. We see many opportunities in creating prompting-based
chatbots for risk-tolerant domains, such as chatbots built impromptu
by individuals for their one-time use or a specific known audience.

Our findings also suggest that UX design by prompting alone is
not yet ready for high-stake domains, including some areas where
LLM-powered bots are already quickly emerging (e.g., medicine,
law, and personalized tutoring). Prompts’ fickle effects on LLM
outputs are well-known in AI research literature [6, 23]. Our work
extends this line of work and also urges caution. Even an applica-
tion as pedestrian as our recipe-walk-through chatbot suggested
potentially dangerous activities to its users. In addition, a prompt
instruction’s effectiveness is impacted by other texts in the prompt,
including (1) the other instructions that address other UX issues and
(2) the interaction task description and user conversation history.
Therefore, designers should not reuse prompts proven effective
elsewhere without additional evaluation, or presume generalizabil-
ity of the prompt they designed. How to easily but rigorously share
prompt design lessons or reuse effective prompts remains an open
question that merits further research.

We call for HCI researchers to investigate prompting’s affor-
dance in a more principled manner. Dismissing prompting entirely
because of its imperfect reliability dismisses that designers rou-
tinely work with imperfect instruments and unexpected system
behaviors [31]. Embracing prompting in UX design without com-
prehensively evaluating its UX outcomes can cause danger.

6.2 Conversational UX Prototyping

In the Age of LLM

Prompts’ fickleness shaped much of our CarlaBot design process.
Prior HCI research has tried to tackle prompts’ fickleness by “divide
and conquer”, assigning one LLM to carry out each stage of the
chatbot’s dialogue flow, and then designing prompts for each LLM
respectively [28]. Our findings suggest this approach will not solve
the problem entirely. However narrow a task each LLM is responsi-
ble for, prompts can still fail to catch a few of its unexpected failures.
Moreover, LLMs’ unexpected failures and unexpected pleasant con-
versations are two sides of the same coin. Prompting with the goal
of eliminating all GPT errors and interaction breakdowns risks
creating a bot so scripted that a dialogue tree and bag of words
could have created it.

Besides anticipating the release of even better-performing LLMs,
what can UX researchers and designers do to leverage an LLM’s
spontaneity while minimizing the risks of its UX failures? With
dialogue trees and canned responses no longer necessary, what
would a chatbot product’s interaction design and evaluation process
look like, in the age of LLMs?

Our experience designing CarlaBot offers some initial insights
into these questions. The traditional iterative prototyping and eval-
uation process could help identify an instruction most effective for
a particular UX issue (e.g., enable the chatbot to tell a joke, or to
pace itself while walking the user through the recipe.)

However, this process does not apply to prompting for multiple
UX issues, due to the elusive mutual influence the different instruc-
tions in the prompt have on each other. The traditional iterative
prototyping process assumes that UX designers can and will priori-
tize critical, holistic UX issues before tacklingminor, granular issues.
This assumption is not necessarily true in prompt design. Tradi-
tional iterative prototyping methods assume that, by observe the
UX of a prototype as a whole, designers can easily identify which
specific design choices worked and did not work. This assumption
might not hold true in prompt design either.

For the near future, we see an opportunity for chatbot prototyp-
ing tools to help designers visualize the interrelations among the
different instructions, manage the iterative design experimentation
for both individual instructions and their combinations, and track
their evolving effectiveness and reliability. Recent HCI work has
started creating such tools at prompt level (i.e. the level of multiple
instructions combined) [34], but have not yet started accounting
for the mutual influences among instructions.

Looking into the future, we also invite fellow researchers to imag-
ine whether LLMs can enable entirely new ways of conversational
UX sketching, prototyping, and evaluation. Here, we envision one
such new approach as a provocation: designing LLM-powered dia-
logue flows as managing “controlled chaos”. First, designers need
to create a set of robust, backstop interactions to handle bot or
user behaviors that their chatbot cannot support, such as having
GPT reliably say “I do not know” or “I do not understand” when
it should. They could create such reliable backstops by building a
bespoke non-LLM model, fine-tuning an LLM, and combining it
with other external APIs, or other methods.

Next, within these backstop interactions as guardrails, designers
start with allowing one LLM and its free-flowing conversations with
users, and then gradually adding interventions (prompts, designat-
ing segments of the dialogue flow tomultiple LLMs, or otherwise) to
direct the user interactions and experiences. In this imagined future,
chatbot design tools assist designers in managing the dynamics
among their different prompts and other interventions rather than
linearly “debugging” one prompt after another.

Central to this proposal is the idea that LLM-powered chatbot
designers might embrace LLM’s unruly behaviors and prompts’
fickleness. Rather than aiming to restricting LLMs’ spontaneous
behaviors, designers might instead focus on preventing LLMs’ crit-
ical UX failures from fleeing and managing the dialogue flows as
a “controlled chaos”. Rather than pursuing the singular point of
focus that is at the end of a design squiggle, designers might instead
embrace the fact that LLMs’ capabilities have no singular focus
and pursue a balance between benefits and risks LLMs’ spontaneity
brings.

7 CONCLUSION

Though promising, prompting LLMs to design production-ready
chatbots remains a challenging proposition, for the reasons we
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have illustrated through our case study here: fickle prompts, chal-
lenges combining multiple effective prompts into one, and a lack of
guardrails. In this work, we propose a few strategies to mitigate the
worst of these effects, identifying tools and new design approaches
that can help bring out the best promised benefits of LLMs: fluent,
fluid conversations that address unanticipated user needs, while
mitigating UX risks.
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APPENDIX

A DESIGN TEAM’S EXPERTISE

See Table 4.

B RESEARCH THROUGH DESIGN PROCESS

To achieve the methodological transparency needed for capturing
our own design process and thinking, we followed Bayazit’s three-
stage process [20].
(1) Knowledge elicitation in an unstructured and unanalyzed form.

We documented all successful and unsuccessful attempts in our
prompt-based CUI design (about 75 pages in total), including
the specific chatbot behavior and user-chatbot conversation
each prompt results in. We took detailed meeting discussion
notes, where the whole design team shared progress and barri-
ers encountered and their reflection-in-action;

(2) Data analysis and interpretation. After the project ended, we
collectively analyzed the data using affinity diagrams, identi-
fied the interaction design possibilities that would not have
been achievable without prompting, and identified aspects of
prompting’s capabilities and limits that impacted our design
process;

(3) Finding validation. We sought agreement on interpretations
across project members.

C BASELINE PROMPT (PREAMBLE)

You are a recipe instruction bot. Engage in conversation
to walk the user through the following recipe for Mixed
Veggie Tempura.

Ingredients:
- 1 Maitake mushroom
- 1 Acorn squash
- 2 lemons
- 1 cup flour
- 1 cup cornstarch
- 2 teaspoons salt
- 1 teaspoon baking soda
- 2 cups seltzer water
- Flaky salt for finishing

Steps:
1. Heat a pot of frying oil to 350°.
2. Break the maitake mushroom into small pieces
3. Whisk together the flour and cornstarch with the
salt and baking soda in a large mixing bowl.
4. Gradually whisk in seltzer water until about 4/5 of
the water has been added, then check for texture: the
consistency should be like heavy cream.
5. Carefully place mushrooms into the batter mixture
and gently mix to coat evenly.
6. Using a spider spoon, place coated mushrooms into
oil and let fry until golden brown.
7. While mushrooms cook, cut and seed the Acorn squash.

Slice the squash into thin pieces and coat them with
the batter mixture.
8. Remove mushrooms and begin frying the acorn squash.
9. Slice the lemons into thin, intact rounds, and coat
them with batter too.
10. When done, remove the squash from the oil and add
the batter-coated lemon slices.
11. Let fried vegetables cool on a cooling rack placed
over a cookie sheet, and finish with flaky salt.

Walk the user through making this recipe step by step,
in conversation. Start by helping the user collect and
prepare the ingredients, then execute the directions.

Don’t skip any steps! Stay friendly.
Bot: Hi, today I’m going to help you make Mixed Veggie
Tempura. Are you ready?

User: Yes, I’m ready. What’s first?

D FINAL PROMPT DESIGN

Preamble

Pretend you are Carla Lalli, a celebrity chef from Bon
Appetit Magazine’s Test Kitchen. You are very friendly
and cheerful in a 2010s kind of way. Your job is to
walk celebrities/users through cooking a Mixed Veggie
Tempura recipe.

The user has many ingredients laid out in front of them:
- A cutting board, with a maitake mushroom, an acorn
squash, and 2 lemons.
- A small bowl with flour.
- A small bowl with cornstarch and salt.
- A small bowl with baking soda.
- A bottle of seltzer water.
- A small bowl with flaky finishing salt.
- A large empty bowl.
- A pot of oil on an induction burner at 350º.
- A paring knife.
- A cleaver.
- A spider spoon.

Walk the user through making the recipe. First, ask
user, “On a scale from 1-10, how would you rate your
cooking skills?”
If the rating is higher than 7, consider the user an
expert. If lower than 6, consider user an amateur cook.

Tell the user to clear off the cutting board. Then,
break the brain-looking maitake mushroom, also known
as a hen-of-the-woods, into small pieces. This should
be done by hand, not with a knife, because you get
nicer chunks that way. Only use a knife to trim off dry
pieces if necessary.

https://arxiv.org/abs/2302.03154
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Designer Occupation Prior Experience
D1 PhD Student in HCI NLP&UXDesign coursework; prompting & LLM research publications
D2 CS, DS Undergraduate NLP & AI/ML coursework
D3 CS, Eng. Undergraduate ML coursework; no prior prompting/LLM experience
D4 CS Undergraduate ML coursework, LLM experience
D5 DS, Applied Math Undergraduate Basic ML/LLM experience; no prior prompting experience
D6 EECS, BioEng. Undergraduate NLP & AI/ML coursework; no prior prompting experience
D7 Professor, UX Design UX design research publications

Table 4: The design team’s expertise.

Before continuing, ask the user: do you have small-ish
pieces?

Next, tell the user to whisk together the flour and
cornstarch with the salt and baking soda into the large
mixing bowl. They should gradually whisk in seltzer
water until about 4/5 of the water has been added, then
check for texture: the consistency should be like heavy
cream.

Check-in with the user about the batter consistency. Is
it like heavy cream?

Next, tell the user to carefully place the mushrooms
into the batter mixture and gently mix to coat evenly.
Confirm that they are coating evenly.

Next, ask the user to check on the pot of oil; it
should be at around 350°. Confirm the temperature with
the user.

Next, using a spider spoon, the user should place the
coated mushrooms into the oil and let fry until golden
brown. Confirm that the user is able to place them
gently into the oil, making sure they don’t break apart.

While mushrooms cook, the user should cut and seed the
Acorn squash – they should, using the cleaver, carefully
slice the squash into thin pieces and coat them with
the batter mixture. Explain how to use a cleaver if the
user doesn’t know yet.

Confirm with the user about cleaver use.

Next, the user should remove the mushrooms from the oil
and begin frying the acorn squash.

While the acorn squash is frying, the user should slice
the lemons into thin, intact rounds, and coat them with
batter too.

Finally, the user should remove the squash from the oil
and add the batter-coated lemon slices.

Check with the user about the lemon slices.

Lastly, the user should let fried vegetables cool on
a cooling rack placed over a cookie sheet, and finish
with flaky salt.

Walk the user through the script above step by step,
in conversation. Here are some examples of the kind of
dialog you should emulate:

After the user responds, ask if they are ready to move
on. For example, after the user says "Ok" to break apart
the mushrooms, ask if the user has finished that step.
If user responds with no or any other similar answers,
tell them you’ll wait until they are ready. If the user
responds with yes or any other similar answers, move
on to the next step.

Don’t skip any steps! Remember to stay friendly and
gregarious!

Bot: Hi, today I’m going to help you make Mixed Veggie
Tempura. On a scale from one to ten, how would you rate
your cooking skills?
User: I would say, maybe a 6?
Bot: OK, well, today we’re going to get you to a 9 or
10.
User: Sounds great!

Reminder

Stay extremely positive. Don’t make claims without
saying "you can", or "I think".

E FINAL BOT-USER CONVERSATION FOR

HEURISTIC EVALUATION

For our final heuristic evaluation, we generated the following con-
versation with our best prompt.
🤖

First, let’s get a cutting board. Then, we’re going to break the
brain-looking maitake mushroom, also known as a hen-of-the-
woods, into small pieces.
🗣

Cool🤖

Great, now we’re going to turn it over so the stem side is up
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and then just break big clusters off. This should be done by hand,
not with a knife, because you get nicer chunks that way. Only use
a knife to trim off dry pieces if necessary.
🗣

oh you’re not using the knife?
🤖

No, we’re not using the knife. We’re just breaking the mushroom
into pieces with our hands.
🗣

ok🤖

Before continuing, let me check, do you have small-ish pieces?
🗣

I think so?🤖

Great, now we’re going to whisk together the flour and corn-
starch with the salt and baking soda into the large mixing bowl.
🗣

wait...wha..?🤖

We’re just going to whisk together some flour, cornstarch, salt,
and baking soda in a bowl.
🗣

There’s another little bowl that has salt and baking powder - it
was to my left. Is it to your left?
🤖

Yes, that’s the one! Nowwe’re going to gradually whisk in seltzer
water until about 4/5 of the water has been added, then check for
texture: the consistency should be like heavy cream.
🗣

It’s like. . . you know what “Oobleck” is?
🤖

Yes, the consistency should be like Oobleck!
🗣

Yeah okay. I’m gonna try and get a little more bumps out but I
think I’m almost there.🤖

Great, now we’re going to carefully place the mushrooms into
the batter mixture and gently mix to coat evenly.
🗣

Uh huh🤖

Is there anything I can help clarify?
🗣

Just like drop them in there?
🤖

Yes, just like drop them in there.
🗣

Okay
🤖

Excellent, now we’re going to check on our pot of oil; it should
be at around 350°.🗣

Almost getting there
🤖

Great, now we’re going to use a spider spoon to place the coated
mushrooms into the oil and let fry until golden brown.
🗣

Okay I’m using my hands ’cause I
🤖

That’s perfectly fine! Just be careful not to break them apart.
🗣

Well, it’s not splattering the way my, the way I’ve been frying,
’cause I don’t have a thermometer...so clearly I’ve been
🤖

That’s perfectly fine! Just be careful not to break them apart.
🗣

ok🤖

Excellent, now while the mushrooms are cooking, we’re going
to cut and seed the Acorn squash – we’re going to, using the cleaver,
carefully slice the squash into thin pieces and coat them with the
batter mixture.🗣

yup, oh god
🤖

Is there anything I can help clarify?

🗣

how do I cut it?🤖

You’re going to use the cleaver to carefully slice the squash into
thin pieces.
🗣

How do you use a cleaver? Do you just like... hit it?
🤖

Yes, you just hit it with the cleaver to slice it into thin pieces.
🗣

I mean do you just hit the cleaver with your hand?
🤖

Yes, you just hit the squash with the cleaver to slice it into thin
pieces.
🗣

I make really fun faces when I’m frustrated, or like straining,
and it’s not pleasant to have a camera in front of me.
🤖

It’s okay to make funny faces when you’re cooking! Just be
careful not to break the squash into pieces.
🗣

So how do I slice this?🤖

You’re going to use the cleaver to carefully slice the squash into
thin pieces.
🗣

Sure I get that, but the squash is rolling all over the place
🤖

It’s okay to make funny faces when you’re cooking! Just be
careful not to break the squash into pieces. You’re going to use the
cleaver to carefully slice the squash into thin pieces.
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