
 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Enabling Data-Driven API Design with Community Usage
Data: A Need-Finding Study

Tianyi Zhang†, Björn Hartmann§, Miryung Kimk, Elena L. Glassman†

†Harvard University, MA, USA
§UC Berkeley, Berkeley, CA, USA

kUC Los Angeles, Los Angeles, CA, USA
{tianyi, eglassman}@seas.harvard.edu, bjoern@berkeley.edu, miryung@cs.ucla.edu

ABSTRACT
APIs are becoming the fundamental building block of modern
software and their usability is crucial to programming effi-
ciency and software quality. Yet API designers find it hard
to gather and interpret user feedback on their APIs. To close
the gap, we interviewed 23 API designers from 6 companies
and 11 open-source projects to understand their practices and
needs. The primary way of gathering user feedback is through
bug reports and peer reviews, as formal usability testing is
prohibitively expensive to conduct in practice. Participants
expressed a strong desire to gather real-world use cases and
understand users’ mental models, but there was a lack of tool
support for such needs. In particular, participants were curi-
ous about where users got stuck, their workarounds, common
mistakes, and unanticipated corner cases. We highlight several
opportunities to address those unmet needs, including devel-
oping new mechanisms that systematically elicit users’ mental
models, building mining frameworks that identify recurring
patterns beyond shallow statistics about API usage, and ex-
ploring alternative design choices made in similar libraries.

Author Keywords
API design; community; information needs; tool support

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Empirical studies in HCI; Interactive sys-
tems and tools;

INTRODUCTION
APIs are programming interfaces exposed by software develop-
ment kits (SDKs); libraries and frameworks; and web services
such as REST APIs and remote procedure calls [40]; they are
one of the primary interfaces for programmers to give instruc-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.

tions to computers.1 The use of APIs is ubiquitous, powering
software applications, systems, and web services in nearly
every domain. Given the increasing number and complexity of
APIs, learning and using APIs is becoming a common activity
and a key challenge in modern programming [27, 47, 48, 40].

User-centered design can produce usable APIs with great clar-
ity, learnability, and programming efficiency [40, 39, 52]. Tra-
ditional usability testing methods such as user studies are often
deemed too expensive to conduct during API design [19]. For
example, a software library may have hundreds of APIs, which
can be composed in various ways to implement different func-
tionalities. Therefore, it is costly to conduct user studies to
comprehensively evaluate a large number of possible usage
scenarios of an API. In addition, recruiting participants is hard
since users need to have adequate programming skills to use
an API. These unique challenges make it appealing to leverage
the sheer amount of API usage data that are already produced
by the community, e.g., public code repositories, issue reports,
and online discussions, to inform better API design. By grasp-
ing a comprehensive view of real-world use cases and common
mistakes made by API users, API designers could adjust their
design choices accordingly and close the gap between API
design and user expectations.

Unfortunately, a recent study found that API designers still
have difficulties in gathering and interpreting user feedback
from their communities [37]. Large-scale community data has
driven big success stories in domains such as bug detection [24,
60] and code completion [25, 45, 3], but remains under-utilized
in the context of human-centered API design and usability
evaluation. Prior work on API design and usability evaluation
either focuses on small-scale methods that only involve a small
group of stakeholders to review API design [52, 19, 32], or
only leverages pre-defined heuristics that do not account for
real usage scenarios or user feedback [10, 38]. There is also a
lack of guidelines to enable API designers to make data-driven
decisions based on the community usage data.

In this work, we investigate how community usage data could
inform design decisions that account for real-world use cases
and user feedback. We conducted semi-structured interviews
with 23 API designers that worked on different kinds of APIs,

1While the term “API” is often specifically referred to web APIs in
some literature, in this paper, we use “API” as a shorthand for all
kinds of application programming interfaces mentioned above.

http://dx.doi.org/10.1145/3313831.3376382

Paper 255 Page 1

http://dx.doi.org/10.1145/3313831.3376382
mailto:permissions@acm.org
mailto:miryung@cs.ucla.edu
mailto:bjoern@berkeley.edu
mailto:eglassman}@seas.harvard.edu

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

including software libraries (11), web APIs (6), and domain-
specific languages and toolkits (6). Among those participants,
we observed a spectrum of API designers, including user-
driven, visionary, self-driven, and closed-world. Despite vari-
ous design decisions and trade-offs made by different kinds of
designers, all of them acknowledged the importance of keep-
ing users in mind while building APIs. However, in practice,
participants gathered user feedback in an informal and passive
manner, primarily through peer reviews and bug reports. We
identified a diverse set of unmet needs of API designers. For
example, while existing API usage mining techniques [62,
59, 41, 22] mainly focused on identifying common patterns
of correct usage, designers wished to gather more unantici-
pated corner cases and user mistakes from a broader scope of
community data such as online discussions, emails, and issue
reports. In particular, user-driven and visionary designers
expressed a strong desire to get a holistic view of API usage
in the wild and interactively validate their own hypotheses
with real-world use cases. Therefore, it is important to extend
existing mining techniques to address these unmet needs.

Furthermore, the majority of participants were interested in
getting a rich description of users’ mental models. For exam-
ple, they wanted to understand “why do people use my API?”,
“how they discover it?”, “what steps do they take to learn the
API and how long?”, and “where do users give up?”. How-
ever, such information is barely reflected in code repositories
and thus cannot be easily surfaced from a pile of users’ code.
Therefore, it requires developing new mechanisms to elicit
rich, fine-grained descriptions of user feedback and mental
models. For those designers who work on popular domains
such as machine learning and data visualization, it may be ben-
eficial to surface design decisions made in alternative libraries
and identify features supported by alternative libraries but not
by their own. This requires novel abstractions that model use
cases of different libraries or DSLs in the same design space
so that they are comparable regardless of syntactic differences.

In summary, this paper’s contributions to HCI are:

• We conducted semi-structured interviews with 23 API de-
signers from industry, academia, and nonprofit organiza-
tions to understand their practices and information needs in
terms of gathering and interpreting user feedback.

• We presented an in-depth analysis of their design styles, de-
sign decisions, evaluation methods of API design, common
issues of API usability, and unmet information needs.

• We proposed several tool design implications for leveraging
community usage data to address the unmet needs of API
designers and enable them to make data-driven decisions.

RELATED WORK

API Design and Usability
Building usable APIs is crucial to programming efficiency and
software quality in modern programming. Previous studies
have shown that programmers at all levels, from novices to
experts, often find it difficult to learn new APIs [27, 40, 47,
15, 49]. Making mistakes in API usage could lead to severe
program failures such as runtime exceptions [60] and security
vulnerabilities [21, 18, 16]. Therefore, it is crucial to design

APIs that meet user requirements and are easy to use, not only
for the sake of driving API adoption and sustainability, but
also to provide high-quality and reliable software products.

Prior work has investigated the usability impact of particular
design decisions, e.g., the use of factory pattern [17], the use
of default class constructors [51], and method placement [54].
Stylos and Myers proposed a list of API design decisions in
object-oriented programming languages such as Java and C#,
based on API design principles and recommendations from
textbooks, guidelines, lab studies, and online discussions [53].
Macvean et al. described six challenges of designing and main-
taining web APIs at Google, including resource allocation,
empirically grounded guidelines, communication issues, API
evolution support, API authentication, and library support
across different programming languages [31]. There are also a
number of studies that propose new methods to improve API
usability, including user-centric API redesign [52], heuristic
evaluation [10], API usability peer review [19, 32], and static
code analysis [38]. Our work extends previous studies by
characterizing current practices and unmet information needs
of API designers. We propose a set of tool design implications
for leveraging community-generated API usage data to inform
data-driven design decisions.

Murphy et al. [37] interviewed 24 professional developers
and identified the practices and challenges broadly related to
API design workflow, API design guidelines, API usability
evaluation, API design review, and API documentation. Our
work is mainly motivated by a particular finding in Murphy
et al.—gathering user feedback and real-world use cases of
APIs is useful but challenging due to a lack of tool support.
However, it is unclear what kinds of user feedback designers
would like to discover from the API community, what kinds
of information cues they consider valuable, and what tool
support is needed to systematically surface those information
cues from the community data. This motivates us to conduct
an in-depth analysis of the unmet needs of API designers
and how we could design better tool support. In addition,
Murphy et al. only interviewed professional developers that
worked in a company. In this work, we recruited a broader
scope of API designers, including those from open-source
projects, academia, and non-profit organizations. Compared
with professional developers who have more resources and
communication channels to their users, those open-source
developers are in greater need of gathering and comprehending
real-world use cases of their APIs.

Influence of Community Values on API Ecosystems
There has been a large body of empirical studies about how in-
formation signals from software communities such as GitHub
can influence the decision making process in software develop-
ment, e.g., which project to depend on [56], which developer
to follow [11, 33], how to test a project [42], which project
to contribute to [6, 44, 43]. Of particular interest to us are
two recent studies about how community values influence the
evolution and sustainability of API ecosystems [4, 58]. Bogart
et al. [4] studied how community-specific values, policies, and
tools may influence how developers respond to API changes
that may break client code. They found that expectations

Paper 255 Page 2

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

about how to handle changes differ significantly among three
ecosystems, Eclipse, CRAN, and npm. For example, long-
term stability was a key value of the Eclipse community,
while developers in the npm community considered ease of de-
velopment more important and thus were less concerned about
breaking changes. Valiev et al. [58] analyzed how project-level
factors (e.g., the number of commits, the number of contribu-
tors) and ecosystem-level factors (e.g., the number of upstream
and downstream dependencies, the licensing policy) may in-
fluence the sustainability of Python packages in PyPI. These
studies focus on the backward compatibility and sustainability
of library packages. By contrast, we propose a new perspective
on leveraging community usage data to enable API designers
to make data-driven, community-responsive decisions.

Mining from Online Coding Communities
There has been a lot of interest in mining programming
insights from online coding communities, e.g., API usage
tips [29, 55], test cases [36, 34], analogical libraries [7, 8],
bug fixing hints [9, 20, 61]. In particular, many software
mining techniques focus on mining and visualizing common
API usage patterns from large code corpora [62, 35, 59, 41,
60]. However, their goal is to teach programmers how to
use an API, rather than helping API designers to glean useful
insights about API design and usability. For example, Glass-
man et al. designed an interactive system called EXAMPLORE

that visualizes hundreds of API usage examples so that users
could quickly grasp the different ways of using an API in
various scenarios [22]. Compared with the needs of API users
identified by prior work [47, 15], this study shows that the
information needs of API designers are quite different. For ex-
ample, API designers often want to establish a comprehensive
understanding of what mistakes users have made and where
users were stuck before they eventually figured out the cor-
rect usage or even worse, before they gave up. However, a
large portion of user mistakes are never committed to code
repositories. Therefore, compared with mining correct API
usage in code repositories, it may be more beneficial to build
techniques that systematically gather API-related errors and
identify error-inducing usage patterns.

PARTICIPANTS
We recruited 23 participants who built and maintained APIs
using snowball sampling. Initially, we invited a small group
of participants through personal contacts. Those participants
further referred us to their colleagues and friends who also
developed APIs and might be interested in our study.

Table 1 shows participants’ information. The project names
and descriptions were anonymized for participants working on
proprietary APIs in a company. We also anonymized the occu-
pation of participants to avoid the potential risk of disclosing
their identities. Ten participants were from large technology
companies, while thirteen were from academia and non-profit
organizations. These participants worked on eleven open-
source projects and seven proprietary projects, which spanned
across various domains, including statistics, data science, ma-
chine learning, circuit design, formal methods, distributed
systems, and probabilistic programming. Participants had a
median of 6 years of API design experience (mean: 7 years).

Regarding API types, eleven participants worked on software
libraries and frameworks written in general-purpose program-
ming languages; six participants worked on frameworks that
provided domain-specific languages (DSLs); six participants
worked on web APIs. All of these APIs were either public
APIs with at least a hundred or even thousands of users, or
proprietary APIs that were deployed within companies and
used by internal teams or external customers. There was a
wide spectrum of API users, e.g., regular programmers, data
scientists, machine learning engineers, hardware designers,
statisticians, computational biologists, ecologists, etc.

METHODOLOGY
We conducted semi-structured interviews, giving its advantage
of allowing unanticipated information to be mentioned [30].
Each interview started with an introduction, a short explana-
tion of the research being conducted, and demographic ques-
tions. Participants were then asked about the APIs they had
worked on, the usability evaluation methods adopted in their
projects, and their information needs if presented with a group
of users and real use cases. We also asked about the API usabil-
ity issues reported by their users, the challenges of gathering
user feedback, and the desired tool support.

Interviews were conducted either in-person or via video con-
ferencing software. Interviews took an average of 61 minutes,
ranging from 30 minutes to 90 minutes. Three interviews
were done in 30 minutes only, due to the time constraint of
participants. We recorded each interview under the permission
of participants. We transcribed a total of 23.3 hours audio
recording of these interviews. The first author first conducted
an open-coding phase over all transcripts using a qualitative
analysis tool called MaxQDA.2 This coding phase was done
thoroughly by highlighting everything that is relevant or po-
tentially interesting. A code was generated by summarizing a
relevant phrase or sentence with a short descriptive text. Then
the first author conducted an inductive thematic analysis [5]
by grouping related codes into themes. The themes were regu-
larly presented and discussed with the entire research team as
they emerged from the interview data. In addition, the second
author inspected the generated codes and themes separately,
validating how the raw data supports the denoted codes and
themes and adjusting their descriptions and boundaries. The
two authors then discussed the disagreements and refined the
codes and themes together across multiple sessions.

DESIGNER SPECTRUM AND DESIGN DECISIONS
Among 23 participants, we observed four types of API
designers—user-driven, self-driven, visionary, and closed-
world, based on how users fit into their design process and
how they responded to user feedback. Column Design Style
in Table 1 shows where each participant falls on the spectrum.

User-driven designers often proactively talked to their users,
designed APIs based on user expectations, and were very re-
sponsive to user feedback. Many customer-facing API teams
in large technology companies were user-driven. They often
took a user-centered design process that solicited user feed-
back early via surveys or public proposals that everyone could
2https://www.maxqda.com/

Paper 255 Page 3

https://www.maxqda.com/

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Table 1. Participant Information
Organization Project Description Language API Users Design Style

P1 Large tech company — — C# Internal developers visionary

P2 Open-source nonprofit rOpenSci A collection of R packages R Statisticians, computational scientists self-driven

P3 Open-source nonprofit rOpenSci A collection of R packages R Statisticians, computational scientists visionary

P4 Large tech company — — Web API Customers user-driven

P5 R1 university Chisel A hardware design language & framework DSL Hardware designers visionary

P6 R1 university Vega A data visualization language & library DSL Students, external users self-driven

P7 R1 university Chisel A hardware design language & framework DSL Hardware designers visionary

P8 R1 university Chisel A hardware design language & framework DSL Hardware designers self-driven

P9 R1 university rOpenSci A collection of R packages R Students, statisticians, ecologists, etc. self-driven → user-driven

Students, academic researchers in PL,
P10 R1 university Alloy A model checking language & library DSL self-driven

networking, embedded systems, etc.

P11 Large tech company — — Web API Internal developers closed-world

P12 Large tech company — — Web API Internal developers closed-world

P13 Large tech company MXNet A deep learning library Python Data scientists, ML engineers user-driven

P14 Large tech company — — Web API Internal developers closed-world

P15 R1 university Julia A distributed arrays package in Julia Julia Computational scientists, economists, etc. self-driven

P16 R1 university Julia A high-performance computing package Julia Computational scientists, economists, etc. visionary

P17 R1 university Partisan A messaging library for distributed systems Erlang IoT developers, database developers self-driven

P18 Large tech company — — Web API Internal developers closed-world

P19 R1 university Gen A probabilistic programming framework Julia Students, researchers in ML and statistics self-driven

P20 Large tech company TensorFlow A deep learning library Python Data scientists, ML engineers user-driven

P21 Large tech company — — Web API Internal developers and customers user-driven

P22 R1 university Caffe A deep learning library Python Data scientists, ML engineers self-driven → user-driven

Both industry developers and academic
P23 Large tech company Z3 A SMT solving library DSL self-driven

researchers in PL and systems

comment on. The top concern of user-driven designers was
API stability, especially if they had a large community. Once
the design was finalized, user-driven designers were careful
about changing their APIs, since it could bring the risk of
breaking users’ code. Yet for designers in other three cate-
gories, it was relatively flexible—they were more willing to
first implement core features and then iterated on the API
design based on user feedback.

Self-driven designers made their own design decisions based
on their domain knowledge and designed APIs that suited
their own needs first. Though most of them were interested
in listening to their users, they often had their own goals
and priorities. Thus, if user feedback was not aligned with
their own goals, they were less willing to change their design
decisions. Compared with making simple things easier, self-
driven designers cared more about making hard things possible.
They were excited about adding more functionalities to their
APIs and making their APIs more capable. Therefore, they
cared a lot about the extensibility of their API design and did
not want to limit themselves in the future. In fact, some of
them introduced extra layers and interfaces to make their APIs
modularized and extensible, which caused indirections that
hindered API usability.

Visionary designers put themselves in the shoes of users and
envisioned potential use cases when designing APIs. Often-
times, they had a good wish of building simple and easy-to-use
APIs but lacked direct communication channels to their users.
Open-source developers that did not have close collaborations
with industry were often visionary. Because their users were
often external users and they also had limited resources to

connect to their users, e.g., organizing annual workshops as
TensorFlow and MXNet teams did. Since visionary designers
did not have a good idea about the API use cases in the wild,
they had a tendency to make conservative design decisions
such as adding strict runtime checks. If users used an API
incorrectly, these runtime checks would fail early and prevent
users from shooting themselves in the foot.

Finally, closed-world designers often built APIs to support
other teams in the same organizations, where all design goals
and use cases were clearly set and teams worked cooperatively
to decide details that suited both designers and users. The
user teams were deeply involved in the design process, where
designers and users would sit down for weeks to sort out poten-
tial use cases together. Therefore, compared with other kinds
of API designers, there was less tension between closed-world
designers and their users. Oftentimes, stability is not really
a big concern for them. Since they were closely connected
to their users, they could inform user teams about proposed
changes first and iteratively adjust their API design as needed.

Note that those API design styles were not always exclusive to
each other. Many participants were, to some extent, a mix of
different design styles at different stages of their projects. For
instance, developers from early-stage academic projects were
often self-driven, since their main goal was to build cut-edging
technologies to achieve their own research goals rather than
growing as a community. However, as those projects got more
users and made more impact, those designers became more
user-driven.

Paper 255 Page 4

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

USABILITY EVALUATION METHODS IN PRACTICE
To understand the challenge and needs of evaluating API us-
ability, we first asked participants how they evaluated their API
design and gathered user feedback in practice. Specifically, we
focused on eliciting different approaches and resources that
our participants attempted to use. Table 2 shows a complete
list of evaluation methods that participants adopted.

Looking through bug reports, emails, and online discus-
sions. For all kinds of API designers, inspecting bug reports,
emails, and online discussions was the major way to identify
usability issues. Most participants just passively relied on
users to submit bug reports or ask questions, rather than ac-
tively reaching out to users. One of the reasons was the lack of
communication channels to their users, especially for vision-
ary designers. Though closed-world designers could easily
reach out to user teams in the same company, they also waited
for users to come back to them since it was more efficient as
one participant said. By just looking through bug reports, API
designers could get a vague sense about which API was used
more often and which API was more error-prone. Yet they did
not get a comprehensive view of the real-world use cases and
usability issues, which many participants wished to get tool
support for.

“The most important thing is a lot of users post issues if they
run into problems. So in that way, you also learn about what
they’re doing and problems that they were in to. Sometimes
people share what they’ve done on social media. Or they
write a blog post about what they’re doing. So nothing is in
a formal way but you get a sense of how people are writing
their software with your package.” [P2]

Peer reviews. Another widely adopted mechanism was to con-
duct peer reviews. Peer reviews helped with identifying design
inconsistencies and potential use cases that were initially unan-
ticipated by designers. Compared with open-source projects,
large technology companies had more formal and rigorous re-
view process, where all stakeholders were invited to review the
API design. Big companies also had well-established review
guidelines for API design. For instance, Google published
a list of general design principles for web APIs, e.g., nam-
ing clarity and consistency, error handling principles, etc [1].
Open-source teams adopted light-weight code reviews via pull
requests. Several participants said their teams did not perform
peer reviews since it was difficult to find good reviewers in
open-source projects.

Regression testing on client applications. Six participants
manually searched and curated a small set of applications that
used their APIs. Everytime they made changes to APIs, they
reran test cases in those applications to ensure backward com-
patibility of updated APIs. Package managers such as CRAN
and PyPI exposed reverse dependencies, which could help
identify a large number of downstream packages. However,
participants were reluctant to run regression against all down-
stream applications. One participant explained that it would
cause too much computation overhead. Another participant
said he did not want to lock himself in the corner to handle
all kinds of issues in downstream applications. This required
an intelligent way to select a subset of representative client

Table 2. Usability Evaluation Methods in Practice
Methods to evaluate API usability and get feedback Num

Looking through bug reports, emails, online discussions 18
Peer review 13
Regression testing on existing usage 6
Teaching in classrooms, training camps, and workshops 5
A/B testing and its alternatives 4
Building example galleries 5
Scheduling regular meetings with users 4
Monitoring and logging web API traffic 6
Sending out surveys 1
Cognitive dimensions 1
User studies 1

projects to test on. Mining-based approaches could help with
identifying various API usage examples from large code cor-
pus [62, 59, 60]. Yet it still remains a challenge to efficiently
visualize a large volume of usage examples and enable de-
signers to filter out corner cases that they do not care about.
Such a technique would be extremely beneficial for visionary
designers, since they had limited resources to connect to their
users and often desired to identify real use cases in the wild.

Teaching in classrooms and training camps. For participants
from academia, a primary alternative to user studies was to
teach libraries and packages in classrooms or training camps.
Participants found it very helpful to have users within their
arm’s length and watch over their shoulders.

“Being able to teach (my R packages) in the class room has
been fantastic because I speak to students who have no pro-
gramming experience or encounter the task for the first time.
And I see the way they’re trying to make things work, and what
works and what fails. You immediately start seeing the pitfalls
that you haven’t anticipated.” [P9]

A/B testing and its alternatives. Four participants said they
did A/B testing or something similar to assess alternative
API designs. Two web API designers mentioned that when
they refactored an API or introduced a new API end point to
replace an old one, they would add an interceptor to transform
a subset of the incoming API requests to fit the data model
of the new API and re-route them to the new API. Then they
collected server-side metrics and compared the performance
of two APIs. Compared with web APIs, it was difficult to
instrument library APIs to gather API usage metrics. Two
participants from the Chisel project said their team would mark
new API alternatives as experimental before rolling them out.
In this way, API users could experiment with those APIs and
comment on them. However, this was not successful because
some users built real products on top of those experimental
APIs, which made it hard for Chisel developers to withdraw
or revise those APIs based on the comments from other users.

Scheduling regular meetings and organizing workshops. In-
dustrial developers often had more direct access to their users
compared with open-source developers. Several participants
from industry said they organized quarterly conferences with
their customers to hear feedback. Participants who worked on

Paper 255 Page 5

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

large open-source projects like Chisel, MXNet, and Tensor-
Flow also organized annual workshops to demonstrate new
features in their libraries and conduct informal interviews and
surveys with attendees.

Building example galleries. Five participants manually cu-
rated a set of API usage examples by themselves based on the
real or envisioned use cases of their APIs. In this way, they
established good understanding about different usage scenar-
ios and how easy it was to use their APIs in those scenarios.
However, they found it hard to gather a comprehensive set of
use cases in practice. When an unanticipated use case was
identified, they also had difficulties assessing how represen-
tative this use case was and how many other developers may
also use their APIs in the same way.

Monitoring API traffic. All six web API designers either used
API gateways such as Apigee [2] or built their own server-
side instrumentation to log API traffic, e.g., API headers and
payloads in an API request or response. They queried the log
data to understand real use cases and track errors. For example,
by analyzing the device types captured in the API headers,
developers could understand the distribution of different types
of applications that sent this request. If a lot of requests were
sent from Android devices, developers may decide to focus
more on Android apps. However, web API designers found it
difficult to reconstruct underlying user interactions and mental
models from low-level, fragmented log data, especially given
the enormous volume of log data.

Sending out surveys. P5 said their team tried to post surveys
both online and at training camps to collect user feedback.
However, the participant complained that gathering insightful
feedback was very difficult—“Every time we run the boot
camp, we try to run a survey. Sometimes people respond but
that didn’t tell me anything. I am definitely very much a fan
of making data-driven API decisions but somehow collecting
feedback from people so far has not been super practical.”

Cognitive dimensions. P6 used cognitive dimensions [23, 10]
to evaluate the usability of the domain-specific language in
their library. The participant explained, “we only theoretically
evaluate it with cognitive dimensions mostly because it’s hard
to know how to actually evaluate abstractions in a sort of
controlled or semi-controlled way.”

User studies. P11 was the only participant whose API was, to
some extent, evaluated by user studies. In their company, there
was a UX team who invited pilot customers to try out UIs
built on top of their API. The UX team then shared insights
such as which features or data provided by the API were never
used by users in practice and thus should be removed. Other
participants did not conduct user studies for several reasons.
For closed-world API designers, design teams and user teams
created API designs together cooperatively, which made it
unnecessary to further conduct user studies. User-driven de-
signers and visionary designers often found it hard to recruit
a good sample size of users. Many API teams also lacked ex-
pertise in human-centered usability evaluation methods. Some
participants preferred to understand real-world use cases in

the wild, rather than observing user behavior in a controlled
or semi-controlled setting.

COMMON USABILITY ISSUES
We asked participants what API usability issues they have
encountered and identified five common usability issues. Un-
derstanding common usability issues could help us assess
whether a data-driven approach could help with identifying
and solving these issues.

Unanticipated use cases. API users often suggested new fea-
tures or reported issues in cases that designers never antici-
pated. This barely occurred to closed-world designers, but it
occurred quite often for other types of API designers, espe-
cially if they had a large user base. For example, P13 said
that a major decision in MXNet was to represent every data
type as tensors (i.e., multi-dimensional arrays). As a result,
scalar variables were not supported in MXNet. But recently,
the participant found that many users used 1x1 tensors to rep-
resent scalar variables. This led to many performance issues in
client code, since most tensor-level optimizations in MXNet
were not applicable to 1x1 tensors. Participants also explained
that, in practice, it was impossible to support all use cases
due to limited time and resources. Therefore, they wished
to get a comprehensive view of real use cases and figure out
how representative a corner case or an issue is. If there was a
tool that enabled the MXNet team to interactively discover all
common and uncommon ways of using their APIs, they could
make an early decision about supporting scalar variables.

Heavy-lifting API usage. Participants mentioned that they
also discovered complex API usage that could be simplified via
API refactoring. For example, P12 said their web API required
a large payload to represent a complex data model, which was
cumbersome to construct manually. To make it convenient for
users, their team exposed another API that programmatically
constructed a payload template with some data populated. To
address this type of issues, it would be beneficial to provide
tool support for mining recurring, complex API usage patterns
to refactor.

Confusing names and terminologies. There were two kinds
of confusion. First, designers named a function or a param-
eter with a general name that was interpreted differently by
different users. Second, designers used names or terminolo-
gies that were inconsistent from common idioms in the same
domain. For instance, P13 mentioned that their team named a
loop transformation as “loop reorder” while some alternative
libraries used “loop interchange” instead, though the underly-
ing functionality was essentially the same. Interestingly, P18
surveyed all alternative libraries in the market and followed
the most common naming conventions, terminologies, and in-
terface definitions so that users could easily pick up their APIs
without unnecessary confusion. This type of issues could
be difficult to mine from static code repositories but could
be recognized by analyzing user questions and issue reports.
Therefore, it may be beneficial to investigate how integrate
natural language processing methods into existing API usage
mining techniques to analyze a broader scope of community
usage data such as issue reports and questions beyond code. It

Paper 255 Page 6

 CHI 2020 Paper

may also be beneficial to extend existing techniques to account
for alternative libraries and check for naming consistencies.

Ambiguous API usage. API usage ambiguity was manifested
in several ways. First, there were alternative ways of using an
API to achieve the same goal, while users were unclear which
one to use. Second, the same API usage could produce differ-
ent outputs in different contexts, making it hard to understand
its real meaning. Figure 1 shows an example in Chisel, where
Reg(UInt(3)) could be interpreted as one of the four things
on the right side. This ambiguity was later fixed in Chisel 3.0.0
by making distinct usage explicitly. Third, sometimes users
were caught up in the subtlety between overloading functions
when there were many of them. Systematically identifying am-
biguous API usage was challenging, since it required checking
for behavioral similarities and variations among API usage
examples. Thus, building new techniques that utilize dynamic
analysis to disambiguate API usage was much needed.

Figure 1. Ambiguous API usage in Chisel 2.0.0 that is fixed in 3.0.0.

During the interview, the majority of participants touched
upon the tension between API designers and users. The ten-
sion often came from the fact that designers made certain
implicit design decisions and tradeoffs that were not articu-
lated in documentation. Many APIs were initially designed
for a small group of users. As an API community grew bigger,
participants found that more and more novice users, who were
not aware of the initial design decisions and tradeoffs, started
picking up their libraries. Of course, many of aforementioned
usability issues could be addressed by clear documentation.
Yet participants expressed several challenges related to API
documentation. First, it was too much effort to always keep
documentation up-to-date. Second, it was also difficult to track
all representative use cases and include them in documentation.
Third, participants were worried about the discoverability of
important information if the documentation became too long,
since not all users would read it carefully. Hence, partici-
pants expected not only tool support for identifying real-world
use cases and usability issues but also new mechanisms for
information delivery.

INFORMATION NEEDS
To solicit the unmet needs of API designers, we asked partici-
pants to reflect on what information cues they found difficult
to discover from existing community data and what other data
they wish to gather though such data may not even exist. Over-
all, we found that the information needs of API designers
were quite different from the needs of API users identified
by prior work [47, 15]. API users wanted to know about the
mechanics of correctly using an API, such as what other APIs

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Table 3. Unmet or Partially Met Information Needs of API Designers
Information needs Num

A holistic view of real use cases 15
A rich description about user’s mental models 12
Common mistakes and workarounds 11
API call frequency 9
Behavioral metrics, e.g., runtime states, performance 9
Backward compatibility 7
Comparing and assessing similar libraries 7
Design inconsistencies 6

to use together and what exceptions to handle. By contrast,
API designers were more curious about users’ mental models
and the mistakes made by users. Furthermore, API users were
more like a “blank slate” when first learning an API, while API
designers had already established implicit assumptions about
how users should and should not use their APIs. Therefore,
API designers (especially visionary designers) were eager to
validate their own hypotheses of API usage with real use cases
and identify unanticipated corner cases. This section elabo-
rated on eight common needs of API designers. Table 3 shows
these information needs and their frequencies.

A holistic view of real use cases. The majority of participants
(15/23), mostly user-driven designers and visionary designers,
expressed a strong desire to get a holistic view of real use
cases. Participants were curious about the recurring patterns
among these use cases. Because recurring patterns indicated
refactoring opportunities to simplify their API design. For
instance, P13 mentioned that many data scientists used APIs
in another library called NumPy together with APIs in MXNet
for data processing, which required extra code to convert data
structures between NumPy and MXNet. Thus the participant
planned to provide new APIs that seamlessly integrated with
NumPy without requiring users to write additional code. Par-
ticipants were also curious about those corner cases that they
did not anticipate in the initial design. While previous min-
ing techniques only focus on mining common API use cases,
identifying corner cases was also important to inform API
design.

“I’d like to get is looking at their code and see if they write
code in the ideal way we want them to write. Because every
API has its own purpose when they’re being designed, and we
have some use case in mind that this APIs should be used in
this way. So I would like to look into their code and see if they
use the APIs in our way. If not, we’ll probably think if this API
is designed in a proper way or we should create some more
obvious APIs to deal with this case.” [P13]

A rich description of users’ mental models. Twelve partici-
pants wished to gather several major clues to understand users’
mental models, including the intent of using an API, how the
API was discovered, what steps it took to learn the API, how
long it took, where users were stuck, and where users gave up.
By understanding users’ mental models, API designers were
able to identify inconsistencies between API design and users’
expectations and adjust their API design to reduce confusions
and learning barriers.

Paper 255 Page 7

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

“I want to get what people are thinking, what’s going under
head, not just whether they are able to use this feature, like
that’s what you would get from like mining GitHub repos. But
what you are not getting is like this person still spent three
hours googling how to use this feature, and he spent an hour
on Stack Overflow trying to figure out what was going on, in
the end, he got that, but it was a frustrating attempt.” [P6]

P9 said teaching his R packages in classrooms and watching
students over their shoulders made him quickly understand
what students tried, what worked, and what failed. Yet not
every API designer could easily get a room of users to learn
their APIs. Several participants mentioned that they could get
a sense of where users were stuck by reading questions users
asked in emails and online forums. However, there was no
easy way to comprehensively understand the whole picture of
users’ mental models at a low cost.

Common mistakes and workarounds. Compared with correct
API usage, eleven participants mentioned that they were more
curious about what mistakes users made before figuring out
the correct usage. Participants wanted to find out whether a
user ran into the same error repeatedly, whether different users
made the same mistake, how easy it was for a user to make a
mistake, and what workarounds users made.

Participants mentioned that compilation errors and runtime
exceptions were good indicators of confusing API design.
Even though those errors were prevented from creeping into
production code, bad API design was never solved in the first
place. As a result, novice users may repetitively make the
same mistake. Participants in the Chisel team mentioned that
they implemented a fairly strict type system as well as many
runtime checks to fail potential errors early. They wondered
which runtime checks were triggered more often and whether
a user encountered the same error repeatedly. Because if a user
repeatedly made the same mistake, it may indicate the API
design was so counter-intuitive that users cannot easily adjust
their mental models to the correct usage. Instead of mining
all recurring patterns, P14 suggested to identify patterns that
were likely to lead to program crashes and errors. Because
error-inducing patterns were more actionable than showing all
common patterns.

Though some issues were submitted as bug reports or asked
on online forums, participants suspected a large portion of
user mistakes were not reported at all. However, such in-
formation was barely committed and thus cannot be easily
discovered from code repositories. As a result, this calls for a
new mechanism to systematically gathering API-related errors
and inferring error-inducing patterns.

“I think the people that use the software with no prior experi-
ence perhaps hit the wall quickly. Every now and then you
do see those issues of someone, like just never use R pack-
ages before. That’s the real issue. But for the most part, I
suspect that I missed most of the easy problems going on there
because they don’t convey that first barrier with their remote
communication.” [P9]

API call frequency. Nine participants wanted to understand
API call frequency for different reasons, e.g., estimating the

impact of deprecating an API, prioritizing efforts, allocating
computation resources for web APIs, etc. However, two par-
ticipants warned about recency bias when interpreting API
call frequency. Because new APIs may not have accumulated
as many use cases as existing APIs.

“I think even you can just get users’ code and see which API is
more popular. There are still some concerns. For example, in
our case, an alternative API is relatively new. So if we just look
at code, I think it’s hard to judge which API is better. Maybe
people just don’t know there is another way to implement that.
So I think making a poll makes more sense because now people
know we have these two options and which one they prefer.
[P13]

Web API designers and closed-world designers can easily
calculate API call frequency by monitoring web API traffic or
searching over the internal code base in a company. However,
for public library APIs, it was hard to estimate the number of
call sites in the wild. P3 said, “I used to search on GitHub more
often, but I just found a lot of false positives. If a function name
is like a common word, then it’s sort of a huge pile, and it’s
kind of finding a needle in a haystack.” Thus it was necessary
to resolve function names precisely, which was challenging for
loosely typed languages such as R and JavaScript. In addition,
five participants also suggested to include context information
such as exception handling logic and surrounding API calls
beyond just API call frequency.

Behavioral metrics beyond static usage. Instead of just stati-
cally inspecting use cases, nine participants wanted to gather
more behavioral metrics. For instance, they wanted to know
the values of function arguments or data fields in an API re-
quest, whether these values were always constant, and whether
these values were in a valid range. Several participants also
mentioned that performance was a major factor that affected
their API usability, e.g., latency for web APIs, slow train-
ing in deep learning. Therefore, they would like to collect
performance metrics from users’ code.

Backward compatibility. Backward compatibility was the
top concern of user-driven designers. Participants were not
only concerned about compilation errors caused by interface
changes, but also behavior and performance inconsistencies
caused by the implementation changes of an API. Participants
said they were more okay if an API change broke client code
in a noisy way, e.g., throwing compilation errors, runtime ex-
ceptions, or test failures. Because at least users knew that
something went wrong and should be fixed. However, partici-
pants were more concerned about silent changes in behavior
caused by API updates.

In practice, six participants said they curated a small set of
client applications or historical API requests to detect potential
code breakage. However, participants found it difficult to un-
derstand backward compatibility at a large scale. Participants
wished to know how much code breakage users were willing
to tolerate and how easy it was to fix broken code. Because
many code-breaking API changes were beneficial in a long
term, though they may lead to code breakage at the moment.

Paper 255 Page 8

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Comparing and assessing similar libraries. Seven partici-
pants would like to compare their own libraries with similar
libraries in the market. There were two important perspectives
of comparing and assessing similar libraries. First, API design-
ers would like to identify features that were well supported by
alternative libraries but not by their own. Participants working
on deep learning frameworks such as TensorFlow and MXNet
were interested in finding out new neural network models that
were integrated into their competitors. Second, API designers
were curious about how easy a feature was supported by their
own libraries in comparison to other libraries. For example, P6
was curious about whether a visualization was easy to express
in D3 or Tableau but was cumbersome to construct in Vega.

Design inconsistencies. Six participants wished to identify
design inconsistencies to the design choices they made previ-
ously or common choices made by other API designers. In
fact, it was difficult to always conform to the same design style
consistently. For example, P9 mentioned that, when creating
functions in his R packages, he followed the tidyverse style
guide but sometimes failed.3 Such design inconsistencies were
often caught by his students when he taught his R packages
in classrooms. P12 mentioned that he had to manually search
for other APIs in the company and followed their design to
ensure the design consistency. Therefore, when there are no ex-
plicit design guidelines, it may be beneficial to expose design
decisions and trade-offs made by other API designers.

OPPORTUNITIES FOR TOOL SUPPORT
The unmet needs of API designers imply many opportunities
for building interactive systems that help developers gather,
interpret, and consume community usage data to inform better
API design. Some unmet needs require extending existing
techniques to discover more information cues from a broader
scope of community usage data beyond code, while some
require building new mechanisms to collect new data that do
not exist. We highlight several design implications below.

Mining and visualizing API usage beyond syntactic features
and frequencies. There is a lot of literature on mining com-
mon patterns from code repositories [62, 35, 59, 41, 60]. How-
ever, prior work mostly focuses on finding syntactic patterns
of API usage. The unmet needs of API designers in the pre-
vious section reveal several desired information cues beyond
syntactic API usage. We synthesize a list of design principles
for surfacing such information cues.

• API designers consider error-inducing patterns more action-
able than common, correct API usage.

• In addition to syntactic usage, it is also important to show
behavioral metrics to help API designers understand the
semantics of use cases, e.g., runtime parameter values, call
stacks, program states, performance, etc.

• It is helpful to include the program context of a code exam-
ple such as preceding and post API calls, so API designers
can better understand what users were trying to do and why
their APIs were used in a specific usage scenario.

• Going through a pile of lengthy code examples is over-
whelming, so it is important to keep unrelated code folded.

3Tidyverse Style Guide, https://style.tidyverse.org/

• Recency bias should be taken into account when interpreting
API usage frequencies.

Furthermore, it is beneficial to analyze the proliferation of
other kinds of community data besides code repositories, such
as online discussions, tutorials, bug reports, and emails. In
fact, participants mentioned that they primarily looked through
online discussions and bug reports to understand what users
are confused about and what mistakes users have made. For
example, questions in Stack Overflow often ask about excep-
tional behaviors and boundary conditions that cause program
failures when using an API. Therefore, we could extend ex-
isting mining infrastructures to analyze non-code data using
natural language processing techniques.

New elicitation mechanisms to understand users’ mental
models. One major unmet need of API designers is to get
a rich description about users’ mental models. In fact, what
users wrote and committed to their repositories does not re-
flect how much they suffered when learning and using an
API. Existing approaches either elicit users’ mental models
directly via interviews [57, 26] or indirectly through question-
naires [28, 50], which is deemed to be expensive and unscal-
able given the large number of APIs and use cases. Instead,
we recommend leveraging software instrumentation to gather
fine-grained telemetry data at scale under users’ permission.
For instance, we can instrument browsers and IDEs to record
visited learning resources, error messages, and user actions.
Such instrumentation methods can also be further augmented
with prompting questions to directly solicit explanations on
API usage, though that would require further investigation
of interruption styles [46] to efficiently solicit explanations
without causing harm to users’ productivity.

It may also be possible to infer users’ mental models from low-
level telemetry data. For instance, if a user never encountered
an error again after resolving the error, it may indicate that
she could quickly grasp the correct API usage after seeing
the error message. On the other hand, if a user encountered
the same error repeatedly, it may indicate a big gap between
the API design and the user’s expectations such that the user
cannot easily adjust her mental model. One possible approach
is to build a probabilistic model to approximate users’ mental
states conditioned on a sequence of low-level events.

Interactively analyzing population-level API usage. Vision-
ary designers expressed a strong desire for validating their
own hypotheses of API usage with real-world use cases of
their APIs. Four participants suggested going beyond inspect-
ing the common patterns identified by a mining infrastructure,
since there could be many patterns. They wanted to be able
to query the corpus of real-world use cases to evaluate their
hypotheses of specific patterns, e.g., how often two APIs were
used together, how often an API argument was set to a specific
value. Text-based query interfaces that use keywords or regular
expressions cannot easily express structural and semantic prop-
erties in a code pattern. EXAMPLORE [22] consolidates unique
API usage features extracted from a large collection of code
examples into a single API skeleton and allows developers to
quickly filter the code corpus by selecting desired features in
the skeleton. However, its expressiveness falls short in several

Paper 255 Page 9

https://style.tidyverse.org/

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

aspects. First, it cannot model structural properties such as “a
method call must occur in a loop.” Second, designers cannot
specify alternative feature options in a pattern, which is useful
to reason about alternative API usage. Third, designers cannot
reason about the absence of a feature in a pattern, e.g., “how
many use cases only call lock but forget to call unlock?”
Therefore, it is beneficial to build new interactive mining tech-
niques that (1) enable users to specify the structural properties
of interesting API usage (i.e., structural patterns), (2) support
disjunction of alternative API feature options in a pattern (i.e.,
alternative patterns), and (3) support negation of a feature
option in a pattern (i.e., negative patterns).

Exploring the design space of similar APIs. Two particular
exploration tasks emerged from the interview study of 23 API
designers. First, participants would like to know concrete
design choices, e.g., naming conventions, the number of pa-
rameters, the adopted design patterns. Second, participants
would like to identify those features that are well supported
by alternative APIs but are missing or not well supported by
their own. Supporting the first task could be relatively straight-
forward by extracting individual dimensions from interface
definitions and architectures. However, the second task is
more challenging since it requires a meta abstraction to make
concrete use cases of different libraries or DSLs comparable.
For instance, to compare features between data visualization
libraries such as D3 and Vega, we may want to abstract a
visualization script as input-output pairs (i.e., input csv files
and output graphs) and completely ignore the implementation
details in the script. In this way, we will be able to compare
D3 and Vega scripts despite their syntactic differences, and
find out what types of graphs are visualized more often using
one library but not the other.

Live API documentation. Writing API documentation and
keeping it up-to-date is challenging [12, 13]. Online discus-
sions, tutorials, bug reports, and emails could serve as insight-
ful crowdsourced documentation. Six participants said if they
had access to real use cases, they would like to use those exam-
ples to augment their API documentation. Therefore, it may
be beneficial to build new techniques that systematically glean
real-world use cases and discussions related to an API and
constantly update its documentation. For example, if a new
trending usage scenario of an API emerges in the community,
the documentation should be updated to reflect the trend. On
the other hand, only keeping a pile of code examples and re-
lated discussions may not be useful, since users may not have
time to read all of them. It is important to distill representative
families of examples and insightful comments.

LIMITATION
In this paper, we shared observations and themes that emerged
in interviews with 23 API designers. Because experts in qual-
itative studies specifically warned about the danger of quan-
tifying inherently qualitative data [14], we did not make any
quantitative statements about how frequently the themes may
occur in a broader population. We followed this guideline to
focus on providing insights that contextualize our empirical
findings, especially when they can serve as the basis for further
studies, such as surveys.

We strove to include API designers from different fields that
work on different kinds of APIs and projects. Therefore, we
believe the nature of identifying information needs in this
context is meaningful. As future work, we plan to encode those
findings in a questionnaire and conduct a large-scale survey
study of API designers. The survey will ask participants to rate
the importance of each finding, including usability evaluation
practices, information needs, and desired tool support in 7-
point likert scale. We will also solicit more insights through
open-ended questions in the survey.

Note that we do not argue that usability concerns should al-
ways be placed first when designing an API. As participants
mentioned, there is always a trade-off between “making hard
things possible” and “making simple things easy.” If API
designers focus too much on making simple things easy and
addressing all corner cases, it is possible to lock themselves
into a corner where they could never get hard things done. API
design is an iterative process. Many API designers want to
get the core features done first without concerning themselves
much about API usability. As they get more users and more
time, they will start looking at their APIs more closely and
respond to usability issues reported by their users. It is bene-
ficial to establish a comprehensive understanding of real use
cases and potential gaps between API designers’ and users’
expectations during the iterative design process. We argue that
it is important to keep usability in mind and make implicit
design decisions explicit, so API designers do not inadver-
tently create an unusable API, and if they have to do so, do it
knowingly with minimal cost.

CONCLUSION
This paper presents an in-depth analysis of unmet information
needs of, and desired tool support for, API designers in terms
of gathering and interpreting user feedback at scale. Given the
diversified and distributed nature of modern API communities,
it is generally challenging to establish a comprehensive view
of real use cases, which the majority of participants desired
to have. Due to a lack of tool support for collecting commu-
nity usage data at scale, participants often gathered use cases
and user feedback in an informal way, primarily through bug
reports and online discussions. Participants also expressed a
strong desire to understand users’ mental models, while there
is no systematic elicitation method to do so at scale without
human intervention. This study provides empirical insights
and design implications on how to build interactive systems
to enable API designers to make more data-driven decisions
based on real use cases and user feedback at scale.

ACKNOWLEDGMENTS
We would like to thank anonymous participants for the in-
terview study and anonymous reviewers for their valuable
feedback. This work is in part supported by NSF grants CCF-
1764077, CCF-1527923, CCF-1723773, ONR grant N00014-
18-1-2037, Intel CAPA grant, and Samsung grant.

REFERENCES
[1] 2017. Google API Design Guide. (2017).

https://cloud.google.com/apis/design/ Accessed:
2019-08-29.

Paper 255 Page 10

https://cloud.google.com/apis/design/

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[2] 2019. Apigee: A Cross-Cloud API Management
Platform. (2019). https://cloud.google.com/apigee/
Accessed: 2019-08-29.

[3] Matej Balog, Alexander L Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2016.
Deepcoder: Learning to Write Programs. arXiv preprint
arXiv:1611.01989 (2016).

[4] Christopher Bogart, Christian Kästner, James Herbsleb,
and Ferdian Thung. 2016. How to Break an API: Cost
Negotiation and Community Values in Three Software
Ecosystems. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 109–120.

[5] Virginia Braun and Victoria Clarke. 2006. Using
Thematic Analysis in Psychology. Qualitative research
in psychology 3, 2 (2006), 77–101.

[6] Casey Casalnuovo, Bogdan Vasilescu, Premkumar
Devanbu, and Vladimir Filkov. 2015. Developer
Onboarding in GitHub: The Role of Prior Social Links
and Language Experience. In Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering.
ACM, 817–828.

[7] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2019a.
What’s Spain’s Paris? Mining Analogical Libraries from
Q&A Discussions. Empirical Software Engineering 24,
3 (2019), 1155–1194.

[8] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent
Long Xiong Ong. 2019b. Mining Likely Analogical
APIs across Third-Party Libraries via Large-Scale
Unsupervised API Semantics Embedding. IEEE
Transactions on Software Engineering (2019).

[9] Fuxiang Chen and Sunghun Kim. 2015. Crowd
Debugging. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM,
320–332.

[10] Steven Clarke. 2005. Describing and Measuring API
Usability with the Cognitive Dimensions. In Cognitive
Dimensions of Notations 10th Anniversary Workshop.
Citeseer, 131.

[11] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim
Herbsleb. 2012. Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository. In
Proceedings of the ACM 2012 conference on computer
supported cooperative work. ACM, 1277–1286.

[12] Barthélémy Dagenais and Martin P Robillard. 2010.
Creating and Evolving Developer Documentation:
Understanding the Decisions of Open Source
Contributors. In Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering. ACM, 127–136.

[13] Barthélémy Dagenais and Martin P Robillard. 2012.
Recovering Traceability Links between an API and Its
Learning Resources. In Proceedings of the 34th
International Conference on Software Engineering.
IEEE Press, 47–57.

[14] Norman K Denzin and Yvonna S Lincoln. 2011. The
Sage Handbook of Qualitative Research. Sage.

[15] Ekwa Duala-Ekoko and Martin P Robillard. 2012.
Asking and Answering Questions about Unfamiliar
APIs: An Exploratory Study. In Proceedings of the 34th
International Conference on Software Engineering.
IEEE Press, 266–276.

[16] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. 2013. An Empirical Study of
Cryptographic Misuse in Android Applications. In
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. ACM, 73–84.

[17] Brian Ellis, Jeffrey Stylos, and Brad Myers. 2007. The
factory pattern in API design: A usability evaluation. In
Proceedings of the 29th international conference on
Software Engineering. IEEE Computer Society,
302–312.

[18] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgärtner, Bernd Freisleben, and Matthew Smith.
2012. Why Eve and Mallory Love Android: An
Analysis of Android SSL (In)Security. In Proceedings of
the 2012 ACM Conference on Computer and
Communications Security. ACM, 50–61.

[19] Umer Farooq, Leon Welicki, and Dieter Zirkler. 2010.
API Usability Peer Reviews: A Method for Evaluating
the Usability of Application Programming Interfaces. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2327–2336.

[20] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong,
Lu Zhang, and Hong Mei. 2015. Fixing Recurring Crash
Bugs via Analyzing Q&A Sites. In 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 307–318.

[21] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. 2012. The
Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software. In Proceedings of
the 2012 ACM Conference on Computer and
Communications Security. ACM, 38–49.

[22] Elena L Glassman, Tianyi Zhang, Björn Hartmann, and
Miryung Kim. 2018. Visualizing API Usage Examples
at Scale. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM, 580.

[23] Thomas R. G. Green and Marian Petre. 1996. Usability
Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[24] Natalie Gruska, Andrzej Wasylkowski, and Andreas
Zeller. 2010. Learning from 6,000 Projects: Lightweight
Cross-Project Anomaly Detection. In Proceedings of the
19th International Symposium on Software Testing and
Analysis. ACM, 119–130.

Paper 255 Page 11

https://cloud.google.com/apigee/

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[25] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep API Learning. In
Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering. ACM, 631–642.

[26] Amber Horvath, Mariann Nagy, Finn Voichick,
Mary Beth Kery, and Brad A Myers. 2019. Methods for
Investigating Mental Models for Learners of APIs. In
Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. ACM,
LBW0158.

[27] Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004.
Six Learning Barriers in End-User Programming
Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing.
IEEE, 199–206.

[28] Todd Kulesza, Simone Stumpf, Margaret Burnett, and
Irwin Kwan. 2012. Tell Me More?: The Effects of
Mental Model Soundness on Personalizing an Intelligent
Agent. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 1–10.

[29] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing,
Xin Peng, Mingwei Liu, and Xuejiao Zhao. 2018.
Improving API Caveats Accessibility by Mining API
Caveats Knowledge Graph. In 2018 IEEE International
Conference on Software Maintenance and Evolution
(ICSME). IEEE, 183–193.

[30] Robyn Longhurst. 2003. Semi-Structured Interviews and
Focus Groups. Key methods in geography 3 (2003),
143–156.

[31] Andrew Macvean, Luke Church, John Daughtry, and
Craig Citro. 2016a. API Usability at Scale.. In
Psychology of Programming Interest Group. 26.

[32] Andrew Macvean, Martin Maly, and John Daughtry.
2016b. API Design Reviews at Scale. In Proceedings of
the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM, 849–858.

[33] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb.
2013. Impression Formation in Online Peer Production:
Activity Traces and Personal Profiles in GitHub. In
Proceedings of the 2013 conference on Computer
supported cooperative work. ACM, 117–128.

[34] Phil McMinn, Muzammil Shahbaz, and Mark Stevenson.
2012. Search-based Test Input Generation for String
Data Types Using the Results of Web Queries. In 2012
IEEE Fifth International Conference on Software
Testing, Verification and Validation. IEEE, 141–150.

[35] Evan Moritz, Mario Linares-Vásquez, Denys
Poshyvanyk, Mark Grechanik, Collin McMillan, and
Malcom Gethers. 2013. Export: Detecting and
Visualizing API Usages in Large Source Code
Repositories. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software
Engineering. IEEE Press, 646–651.

[36] Manish Motwani and Yuriy Brun. 2019. Automatically
Generating Precise Oracles from Structured Natural
Language Specifications. In Proceedings of the 41st
International Conference on Software Engineering.
IEEE Press, 188–199.

[37] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu,
Andrew Macvean, and Brad A Myers. 2018. API
Designers in the Field: Design Practices and Challenges
for Creating Usable APIs. In Proceedings of the 2018
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 249–258.

[38] Emerson Murphy-Hill, Caitlin Sadowski, Andrew Head,
John Daughtry, Andrew Macvean, Ciera Jaspan, and
Collin Winter. 2018. Discovering API Usability
Problems at Scale. In Proceedings of the 2nd
International Workshop on API Usage and Evolution.
ACM, 14–17.

[39] Brad A. Myers. 2017. Human-Centered Methods for
Improving API Usability. In Proceedings of the 1st
International Workshop on API Usage and Evolution
(WAPI ’17). IEEE Press, Piscataway, NJ, USA, 2–2.
DOI:http://dx.doi.org/10.1109/WAPI.2017..2

[40] Brad A Myers and Jeffrey Stylos. 2016. Improving API
Usability. Commun. ACM 59, 6 (2016), 62–69.

[41] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham,
Jafar M. Al-Kofahi, and Tien N. Nguyen. 2009.
Graph-based Mining of Multiple Object Usage Patterns.
In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’09). ACM, New York, NY,
USA, 383–392.

[42] Raphael Pham, Leif Singer, Olga Liskin, Fernando
Figueira Filho, and Kurt Schneider. 2013. Creating a
Shared Understanding of Testing Culture on a Social
Coding Site. In Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press,
112–121.

[43] Huilian Sophie Qiu, Yucen Lily Li, Susmita Padala,
Anita Sarma, and Bogdan Vasilescu. 2019a. The Signals
That Potential Contributors Look for When Choosing
Open-Source Projects. Proc. ACM Hum.-Comput.
Interact. 3, CSCW, Article 122 (Nov. 2019), 29 pages.
DOI:http://dx.doi.org/10.1145/3359224

[44] Huilian Sophie Qiu, Alexander Nolte, Anita Brown,
Alexander Serebrenik, and Bogdan Vasilescu. 2019b.
Going Farther Together: The Impact of Social Capital
on Sustained Participation in Open Source. In
Proceedings of the 41st International Conference on
Software Engineering. IEEE Press, 688–699.

[45] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014.
Code Completion with Statistical Language Models. In
ACM SIGPLAN Notices, Vol. 49. ACM, 419–428.

Paper 255 Page 12

http://dx.doi.org/10.1109/WAPI.2017..2
http://dx.doi.org/10.1145/3359224

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[46] TJ Robertson, Shrinu Prabhakararao, Margaret Burnett,
Curtis Cook, Joseph R Ruthruff, Laura Beckwith, and
Amit Phalgune. 2004. Impact of Interruption Style on
End-User Debugging. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 287–294.

[47] Martin P Robillard. 2009. What Makes APIs Hard to
Learn? Answers from Developers. IEEE Software 26, 6
(2009).

[48] Martin P Robillard and Robert Deline. 2011. A Field
Study of API Learning Obstacles. Empirical Software
Engineering 16, 6 (2011), 703–732.

[49] Caitlin Sadowski, Kathryn T Stolee, and Sebastian
Elbaum. 2015. How Developers Search for Code: A
Case Study. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM,
191–201.

[50] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret
Burnett, Thomas Dietterich, Erin Sullivan, Russell
Drummond, and Jonathan Herlocker. 2007. Toward
Harnessing User Feedback for Machine Learning. In
Proceedings of the 12th International Conference on
Intelligent User Interfaces. ACM, 82–91.

[51] Jeffrey Stylos and Steven Clarke. 2007. Usability
Implications of Requiring Parameters in Objects’
Constructors. In Proceedings of the 29th international
conference on Software Engineering. IEEE Computer
Society, 529–539.

[52] Jeffrey Stylos, Benjamin Graf, Daniela K Busse, Carsten
Ziegler, Ralf Ehret, and Jan Karstens. 2008. A Case
Study of API Redesign for Improved Usability. In
Proceedings of the 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing. IEEE,
189–192.

[53] Jeffrey Stylos and Brad Myers. 2007. Mapping the
Space of API Design Decisions. In Proceedings of the
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2007). IEEE,
50–60.

[54] Jeffrey Stylos and Brad A Myers. 2008. The
Implications of Method Placement on API Learnability.
In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering.
ACM, 105–112.

[55] Christoph Treude and Martin P Robillard. 2016.
Augmenting API Documentation with Insights from
Stack Overflow. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE,
392–403.

[56] Asher Trockman, Shurui Zhou, Christian Kästner, and
Bogdan Vasilescu. 2018. Adding Sparkle to Social
Coding: An Empirical Study of Repository Badges in
the NPM Ecosystem. In Proceedings of the 40th
International Conference on Software Engineering.
ACM, 511–522.

[57] Joe Tullio, Anind K Dey, Jason Chalecki, and James
Fogarty. 2007. How it Works: A Field Study of
Non-technical Users Interacting with an Intelligent
System. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 31–40.

[58] Marat Valiev, Bogdan Vasilescu, and James Herbsleb.
2018. Ecosystem-Level Determinants of Sustained
Activity in Open-Source Projects: A Case Study of the
PyPI Ecosystem. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. ACM, 644–655.

[59] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen,
Tao Xie, and Dongmei Zhang. 2013. Mining Succinct
and High-Coverage API Usage Patterns from Source
Code. In Proceedings of the 10th Working Conference
on Mining Software Repositories. IEEE Press, 319–328.

[60] Tianyi Zhang, Ganesha Upadhyaya, Anastasia
Reinhardt, Hridesh Rajan, and Miryung Kim. 2018. Are
Code Examples on an Online Q&A Forum Reliable?: A
Study of API Misuse on Stack Overflow. In 2018
IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 886–896.

[61] Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim.
2019. Analyzing and Supporting Adaptation of Online
Code Examples. In Proceedings of the 41st
International Conference on Software Engineering.
IEEE Press, 316–327.

[62] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei.
2009. MAPO: Mining and Recommending API Usage
Patterns. In European Conference on Object-Oriented
Programming. Springer, 318–343.

Paper 255 Page 13

	Introduction
	Related Work
	API Design and Usability
	Influence of Community Values on API Ecosystems
	Mining from Online Coding Communities

	Participants
	Methodology
	Designer Spectrum and Design Decisions
	Usability Evaluation Methods in Practice
	Common Usability Issues
	Information Needs
	Opportunities for Tool Support
	Limitation
	Conclusion
	Acknowledgments
	References

