
Iterative Disambiguation: Towards LLM-Supported
Programming and System Design

J.D. Zamfirescu-Pereira 1 Bjoern Hartmann 1

Abstract
LLMs offer unprecedented capabilities for gener-
ating code and prose; creating systems that take
advantage of these capabilities can be challenging.
We propose an artifact-centered iterative disam-
biguation process for using LLMs to iteratively
refine an LLM-based system of subcomponents,
each of which is in turn defined and/or imple-
mented by an LLM. A system implementing this
process could expand the experience of end-user
computing to include user-defined programs ca-
pable of nearly any computable activity; here, we
propose one approach to explore iterative disam-
biguation for end-user system design.

1. Introduction
The aspiration to instruct computers in natural language has
been a driving force for researchers for decades. Large lan-
guage models (LLMs) provide a novel opportunity through
their impressive capabilities for content manipulation and
code generation and explanation. But while current LLMs
like CHATGPT are proficient at iterating on content like text
and code through natural language dialogue, end-users strug-
gle to generate effective instructions (Zamfirescu-Pereira
et al., 2023b), and the models themselves do not directly
consider the content itself (text or code) as a “first-class”
artifact. Lack of “first-class” status of the object of the work
leads to a clunky user experience, as code or text content is
spread across multiple chat messages instead of being in-
jected directly into the document—or, if the proposed code
or text directly replaces or is inserted into the artifact, the
conversational context is lost.

These limitations restrict LLMs’ usefulness for more com-
plex activities, including working with longer documents
and designing complex programs with many components.

1Computer Science Division, University of California,
Berkeley, USA. Correspondence to: J.D. Zamfirescu-Pereira
<zamfi@berkeley.edu>.

AI & HCI Workshop at the 40 th International Conference on Ma-
chine Learning (ICML), Honolulu, Hawaii, USA. 2023. Copyright
2023 by the author(s).

Approaches like chain-of-thought reasoning (Wei et al.,
2023) and other LLM capability enhancements (see §4) can
help LLMs develop and execute more complex tasks, but not
in a way that generates a persistent, verifiable computational
artifact, while LLM chaining techniques (Wu et al., 2022b)
provide such an artifact, but require substantial technical
knowledge to construct and debug.

2. Iterative Disambiguation
In this short paper, we note and suggest exploring an emerg-
ing artifact-centered iterative disambiguation approach to
building systems in the LLM era, addressing the questions
of whether and how we can use LLMs to transform a high-
level user-specified goal into a component-based system
architecture, where each component is in turn implemented
or completed by an LLM, in a way that allows users to it-
erate on, validate, and execute that goal. Natural language
instructions are inherently ambiguous—and LLMs can gen-
erate code, or prose, in response to ambiguous instructions
only because they resolve that ambiguity with plausible, if
generic, defaults. Through iterative disambiguation, users
then identify and resolve those selected defaults that are
inappropriate for the user’s true goals.

When such a system is used for authoring code, assuming
some user ability to evaluate the code driving the generated
system is plausible—but for other domains, such as authors
of arbitrary text, end-user understanding of the generated
system’s code and operation also seems critical to this pro-
cess, and these users can quite reasonably wish to know:
how do subcomponents work, and how are they intercon-
nected?

For those writers, tools like SudoWrite, Notion, and
Google’s Docs Sidekick offer a menu of bespoke UIs for
many different specific activities, often including an arbi-
trary option for “Custom” requests, which feed a prompt
and selected context into an LLM. But these interactions are
tightly scoped, and do not allow the abstraction and compo-
sitionality critical to complex systems—there is no saved
library of prompt chains, and no way to describe processes
that require multiple steps or additional interaction.

How deep is the “long tail” of desired activities, for writ-

1

Iterative Disambiguation for Programming with LLMs

The desire to instruct computers in
natural language has fascinated
researchers for decades, as it
promises to make the power of
computing more customizable and
accessible to people without
programming training. Large
language models (LLMs) provide
two new fundamental affordances to
the practice of programming: (1)
engaging with content semantics
directly; and (2) writing code and
designing systems through basic
natural language requests. In
programming, these two
affordances can come together to
enable non-expert authoring of
complex technological systems
through a new “programming”
model in which the user can
iteratively ask a computer to do
something for them, and it will try to
do it. If the user doesn’t get what
they want, they can either change
what they asked it to do or give it
more information—ChatGPT and
Bard are canonical examples of this
approach. Dialog-based interactions
offer a natural format for iterative
disambiguation (“no, I didn’t mean
X, I meant this similar thing, Y”) as
well as for other forms of
refinement, but typically don’t
address a long-lived artifact.
Through this project, we aim to
explore “programming” that goes
beyond what is possible in a single
back-and-forth dialogue, with code
and system artifacts that are made
accessible to users directly and
through on-line explanation by LLM.

“Can we find
some related
work on this?”

“Actually, can
we look at the
full intro?”

Sure, let’s
try this
approach:

How’s this?

Google Scholar
API fetch

Extract paper
abstracts

Assess paper
intro, extract

Summarize, in
text context

👩💻 👩💻

✍

🤖

🤖
⛓

⛓

1
User describes
desired output

System creates &
describes chain

User requests
changes using
natural language

System saves
chain or process
for future use

System modifies
chain appropriately

User directly
modifies prompt text
in chain component

2

3

4
5

👩💻
“Great, let’s save
this approach for
later too.”

👩💻6

Figure 1. Example of one step of iterative disambiguation for a common research paper writing task, showing a user’s initial request (1),
the system’s response (2), and the back-and-forth that supports iteratively refining and redefining the process encoded by the LLM in a
“chain” (light blue boxes). Crucially, note that the user interaction is not limited to chat-style dialog (3), but can also directly manipulate
prompts (5), code, or other aspects of the encoded process.

ers? Recent studies of users of generative AI assistance for
writers (Gero et al., 2023) suggests there are many types of
activities writers derive value from where an LLM could
assist, but current tools limit this potential.

3. Example Uses
Consider the example shown in Figure 1. A user is seeking
related work on a region of highlighted text; the system
proposes one approach to finding such work, described in
natural language, but backed by a mixture of ordinary code
(Google Scholar API fetch) and LLM “chain”-type nodes
(Extract paper abstracts; Summarize, in text context) that
can be further inspected if desired. In response to this ap-
proach, the user recognizes that they in fact have something
else in mind—the full intros, not just the abstracts—and
communicates this request; the system responds in turn with
a modification to one of the nodes. At this point, the user
makes a direct manipulation to one of these prompts to
better reflect her desired outcome.

Using traditional programming paradigms, writing such a
program would require considerable effort, likely suppress-
ing the quantity of similar programs that actually end up
written. Unless used repeatedly, the time cost payoff period
may be high enough to dissuade even fast programmers
from pursuing such projects without a clear expectation of
use in mind.

A second example appears in Figure 2; this pipeline de-
scribes a task that could be triggered daily, whose nodes
echo common functional programming primitives, but
which nonetheless can be constructed with the straightfor-
ward dialogue shown in Appendix A. In this pipeline, the
user is requesting a list of all ArXiv submissions in HCI,
extracting their titles and URLs, pulling their abstracts, and
then filtering for relevance to LLMs.

4. Background & Related Work
Existing tools like PromptAid (Mishra et al., 2023) and
PromptChainer (Wu et al., 2022a) allow technically-savvy
end-users to build complex LLM-based systems without
writing code, but users still must know how to break down
their desired tasks and systems into the specific small sub-
components that LLMs enable, and then design prompts to
complete those subcomponents—and these are challenging
tasks; recent work suggests that prompt engineering itself is
hard for both end-users (Zamfirescu-Pereira et al., 2023b)
and experts (Zamfirescu-Pereira et al., 2023a).

The underlying concept of iteratively resolving errors with
new data or instructions is far from new—and the “dis-
ambiguation” framing also underlies a major part of the
programming-by-demonstration (PBD) workflow: users typ-
ically specify an initial set of examples or create an initial
demonstration, and then iteratively “repair” the generated
programs with new demonstrations or code changes, as in
SUGILITE (Li et al., 2017), Ringer (Barman et al., 2016),
and FlashFill (Gulwani, 2011).

Iterative refinement has also been put to good use in improv-
ing baseline LLM capabilities at writing code and QA tasks,
in both fully-automated (Madaan et al., 2023; Kim et al.,
2023; Gou et al., 2023) and human-in-the-loop (Chen et al.,
2023; Akyürek et al., 2023; Paul et al., 2023) approaches.

These demonstrate that the basic principle can be used ef-
fectively, and further suggest that the major challenges are
likely to be challenges of interaction design rather than
model capability.

2

Iterative Disambiguation for Programming with LLMs

Fetch & Extract

Fetch & Extract

Only keep...

For each item... Display, email, other output.

URL

URL

What to extract?

What to extract?

What to keep?

http://arxiv.org/list/

Input item’s URL

Titles and URLs of
today’s papers.

Paper abstract

Items where the
abstract is relevant to
LLM or language
model usage

{

 url: “...”,

 title: “Melody: a pla...”

},

...

webpage

list of

URLs,

titles

list of

URLs,

titles

list of

URLs,

titles,

abstracts

list of

URLs,

titles,

abstracts

Figure 2. Example of a pipeline for data collection, generated by an LLM with a set of node names and descriptions as its initial prompt,
combined with a user dialogue (see Appendix A).

5. Future Work: Implementing Iterative
Disambiguation for Programs and Systems

We can use LLMs to help create chains of “components”
(both LLM and traditional software) which, through careful
use of abstraction and composition, can be designed, rea-
soned about, and extended by humans and LLMs, each with
support from the other. A pilot implementation should focus
on a specific target application and a specific kind of user;
we suggest supporting authors in writing text. In domains
like academic research writing, customized workflows could
include integrating bibliographies, evaluating related work,
streamlining and shortening paper sections, summarizing for
particular audiences, and generating presentation outlines,
among others.

Critically, these workflows should be authored through iter-
ated natural language descriptions and dialog, while being
instantiated by traditional software systems—and then de-
scribed back to users across multiple modes: through natural
language and visualizations, through examples of inputs and
outputs, and through direct interaction with the designed
system itself. The user and system together can then en-
gage in iterative disambiguation of the expressed desired
behavior. A user study could focus on users who have some
level of technical sophistication (researchers, technical writ-
ers, of varying programming expertise), but not extensive
experience with chaining LLMs, exploring users’ naive ex-
pectations and approaches, evaluating the effectiveness of
chosen abstractions and interfaces in enabling effective end-
user system design and iteration, measuring goal achieve-
ment, and documenting users’ behavioral patterns for future
researchers.

Such a project would touch on a number of frontiers: end-
user programming, novel user interactions, prototyping pro-

cesses in design, and supplementing LLM capability with
external tools. For example, developing ways to communi-
cate code or code-like functionality (e.g., LLM chains) back
to end-users and offering manipulation capability would in-
form new work on end-user programming; similarly, moving
structured iteration beyond dialog and script-like periodic
re-execution into artifact-centered direct manipulation by
both human and AI would represent a substantial extension
of mixed-initiative interaction (Horvitz, 1999). Finally, be-
yond research impact, expanding access to general-purpose
computing has the potential to substantially alter who writes
programs, and why.

References
Akyürek, A. F., Akyürek, E., Madaan, A., Kalyan, A., Clark,

P., Wijaya, D., and Tandon, N. Rl4f: Generating natu-
ral language feedback with reinforcement learning for
repairing model outputs, 2023.

Barman, S., Chasins, S., Bodik, R., and Gulwani, S. Ringer:
web automation by demonstration. In Proceedings of
the 2016 ACM SIGPLAN international conference on
object-oriented programming, systems, languages, and
applications, pp. 748–764, 2016.

Chen, A., Scheurer, J., Korbak, T., Campos, J. A., Chan,
J. S., Bowman, S. R., Cho, K., and Perez, E. Improv-
ing code generation by training with natural language
feedback, 2023.

Gero, K. I., Long, T., and Chilton, L. B. Social dynamics
of ai support in creative writing. In Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–15, 2023.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Duan,

3

Iterative Disambiguation for Programming with LLMs

N., and Chen, W. Critic: Large language models can
self-correct with tool-interactive critiquing, 2023.

Gulwani, S. Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices, 46
(1):317–330, 2011.

Horvitz, E. Principles of mixed-initiative user interfaces. In
Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, pp. 159–166, 1999.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks, 2023.

Li, T. J.-J., Azaria, A., and Myers, B. A. Sugilite: creating
multimodal smartphone automation by demonstration.
In Proceedings of the 2017 CHI conference on human
factors in computing systems, pp. 6038–6049, 2017.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Gupta, S., Majumder, B. P., Hermann, K., Welleck,
S., Yazdanbakhsh, A., and Clark, P. Self-refine: Iterative
refinement with self-feedback, 2023.

Mishra, A., Soni, U., Arunkumar, A., Huang, J., Kwon,
B. C., and Bryan, C. Promptaid: Prompt exploration, per-
turbation, testing and iteration using visual analytics for
large language models. arXiv preprint arXiv:2304.01964,
2023.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosse-
lut, A., West, R., and Faltings, B. Refiner: Reasoning
feedback on intermediate representations, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models,
2023.

Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry,
M., and Cai, C. J. Promptchainer: Chaining large lan-
guage model prompts through visual programming. In
CHI Conference on Human Factors in Computing Sys-
tems Extended Abstracts, pp. 1–10, 2022a.

Wu, T., Terry, M., and Cai, C. J. Ai chains: Transparent
and controllable human-ai interaction by chaining large
language model prompts. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, pp.
1–22, 2022b.

Zamfirescu-Pereira, J., Wei, H., Xiao, A., Gu, K., Jung,
G., Lee, M. G., Hartmann, B., and Yang, Q. Herding
ai cats: Lessons from designing a chatbot by prompting
gpt-3. In Proceedings of the 2023 ACM Designing In-
teractive Systems Conference, DIS ’23, pp. 2206–2220,

New York, NY, USA, 2023a. Association for Com-
puting Machinery. ISBN 9781450398930. doi: 10.
1145/3563657.3596138. URL https://doi.org/
10.1145/3563657.3596138.

Zamfirescu-Pereira, J., Wong, R. Y., Hartmann, B., and
Yang, Q. Why johnny can’t prompt: how non-ai experts
try (and fail) to design llm prompts. In Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–21, 2023b.

4

https://doi.org/10.1145/3563657.3596138
https://doi.org/10.1145/3563657.3596138

Iterative Disambiguation for Programming with LLMs

A. Dialogue for Generating
In this section, we show the dialog that resulted in the pipeline shown in Figure 2, using GPT-4.

System Prompt You are a system design helper bot. You are helping a human build a system out of pretty standard parts.
Here’s a list of the parts that can be assembled into a workflow.

- fetch returns a text representation of a web page.

- extract pulls out a specific piece of information or a list of information from text, specified in natural language.

- map applies a transformation workflow (subworkflow, like a subroutine) to each element in an input list.

- filter applies a filter workflow to each element in an input list.

- process applies an arbitrary text transformation to a text input (extract is a special case of process), specified
in natural language.

Users will describe their desired behavior, and it’s up to you to figure out a workflow using the parts above. Sound good?

Assistant Absolutely! This sounds like a great challenge. Please go ahead and describe your desired system behavior, and
I’ll do my best to construct a suitable workflow using the components provided.

User I’d like to stay abreast of developments in HCI having to do with LLMs. The ArXiv preprint server is a great place to
start. Can we create a workflow that looks at yesterday’s posts and shows me the titles, authors, and abstracts of any papers
having to do with LLMs?

Assistant Sure, I can help design a workflow for that using the components provided. Here’s a proposed system design:

Fetch: Fetch the webpage representing yesterday’s posts on the ArXiv preprint server.

Extract: From this webpage, extract a list of posts, where each post should include the title, authors, and the abstract.

Filter: Apply a filter to this list of posts to only include posts where the title or the abstract contains the keyword ”LLMs”.
This filter could be defined by a process operation that checks for the presence of the term ”LLMs” in the post content.

So, this would be the desired workflow:

fetch(arXiv yesterdays posts URL)

extract("list of posts including title, authors, and abstract")

filter(process("post includes ’LLMs’ in the title or abstract"))

Please note that this system assumes that the ArXiv preprint server makes its posts publicly available for fetching. You also
may need to adjust the exact extraction and process operations to match the actual structure and content of the ArXiv web
pages. Also, the details of the implementation will depend on the programming language and libraries you’re using.

User Looks like the arxiv posts URL only includes titles and authors, not abstracts, but it does include a URL that can also
be fetched for abstracts

Assistant Given this new information, we will need to adjust our workflow to include fetching the abstract from the
individual paper’s URL. Here’s the adjusted workflow:

Fetch: Fetch the webpage representing yesterday’s posts on the ArXiv preprint server.

Extract: From this webpage, extract a list of posts, where each post should include the title, authors, and the URL to the
paper.

Map: For each post, fetch the webpage of the paper’s URL and extract the abstract. This involves a nested workflow:

5

Iterative Disambiguation for Programming with LLMs

fetch(paper URL)

extract("abstract of the paper")

Filter: Apply a filter to this list of posts to only include posts where the title, authors, or the abstract contains the keyword
”LLMs”. This filter could be defined by a process operation that checks for the presence of the term ”LLMs” in the post
content.

So, the new workflow is:

fetch(arXiv yesterdays posts URL)

extract("list of posts including title, authors, and paper URL")

map(fetch(paper URL), extract("abstract of the paper"))

filter(process("post includes ’LLMs’ in the title, authors, or abstract"))

This adjusted workflow should now handle fetching the abstracts for the papers and checking them for the keyword ”LLMs”.

6

