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ABSTRACT 
APIs are becoming the fundamental building block of modern 
software and their usability is crucial to programming effi-
ciency and software quality. Yet API designers find it hard 
to gather and interpret user feedback on their APIs. To close 
the gap, we interviewed 23 API designers from 6 companies 
and 11 open-source projects to understand their practices and 
needs. The primary way of gathering user feedback is through 
bug reports and peer reviews, as formal usability testing is 
prohibitively expensive to conduct in practice. Participants 
expressed a strong desire to gather real-world use cases and 
understand users’ mental models, but there was a lack of tool 
support for such needs. In particular, participants were curi-
ous about where users got stuck, their workarounds, common 
mistakes, and unanticipated corner cases. We highlight several 
opportunities to address those unmet needs, including devel-
oping new mechanisms that systematically elicit users’ mental 
models, building mining frameworks that identify recurring 
patterns beyond shallow statistics about API usage, and ex-
ploring alternative design choices made in similar libraries. 

Author Keywords 
API design; community; information needs; tool support 

CCS Concepts 
•Human-centered computing → Human computer inter-
action (HCI); Empirical studies in HCI; Interactive sys-
tems and tools; 

INTRODUCTION 
APIs are programming interfaces exposed by software develop-
ment kits (SDKs); libraries and frameworks; and web services 
such as REST APIs and remote procedure calls [40]; they are 
one of the primary interfaces for programmers to give instruc-
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tions to computers.1 The use of APIs is ubiquitous, powering 
software applications, systems, and web services in nearly 
every domain. Given the increasing number and complexity of 
APIs, learning and using APIs is becoming a common activity 
and a key challenge in modern programming [27, 47, 48, 40]. 

User-centered design can produce usable APIs with great clar-
ity, learnability, and programming efficiency [40, 39, 52]. Tra-
ditional usability testing methods such as user studies are often 
deemed too expensive to conduct during API design [19]. For 
example, a software library may have hundreds of APIs, which 
can be composed in various ways to implement different func-
tionalities. Therefore, it is costly to conduct user studies to 
comprehensively evaluate a large number of possible usage 
scenarios of an API. In addition, recruiting participants is hard 
since users need to have adequate programming skills to use 
an API. These unique challenges make it appealing to leverage 
the sheer amount of API usage data that are already produced 
by the community, e.g., public code repositories, issue reports, 
and online discussions, to inform better API design. By grasp-
ing a comprehensive view of real-world use cases and common 
mistakes made by API users, API designers could adjust their 
design choices accordingly and close the gap between API 
design and user expectations. 

Unfortunately, a recent study found that API designers still 
have difficulties in gathering and interpreting user feedback 
from their communities [37]. Large-scale community data has 
driven big success stories in domains such as bug detection [24, 
60] and code completion [25, 45, 3], but remains under-utilized 
in the context of human-centered API design and usability 
evaluation. Prior work on API design and usability evaluation 
either focuses on small-scale methods that only involve a small 
group of stakeholders to review API design [52, 19, 32], or 
only leverages pre-defined heuristics that do not account for 
real usage scenarios or user feedback [10, 38]. There is also a 
lack of guidelines to enable API designers to make data-driven 
decisions based on the community usage data. 

In this work, we investigate how community usage data could 
inform design decisions that account for real-world use cases 
and user feedback. We conducted semi-structured interviews 
with 23 API designers that worked on different kinds of APIs, 

1While the term “API” is often specifically referred to web APIs in 
some literature, in this paper, we use “API” as a shorthand for all 
kinds of application programming interfaces mentioned above. 

http://dx.doi.org/10.1145/3313831.3376382 

Paper 255 Page 1

http://dx.doi.org/10.1145/3313831.3376382
mailto:permissions@acm.org
mailto:miryung@cs.ucla.edu
mailto:bjoern@berkeley.edu
mailto:eglassman}@seas.harvard.edu


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

including software libraries (11), web APIs (6), and domain-
specific languages and toolkits (6). Among those participants, 
we observed a spectrum of API designers, including user-
driven, visionary, self-driven, and closed-world. Despite vari-
ous design decisions and trade-offs made by different kinds of 
designers, all of them acknowledged the importance of keep-
ing users in mind while building APIs. However, in practice, 
participants gathered user feedback in an informal and passive 
manner, primarily through peer reviews and bug reports. We 
identified a diverse set of unmet needs of API designers. For 
example, while existing API usage mining techniques [62, 
59, 41, 22] mainly focused on identifying common patterns 
of correct usage, designers wished to gather more unantici-
pated corner cases and user mistakes from a broader scope of 
community data such as online discussions, emails, and issue 
reports. In particular, user-driven and visionary designers 
expressed a strong desire to get a holistic view of API usage 
in the wild and interactively validate their own hypotheses 
with real-world use cases. Therefore, it is important to extend 
existing mining techniques to address these unmet needs. 

Furthermore, the majority of participants were interested in 
getting a rich description of users’ mental models. For exam-
ple, they wanted to understand “why do people use my API?”, 
“how they discover it?”, “what steps do they take to learn the 
API and how long?”, and “where do users give up?”. How-
ever, such information is barely reflected in code repositories 
and thus cannot be easily surfaced from a pile of users’ code. 
Therefore, it requires developing new mechanisms to elicit 
rich, fine-grained descriptions of user feedback and mental 
models. For those designers who work on popular domains 
such as machine learning and data visualization, it may be ben-
eficial to surface design decisions made in alternative libraries 
and identify features supported by alternative libraries but not 
by their own. This requires novel abstractions that model use 
cases of different libraries or DSLs in the same design space 
so that they are comparable regardless of syntactic differences. 

In summary, this paper’s contributions to HCI are: 

• We conducted semi-structured interviews with 23 API de-
signers from industry, academia, and nonprofit organiza-
tions to understand their practices and information needs in 
terms of gathering and interpreting user feedback. 

• We presented an in-depth analysis of their design styles, de-
sign decisions, evaluation methods of API design, common 
issues of API usability, and unmet information needs. 

• We proposed several tool design implications for leveraging 
community usage data to address the unmet needs of API 
designers and enable them to make data-driven decisions. 

RELATED WORK 

API Design and Usability 
Building usable APIs is crucial to programming efficiency and 
software quality in modern programming. Previous studies 
have shown that programmers at all levels, from novices to 
experts, often find it difficult to learn new APIs [27, 40, 47, 
15, 49]. Making mistakes in API usage could lead to severe 
program failures such as runtime exceptions [60] and security 
vulnerabilities [21, 18, 16]. Therefore, it is crucial to design 

APIs that meet user requirements and are easy to use, not only 
for the sake of driving API adoption and sustainability, but 
also to provide high-quality and reliable software products. 

Prior work has investigated the usability impact of particular 
design decisions, e.g., the use of factory pattern [17], the use 
of default class constructors [51], and method placement [54]. 
Stylos and Myers proposed a list of API design decisions in 
object-oriented programming languages such as Java and C#, 
based on API design principles and recommendations from 
textbooks, guidelines, lab studies, and online discussions [53]. 
Macvean et al. described six challenges of designing and main-
taining web APIs at Google, including resource allocation, 
empirically grounded guidelines, communication issues, API 
evolution support, API authentication, and library support 
across different programming languages [31]. There are also a 
number of studies that propose new methods to improve API 
usability, including user-centric API redesign [52], heuristic 
evaluation [10], API usability peer review [19, 32], and static 
code analysis [38]. Our work extends previous studies by 
characterizing current practices and unmet information needs 
of API designers. We propose a set of tool design implications 
for leveraging community-generated API usage data to inform 
data-driven design decisions. 

Murphy et al. [37] interviewed 24 professional developers 
and identified the practices and challenges broadly related to 
API design workflow, API design guidelines, API usability 
evaluation, API design review, and API documentation. Our 
work is mainly motivated by a particular finding in Murphy 
et al.—gathering user feedback and real-world use cases of 
APIs is useful but challenging due to a lack of tool support. 
However, it is unclear what kinds of user feedback designers 
would like to discover from the API community, what kinds 
of information cues they consider valuable, and what tool 
support is needed to systematically surface those information 
cues from the community data. This motivates us to conduct 
an in-depth analysis of the unmet needs of API designers 
and how we could design better tool support. In addition, 
Murphy et al. only interviewed professional developers that 
worked in a company. In this work, we recruited a broader 
scope of API designers, including those from open-source 
projects, academia, and non-profit organizations. Compared 
with professional developers who have more resources and 
communication channels to their users, those open-source 
developers are in greater need of gathering and comprehending 
real-world use cases of their APIs. 

Influence of Community Values on API Ecosystems 
There has been a large body of empirical studies about how in-
formation signals from software communities such as GitHub 
can influence the decision making process in software develop-
ment, e.g., which project to depend on [56], which developer 
to follow [11, 33], how to test a project [42], which project 
to contribute to [6, 44, 43]. Of particular interest to us are 
two recent studies about how community values influence the 
evolution and sustainability of API ecosystems [4, 58]. Bogart 
et al. [4] studied how community-specific values, policies, and 
tools may influence how developers respond to API changes 
that may break client code. They found that expectations 

Paper 255 Page 2



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

about how to handle changes differ significantly among three 
ecosystems, Eclipse, CRAN, and npm. For example, long-
term stability was a key value of the Eclipse community, 
while developers in the npm community considered ease of de-
velopment more important and thus were less concerned about 
breaking changes. Valiev et al. [58] analyzed how project-level 
factors (e.g., the number of commits, the number of contribu-
tors) and ecosystem-level factors (e.g., the number of upstream 
and downstream dependencies, the licensing policy) may in-
fluence the sustainability of Python packages in PyPI. These 
studies focus on the backward compatibility and sustainability 
of library packages. By contrast, we propose a new perspective 
on leveraging community usage data to enable API designers 
to make data-driven, community-responsive decisions. 

Mining from Online Coding Communities 
There has been a lot of interest in mining programming 
insights from online coding communities, e.g., API usage 
tips [29, 55], test cases [36, 34], analogical libraries [7, 8], 
bug fixing hints [9, 20, 61]. In particular, many software 
mining techniques focus on mining and visualizing common 
API usage patterns from large code corpora [62, 35, 59, 41, 
60]. However, their goal is to teach programmers how to 
use an API, rather than helping API designers to glean useful 
insights about API design and usability. For example, Glass-
man et al. designed an interactive system called EXAMPLORE 

that visualizes hundreds of API usage examples so that users 
could quickly grasp the different ways of using an API in 
various scenarios [22]. Compared with the needs of API users 
identified by prior work [47, 15], this study shows that the 
information needs of API designers are quite different. For ex-
ample, API designers often want to establish a comprehensive 
understanding of what mistakes users have made and where 
users were stuck before they eventually figured out the cor-
rect usage or even worse, before they gave up. However, a 
large portion of user mistakes are never committed to code 
repositories. Therefore, compared with mining correct API 
usage in code repositories, it may be more beneficial to build 
techniques that systematically gather API-related errors and 
identify error-inducing usage patterns. 

PARTICIPANTS 
We recruited 23 participants who built and maintained APIs 
using snowball sampling. Initially, we invited a small group 
of participants through personal contacts. Those participants 
further referred us to their colleagues and friends who also 
developed APIs and might be interested in our study. 

Table 1 shows participants’ information. The project names 
and descriptions were anonymized for participants working on 
proprietary APIs in a company. We also anonymized the occu-
pation of participants to avoid the potential risk of disclosing 
their identities. Ten participants were from large technology 
companies, while thirteen were from academia and non-profit 
organizations. These participants worked on eleven open-
source projects and seven proprietary projects, which spanned 
across various domains, including statistics, data science, ma-
chine learning, circuit design, formal methods, distributed 
systems, and probabilistic programming. Participants had a 
median of 6 years of API design experience (mean: 7 years). 

Regarding API types, eleven participants worked on software 
libraries and frameworks written in general-purpose program-
ming languages; six participants worked on frameworks that 
provided domain-specific languages (DSLs); six participants 
worked on web APIs. All of these APIs were either public 
APIs with at least a hundred or even thousands of users, or 
proprietary APIs that were deployed within companies and 
used by internal teams or external customers. There was a 
wide spectrum of API users, e.g., regular programmers, data 
scientists, machine learning engineers, hardware designers, 
statisticians, computational biologists, ecologists, etc. 

METHODOLOGY 
We conducted semi-structured interviews, giving its advantage 
of allowing unanticipated information to be mentioned [30]. 
Each interview started with an introduction, a short explana-
tion of the research being conducted, and demographic ques-
tions. Participants were then asked about the APIs they had 
worked on, the usability evaluation methods adopted in their 
projects, and their information needs if presented with a group 
of users and real use cases. We also asked about the API usabil-
ity issues reported by their users, the challenges of gathering 
user feedback, and the desired tool support. 

Interviews were conducted either in-person or via video con-
ferencing software. Interviews took an average of 61 minutes, 
ranging from 30 minutes to 90 minutes. Three interviews 
were done in 30 minutes only, due to the time constraint of 
participants. We recorded each interview under the permission 
of participants. We transcribed a total of 23.3 hours audio 
recording of these interviews. The first author first conducted 
an open-coding phase over all transcripts using a qualitative 
analysis tool called MaxQDA.2 This coding phase was done 
thoroughly by highlighting everything that is relevant or po-
tentially interesting. A code was generated by summarizing a 
relevant phrase or sentence with a short descriptive text. Then 
the first author conducted an inductive thematic analysis [5] 
by grouping related codes into themes. The themes were regu-
larly presented and discussed with the entire research team as 
they emerged from the interview data. In addition, the second 
author inspected the generated codes and themes separately, 
validating how the raw data supports the denoted codes and 
themes and adjusting their descriptions and boundaries. The 
two authors then discussed the disagreements and refined the 
codes and themes together across multiple sessions. 

DESIGNER SPECTRUM AND DESIGN DECISIONS 
Among 23 participants, we observed four types of API 
designers—user-driven, self-driven, visionary, and closed-
world, based on how users fit into their design process and 
how they responded to user feedback. Column Design Style 
in Table 1 shows where each participant falls on the spectrum. 

User-driven designers often proactively talked to their users, 
designed APIs based on user expectations, and were very re-
sponsive to user feedback. Many customer-facing API teams 
in large technology companies were user-driven. They often 
took a user-centered design process that solicited user feed-
back early via surveys or public proposals that everyone could 
2https://www.maxqda.com/ 
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Table 1. Participant Information 
Organization Project Description Language API Users Design Style 

P1 Large tech company — — C# Internal developers visionary 

P2 Open-source nonprofit rOpenSci A collection of R packages R Statisticians, computational scientists self-driven 

P3 Open-source nonprofit rOpenSci A collection of R packages R Statisticians, computational scientists visionary 

P4 Large tech company — — Web API Customers user-driven 

P5 R1 university Chisel A hardware design language & framework DSL Hardware designers visionary 

P6 R1 university Vega A data visualization language & library DSL Students, external users self-driven 

P7 R1 university Chisel A hardware design language & framework DSL Hardware designers visionary 

P8 R1 university Chisel A hardware design language & framework DSL Hardware designers self-driven 

P9 R1 university rOpenSci A collection of R packages R Students, statisticians, ecologists, etc. self-driven → user-driven 

Students, academic researchers in PL, 
P10 R1 university Alloy A model checking language & library DSL self-driven 

networking, embedded systems, etc. 

P11 Large tech company — — Web API Internal developers closed-world 

P12 Large tech company — — Web API Internal developers closed-world 

P13 Large tech company MXNet A deep learning library Python Data scientists, ML engineers user-driven 

P14 Large tech company — — Web API Internal developers closed-world 

P15 R1 university Julia A distributed arrays package in Julia Julia Computational scientists, economists, etc. self-driven 

P16 R1 university Julia A high-performance computing package Julia Computational scientists, economists, etc. visionary 

P17 R1 university Partisan A messaging library for distributed systems Erlang IoT developers, database developers self-driven 

P18 Large tech company — — Web API Internal developers closed-world 

P19 R1 university Gen A probabilistic programming framework Julia Students, researchers in ML and statistics self-driven 

P20 Large tech company TensorFlow A deep learning library Python Data scientists, ML engineers user-driven 

P21 Large tech company — — Web API Internal developers and customers user-driven 

P22 R1 university Caffe A deep learning library Python Data scientists, ML engineers self-driven → user-driven 

Both industry developers and academic 
P23 Large tech company Z3 A SMT solving library DSL self-driven 

researchers in PL and systems 

comment on. The top concern of user-driven designers was 
API stability, especially if they had a large community. Once 
the design was finalized, user-driven designers were careful 
about changing their APIs, since it could bring the risk of 
breaking users’ code. Yet for designers in other three cate-
gories, it was relatively flexible—they were more willing to 
first implement core features and then iterated on the API 
design based on user feedback. 

Self-driven designers made their own design decisions based 
on their domain knowledge and designed APIs that suited 
their own needs first. Though most of them were interested 
in listening to their users, they often had their own goals 
and priorities. Thus, if user feedback was not aligned with 
their own goals, they were less willing to change their design 
decisions. Compared with making simple things easier, self-
driven designers cared more about making hard things possible. 
They were excited about adding more functionalities to their 
APIs and making their APIs more capable. Therefore, they 
cared a lot about the extensibility of their API design and did 
not want to limit themselves in the future. In fact, some of 
them introduced extra layers and interfaces to make their APIs 
modularized and extensible, which caused indirections that 
hindered API usability. 

Visionary designers put themselves in the shoes of users and 
envisioned potential use cases when designing APIs. Often-
times, they had a good wish of building simple and easy-to-use 
APIs but lacked direct communication channels to their users. 
Open-source developers that did not have close collaborations 
with industry were often visionary. Because their users were 
often external users and they also had limited resources to 

connect to their users, e.g., organizing annual workshops as 
TensorFlow and MXNet teams did. Since visionary designers 
did not have a good idea about the API use cases in the wild, 
they had a tendency to make conservative design decisions 
such as adding strict runtime checks. If users used an API 
incorrectly, these runtime checks would fail early and prevent 
users from shooting themselves in the foot. 

Finally, closed-world designers often built APIs to support 
other teams in the same organizations, where all design goals 
and use cases were clearly set and teams worked cooperatively 
to decide details that suited both designers and users. The 
user teams were deeply involved in the design process, where 
designers and users would sit down for weeks to sort out poten-
tial use cases together. Therefore, compared with other kinds 
of API designers, there was less tension between closed-world 
designers and their users. Oftentimes, stability is not really 
a big concern for them. Since they were closely connected 
to their users, they could inform user teams about proposed 
changes first and iteratively adjust their API design as needed. 

Note that those API design styles were not always exclusive to 
each other. Many participants were, to some extent, a mix of 
different design styles at different stages of their projects. For 
instance, developers from early-stage academic projects were 
often self-driven, since their main goal was to build cut-edging 
technologies to achieve their own research goals rather than 
growing as a community. However, as those projects got more 
users and made more impact, those designers became more 
user-driven. 
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USABILITY EVALUATION METHODS IN PRACTICE 
To understand the challenge and needs of evaluating API us-
ability, we first asked participants how they evaluated their API 
design and gathered user feedback in practice. Specifically, we 
focused on eliciting different approaches and resources that 
our participants attempted to use. Table 2 shows a complete 
list of evaluation methods that participants adopted. 

Looking through bug reports, emails, and online discus-
sions. For all kinds of API designers, inspecting bug reports, 
emails, and online discussions was the major way to identify 
usability issues. Most participants just passively relied on 
users to submit bug reports or ask questions, rather than ac-
tively reaching out to users. One of the reasons was the lack of 
communication channels to their users, especially for vision-
ary designers. Though closed-world designers could easily 
reach out to user teams in the same company, they also waited 
for users to come back to them since it was more efficient as 
one participant said. By just looking through bug reports, API 
designers could get a vague sense about which API was used 
more often and which API was more error-prone. Yet they did 
not get a comprehensive view of the real-world use cases and 
usability issues, which many participants wished to get tool 
support for. 

“The most important thing is a lot of users post issues if they 
run into problems. So in that way, you also learn about what 
they’re doing and problems that they were in to. Sometimes 
people share what they’ve done on social media. Or they 
write a blog post about what they’re doing. So nothing is in 
a formal way but you get a sense of how people are writing 
their software with your package.” [P2] 

Peer reviews. Another widely adopted mechanism was to con-
duct peer reviews. Peer reviews helped with identifying design 
inconsistencies and potential use cases that were initially unan-
ticipated by designers. Compared with open-source projects, 
large technology companies had more formal and rigorous re-
view process, where all stakeholders were invited to review the 
API design. Big companies also had well-established review 
guidelines for API design. For instance, Google published 
a list of general design principles for web APIs, e.g., nam-
ing clarity and consistency, error handling principles, etc [1]. 
Open-source teams adopted light-weight code reviews via pull 
requests. Several participants said their teams did not perform 
peer reviews since it was difficult to find good reviewers in 
open-source projects. 

Regression testing on client applications. Six participants 
manually searched and curated a small set of applications that 
used their APIs. Everytime they made changes to APIs, they 
reran test cases in those applications to ensure backward com-
patibility of updated APIs. Package managers such as CRAN 
and PyPI exposed reverse dependencies, which could help 
identify a large number of downstream packages. However, 
participants were reluctant to run regression against all down-
stream applications. One participant explained that it would 
cause too much computation overhead. Another participant 
said he did not want to lock himself in the corner to handle 
all kinds of issues in downstream applications. This required 
an intelligent way to select a subset of representative client 

Table 2. Usability Evaluation Methods in Practice 
Methods to evaluate API usability and get feedback Num 

Looking through bug reports, emails, online discussions 18 
Peer review 13 
Regression testing on existing usage 6 
Teaching in classrooms, training camps, and workshops 5 
A/B testing and its alternatives 4 
Building example galleries 5 
Scheduling regular meetings with users 4 
Monitoring and logging web API traffic 6 
Sending out surveys 1 
Cognitive dimensions 1 
User studies 1 

projects to test on. Mining-based approaches could help with 
identifying various API usage examples from large code cor-
pus [62, 59, 60]. Yet it still remains a challenge to efficiently 
visualize a large volume of usage examples and enable de-
signers to filter out corner cases that they do not care about. 
Such a technique would be extremely beneficial for visionary 
designers, since they had limited resources to connect to their 
users and often desired to identify real use cases in the wild. 

Teaching in classrooms and training camps. For participants 
from academia, a primary alternative to user studies was to 
teach libraries and packages in classrooms or training camps. 
Participants found it very helpful to have users within their 
arm’s length and watch over their shoulders. 

“Being able to teach (my R packages) in the class room has 
been fantastic because I speak to students who have no pro-
gramming experience or encounter the task for the first time. 
And I see the way they’re trying to make things work, and what 
works and what fails. You immediately start seeing the pitfalls 
that you haven’t anticipated.” [P9] 

A/B testing and its alternatives. Four participants said they 
did A/B testing or something similar to assess alternative 
API designs. Two web API designers mentioned that when 
they refactored an API or introduced a new API end point to 
replace an old one, they would add an interceptor to transform 
a subset of the incoming API requests to fit the data model 
of the new API and re-route them to the new API. Then they 
collected server-side metrics and compared the performance 
of two APIs. Compared with web APIs, it was difficult to 
instrument library APIs to gather API usage metrics. Two 
participants from the Chisel project said their team would mark 
new API alternatives as experimental before rolling them out. 
In this way, API users could experiment with those APIs and 
comment on them. However, this was not successful because 
some users built real products on top of those experimental 
APIs, which made it hard for Chisel developers to withdraw 
or revise those APIs based on the comments from other users. 

Scheduling regular meetings and organizing workshops. In-
dustrial developers often had more direct access to their users 
compared with open-source developers. Several participants 
from industry said they organized quarterly conferences with 
their customers to hear feedback. Participants who worked on 
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large open-source projects like Chisel, MXNet, and Tensor-
Flow also organized annual workshops to demonstrate new 
features in their libraries and conduct informal interviews and 
surveys with attendees. 

Building example galleries. Five participants manually cu-
rated a set of API usage examples by themselves based on the 
real or envisioned use cases of their APIs. In this way, they 
established good understanding about different usage scenar-
ios and how easy it was to use their APIs in those scenarios. 
However, they found it hard to gather a comprehensive set of 
use cases in practice. When an unanticipated use case was 
identified, they also had difficulties assessing how represen-
tative this use case was and how many other developers may 
also use their APIs in the same way. 

Monitoring API traffic. All six web API designers either used 
API gateways such as Apigee [2] or built their own server-
side instrumentation to log API traffic, e.g., API headers and 
payloads in an API request or response. They queried the log 
data to understand real use cases and track errors. For example, 
by analyzing the device types captured in the API headers, 
developers could understand the distribution of different types 
of applications that sent this request. If a lot of requests were 
sent from Android devices, developers may decide to focus 
more on Android apps. However, web API designers found it 
difficult to reconstruct underlying user interactions and mental 
models from low-level, fragmented log data, especially given 
the enormous volume of log data. 

Sending out surveys. P5 said their team tried to post surveys 
both online and at training camps to collect user feedback. 
However, the participant complained that gathering insightful 
feedback was very difficult—“Every time we run the boot 
camp, we try to run a survey. Sometimes people respond but 
that didn’t tell me anything. I am definitely very much a fan 
of making data-driven API decisions but somehow collecting 
feedback from people so far has not been super practical.” 

Cognitive dimensions. P6 used cognitive dimensions [23, 10] 
to evaluate the usability of the domain-specific language in 
their library. The participant explained, “we only theoretically 
evaluate it with cognitive dimensions mostly because it’s hard 
to know how to actually evaluate abstractions in a sort of 
controlled or semi-controlled way.” 

User studies. P11 was the only participant whose API was, to 
some extent, evaluated by user studies. In their company, there 
was a UX team who invited pilot customers to try out UIs 
built on top of their API. The UX team then shared insights 
such as which features or data provided by the API were never 
used by users in practice and thus should be removed. Other 
participants did not conduct user studies for several reasons. 
For closed-world API designers, design teams and user teams 
created API designs together cooperatively, which made it 
unnecessary to further conduct user studies. User-driven de-
signers and visionary designers often found it hard to recruit 
a good sample size of users. Many API teams also lacked ex-
pertise in human-centered usability evaluation methods. Some 
participants preferred to understand real-world use cases in 

the wild, rather than observing user behavior in a controlled 
or semi-controlled setting. 

COMMON USABILITY ISSUES 
We asked participants what API usability issues they have 
encountered and identified five common usability issues. Un-
derstanding common usability issues could help us assess 
whether a data-driven approach could help with identifying 
and solving these issues. 

Unanticipated use cases. API users often suggested new fea-
tures or reported issues in cases that designers never antici-
pated. This barely occurred to closed-world designers, but it 
occurred quite often for other types of API designers, espe-
cially if they had a large user base. For example, P13 said 
that a major decision in MXNet was to represent every data 
type as tensors (i.e., multi-dimensional arrays). As a result, 
scalar variables were not supported in MXNet. But recently, 
the participant found that many users used 1x1 tensors to rep-
resent scalar variables. This led to many performance issues in 
client code, since most tensor-level optimizations in MXNet 
were not applicable to 1x1 tensors. Participants also explained 
that, in practice, it was impossible to support all use cases 
due to limited time and resources. Therefore, they wished 
to get a comprehensive view of real use cases and figure out 
how representative a corner case or an issue is. If there was a 
tool that enabled the MXNet team to interactively discover all 
common and uncommon ways of using their APIs, they could 
make an early decision about supporting scalar variables. 

Heavy-lifting API usage. Participants mentioned that they 
also discovered complex API usage that could be simplified via 
API refactoring. For example, P12 said their web API required 
a large payload to represent a complex data model, which was 
cumbersome to construct manually. To make it convenient for 
users, their team exposed another API that programmatically 
constructed a payload template with some data populated. To 
address this type of issues, it would be beneficial to provide 
tool support for mining recurring, complex API usage patterns 
to refactor. 

Confusing names and terminologies. There were two kinds 
of confusion. First, designers named a function or a param-
eter with a general name that was interpreted differently by 
different users. Second, designers used names or terminolo-
gies that were inconsistent from common idioms in the same 
domain. For instance, P13 mentioned that their team named a 
loop transformation as “loop reorder” while some alternative 
libraries used “loop interchange” instead, though the underly-
ing functionality was essentially the same. Interestingly, P18 
surveyed all alternative libraries in the market and followed 
the most common naming conventions, terminologies, and in-
terface definitions so that users could easily pick up their APIs 
without unnecessary confusion. This type of issues could 
be difficult to mine from static code repositories but could 
be recognized by analyzing user questions and issue reports. 
Therefore, it may be beneficial to investigate how integrate 
natural language processing methods into existing API usage 
mining techniques to analyze a broader scope of community 
usage data such as issue reports and questions beyond code. It 
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may also be beneficial to extend existing techniques to account 
for alternative libraries and check for naming consistencies. 

Ambiguous API usage. API usage ambiguity was manifested 
in several ways. First, there were alternative ways of using an 
API to achieve the same goal, while users were unclear which 
one to use. Second, the same API usage could produce differ-
ent outputs in different contexts, making it hard to understand 
its real meaning. Figure 1 shows an example in Chisel, where 
Reg(UInt(3)) could be interpreted as one of the four things 
on the right side. This ambiguity was later fixed in Chisel 3.0.0 
by making distinct usage explicitly. Third, sometimes users 
were caught up in the subtlety between overloading functions 
when there were many of them. Systematically identifying am-
biguous API usage was challenging, since it required checking 
for behavioral similarities and variations among API usage 
examples. Thus, building new techniques that utilize dynamic 
analysis to disambiguate API usage was much needed. 

Figure 1. Ambiguous API usage in Chisel 2.0.0 that is fixed in 3.0.0. 

During the interview, the majority of participants touched 
upon the tension between API designers and users. The ten-
sion often came from the fact that designers made certain 
implicit design decisions and tradeoffs that were not articu-
lated in documentation. Many APIs were initially designed 
for a small group of users. As an API community grew bigger, 
participants found that more and more novice users, who were 
not aware of the initial design decisions and tradeoffs, started 
picking up their libraries. Of course, many of aforementioned 
usability issues could be addressed by clear documentation. 
Yet participants expressed several challenges related to API 
documentation. First, it was too much effort to always keep 
documentation up-to-date. Second, it was also difficult to track 
all representative use cases and include them in documentation. 
Third, participants were worried about the discoverability of 
important information if the documentation became too long, 
since not all users would read it carefully. Hence, partici-
pants expected not only tool support for identifying real-world 
use cases and usability issues but also new mechanisms for 
information delivery. 

INFORMATION NEEDS 
To solicit the unmet needs of API designers, we asked partici-
pants to reflect on what information cues they found difficult 
to discover from existing community data and what other data 
they wish to gather though such data may not even exist. Over-
all, we found that the information needs of API designers 
were quite different from the needs of API users identified 
by prior work [47, 15]. API users wanted to know about the 
mechanics of correctly using an API, such as what other APIs 
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Table 3. Unmet or Partially Met Information Needs of API Designers 
Information needs Num 

A holistic view of real use cases 15 
A rich description about user’s mental models 12 
Common mistakes and workarounds 11 
API call frequency 9 
Behavioral metrics, e.g., runtime states, performance 9 
Backward compatibility 7 
Comparing and assessing similar libraries 7 
Design inconsistencies 6 

to use together and what exceptions to handle. By contrast, 
API designers were more curious about users’ mental models 
and the mistakes made by users. Furthermore, API users were 
more like a “blank slate” when first learning an API, while API 
designers had already established implicit assumptions about 
how users should and should not use their APIs. Therefore, 
API designers (especially visionary designers) were eager to 
validate their own hypotheses of API usage with real use cases 
and identify unanticipated corner cases. This section elabo-
rated on eight common needs of API designers. Table 3 shows 
these information needs and their frequencies. 

A holistic view of real use cases. The majority of participants 
(15/23), mostly user-driven designers and visionary designers, 
expressed a strong desire to get a holistic view of real use 
cases. Participants were curious about the recurring patterns 
among these use cases. Because recurring patterns indicated 
refactoring opportunities to simplify their API design. For 
instance, P13 mentioned that many data scientists used APIs 
in another library called NumPy together with APIs in MXNet 
for data processing, which required extra code to convert data 
structures between NumPy and MXNet. Thus the participant 
planned to provide new APIs that seamlessly integrated with 
NumPy without requiring users to write additional code. Par-
ticipants were also curious about those corner cases that they 
did not anticipate in the initial design. While previous min-
ing techniques only focus on mining common API use cases, 
identifying corner cases was also important to inform API 
design. 

“I’d like to get is looking at their code and see if they write 
code in the ideal way we want them to write. Because every 
API has its own purpose when they’re being designed, and we 
have some use case in mind that this APIs should be used in 
this way. So I would like to look into their code and see if they 
use the APIs in our way. If not, we’ll probably think if this API 
is designed in a proper way or we should create some more 
obvious APIs to deal with this case.” [P13] 

A rich description of users’ mental models. Twelve partici-
pants wished to gather several major clues to understand users’ 
mental models, including the intent of using an API, how the 
API was discovered, what steps it took to learn the API, how 
long it took, where users were stuck, and where users gave up. 
By understanding users’ mental models, API designers were 
able to identify inconsistencies between API design and users’ 
expectations and adjust their API design to reduce confusions 
and learning barriers. 
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“I want to get what people are thinking, what’s going under 
head, not just whether they are able to use this feature, like 
that’s what you would get from like mining GitHub repos. But 
what you are not getting is like this person still spent three 
hours googling how to use this feature, and he spent an hour 
on Stack Overflow trying to figure out what was going on, in 
the end, he got that, but it was a frustrating attempt.” [P6] 

P9 said teaching his R packages in classrooms and watching 
students over their shoulders made him quickly understand 
what students tried, what worked, and what failed. Yet not 
every API designer could easily get a room of users to learn 
their APIs. Several participants mentioned that they could get 
a sense of where users were stuck by reading questions users 
asked in emails and online forums. However, there was no 
easy way to comprehensively understand the whole picture of 
users’ mental models at a low cost. 

Common mistakes and workarounds. Compared with correct 
API usage, eleven participants mentioned that they were more 
curious about what mistakes users made before figuring out 
the correct usage. Participants wanted to find out whether a 
user ran into the same error repeatedly, whether different users 
made the same mistake, how easy it was for a user to make a 
mistake, and what workarounds users made. 

Participants mentioned that compilation errors and runtime 
exceptions were good indicators of confusing API design. 
Even though those errors were prevented from creeping into 
production code, bad API design was never solved in the first 
place. As a result, novice users may repetitively make the 
same mistake. Participants in the Chisel team mentioned that 
they implemented a fairly strict type system as well as many 
runtime checks to fail potential errors early. They wondered 
which runtime checks were triggered more often and whether 
a user encountered the same error repeatedly. Because if a user 
repeatedly made the same mistake, it may indicate the API 
design was so counter-intuitive that users cannot easily adjust 
their mental models to the correct usage. Instead of mining 
all recurring patterns, P14 suggested to identify patterns that 
were likely to lead to program crashes and errors. Because 
error-inducing patterns were more actionable than showing all 
common patterns. 

Though some issues were submitted as bug reports or asked 
on online forums, participants suspected a large portion of 
user mistakes were not reported at all. However, such in-
formation was barely committed and thus cannot be easily 
discovered from code repositories. As a result, this calls for a 
new mechanism to systematically gathering API-related errors 
and inferring error-inducing patterns. 

“I think the people that use the software with no prior experi-
ence perhaps hit the wall quickly. Every now and then you 
do see those issues of someone, like just never use R pack-
ages before. That’s the real issue. But for the most part, I 
suspect that I missed most of the easy problems going on there 
because they don’t convey that first barrier with their remote 
communication.” [P9] 

API call frequency. Nine participants wanted to understand 
API call frequency for different reasons, e.g., estimating the 

impact of deprecating an API, prioritizing efforts, allocating 
computation resources for web APIs, etc. However, two par-
ticipants warned about recency bias when interpreting API 
call frequency. Because new APIs may not have accumulated 
as many use cases as existing APIs. 

“I think even you can just get users’ code and see which API is 
more popular. There are still some concerns. For example, in 
our case, an alternative API is relatively new. So if we just look 
at code, I think it’s hard to judge which API is better. Maybe 
people just don’t know there is another way to implement that. 
So I think making a poll makes more sense because now people 
know we have these two options and which one they prefer. 
[P13] 

Web API designers and closed-world designers can easily 
calculate API call frequency by monitoring web API traffic or 
searching over the internal code base in a company. However, 
for public library APIs, it was hard to estimate the number of 
call sites in the wild. P3 said, “I used to search on GitHub more 
often, but I just found a lot of false positives. If a function name 
is like a common word, then it’s sort of a huge pile, and it’s 
kind of finding a needle in a haystack.” Thus it was necessary 
to resolve function names precisely, which was challenging for 
loosely typed languages such as R and JavaScript. In addition, 
five participants also suggested to include context information 
such as exception handling logic and surrounding API calls 
beyond just API call frequency. 

Behavioral metrics beyond static usage. Instead of just stati-
cally inspecting use cases, nine participants wanted to gather 
more behavioral metrics. For instance, they wanted to know 
the values of function arguments or data fields in an API re-
quest, whether these values were always constant, and whether 
these values were in a valid range. Several participants also 
mentioned that performance was a major factor that affected 
their API usability, e.g., latency for web APIs, slow train-
ing in deep learning. Therefore, they would like to collect 
performance metrics from users’ code. 

Backward compatibility. Backward compatibility was the 
top concern of user-driven designers. Participants were not 
only concerned about compilation errors caused by interface 
changes, but also behavior and performance inconsistencies 
caused by the implementation changes of an API. Participants 
said they were more okay if an API change broke client code 
in a noisy way, e.g., throwing compilation errors, runtime ex-
ceptions, or test failures. Because at least users knew that 
something went wrong and should be fixed. However, partici-
pants were more concerned about silent changes in behavior 
caused by API updates. 

In practice, six participants said they curated a small set of 
client applications or historical API requests to detect potential 
code breakage. However, participants found it difficult to un-
derstand backward compatibility at a large scale. Participants 
wished to know how much code breakage users were willing 
to tolerate and how easy it was to fix broken code. Because 
many code-breaking API changes were beneficial in a long 
term, though they may lead to code breakage at the moment. 
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Comparing and assessing similar libraries. Seven partici-
pants would like to compare their own libraries with similar 
libraries in the market. There were two important perspectives 
of comparing and assessing similar libraries. First, API design-
ers would like to identify features that were well supported by 
alternative libraries but not by their own. Participants working 
on deep learning frameworks such as TensorFlow and MXNet 
were interested in finding out new neural network models that 
were integrated into their competitors. Second, API designers 
were curious about how easy a feature was supported by their 
own libraries in comparison to other libraries. For example, P6 
was curious about whether a visualization was easy to express 
in D3 or Tableau but was cumbersome to construct in Vega. 

Design inconsistencies. Six participants wished to identify 
design inconsistencies to the design choices they made previ-
ously or common choices made by other API designers. In 
fact, it was difficult to always conform to the same design style 
consistently. For example, P9 mentioned that, when creating 
functions in his R packages, he followed the tidyverse style 
guide but sometimes failed.3 Such design inconsistencies were 
often caught by his students when he taught his R packages 
in classrooms. P12 mentioned that he had to manually search 
for other APIs in the company and followed their design to 
ensure the design consistency. Therefore, when there are no ex-
plicit design guidelines, it may be beneficial to expose design 
decisions and trade-offs made by other API designers. 

OPPORTUNITIES FOR TOOL SUPPORT 
The unmet needs of API designers imply many opportunities 
for building interactive systems that help developers gather, 
interpret, and consume community usage data to inform better 
API design. Some unmet needs require extending existing 
techniques to discover more information cues from a broader 
scope of community usage data beyond code, while some 
require building new mechanisms to collect new data that do 
not exist. We highlight several design implications below. 

Mining and visualizing API usage beyond syntactic features 
and frequencies. There is a lot of literature on mining com-
mon patterns from code repositories [62, 35, 59, 41, 60]. How-
ever, prior work mostly focuses on finding syntactic patterns 
of API usage. The unmet needs of API designers in the pre-
vious section reveal several desired information cues beyond 
syntactic API usage. We synthesize a list of design principles 
for surfacing such information cues. 

• API designers consider error-inducing patterns more action-
able than common, correct API usage. 

• In addition to syntactic usage, it is also important to show 
behavioral metrics to help API designers understand the 
semantics of use cases, e.g., runtime parameter values, call 
stacks, program states, performance, etc. 

• It is helpful to include the program context of a code exam-
ple such as preceding and post API calls, so API designers 
can better understand what users were trying to do and why 
their APIs were used in a specific usage scenario. 

• Going through a pile of lengthy code examples is over-
whelming, so it is important to keep unrelated code folded. 

3Tidyverse Style Guide, https://style.tidyverse.org/ 

• Recency bias should be taken into account when interpreting 
API usage frequencies. 

Furthermore, it is beneficial to analyze the proliferation of 
other kinds of community data besides code repositories, such 
as online discussions, tutorials, bug reports, and emails. In 
fact, participants mentioned that they primarily looked through 
online discussions and bug reports to understand what users 
are confused about and what mistakes users have made. For 
example, questions in Stack Overflow often ask about excep-
tional behaviors and boundary conditions that cause program 
failures when using an API. Therefore, we could extend ex-
isting mining infrastructures to analyze non-code data using 
natural language processing techniques. 

New elicitation mechanisms to understand users’ mental 
models. One major unmet need of API designers is to get 
a rich description about users’ mental models. In fact, what 
users wrote and committed to their repositories does not re-
flect how much they suffered when learning and using an 
API. Existing approaches either elicit users’ mental models 
directly via interviews [57, 26] or indirectly through question-
naires [28, 50], which is deemed to be expensive and unscal-
able given the large number of APIs and use cases. Instead, 
we recommend leveraging software instrumentation to gather 
fine-grained telemetry data at scale under users’ permission. 
For instance, we can instrument browsers and IDEs to record 
visited learning resources, error messages, and user actions. 
Such instrumentation methods can also be further augmented 
with prompting questions to directly solicit explanations on 
API usage, though that would require further investigation 
of interruption styles [46] to efficiently solicit explanations 
without causing harm to users’ productivity. 

It may also be possible to infer users’ mental models from low-
level telemetry data. For instance, if a user never encountered 
an error again after resolving the error, it may indicate that 
she could quickly grasp the correct API usage after seeing 
the error message. On the other hand, if a user encountered 
the same error repeatedly, it may indicate a big gap between 
the API design and the user’s expectations such that the user 
cannot easily adjust her mental model. One possible approach 
is to build a probabilistic model to approximate users’ mental 
states conditioned on a sequence of low-level events. 

Interactively analyzing population-level API usage. Vision-
ary designers expressed a strong desire for validating their 
own hypotheses of API usage with real-world use cases of 
their APIs. Four participants suggested going beyond inspect-
ing the common patterns identified by a mining infrastructure, 
since there could be many patterns. They wanted to be able 
to query the corpus of real-world use cases to evaluate their 
hypotheses of specific patterns, e.g., how often two APIs were 
used together, how often an API argument was set to a specific 
value. Text-based query interfaces that use keywords or regular 
expressions cannot easily express structural and semantic prop-
erties in a code pattern. EXAMPLORE [22] consolidates unique 
API usage features extracted from a large collection of code 
examples into a single API skeleton and allows developers to 
quickly filter the code corpus by selecting desired features in 
the skeleton. However, its expressiveness falls short in several 
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aspects. First, it cannot model structural properties such as “a 
method call must occur in a loop.” Second, designers cannot 
specify alternative feature options in a pattern, which is useful 
to reason about alternative API usage. Third, designers cannot 
reason about the absence of a feature in a pattern, e.g., “how 
many use cases only call lock but forget to call unlock?” 
Therefore, it is beneficial to build new interactive mining tech-
niques that (1) enable users to specify the structural properties 
of interesting API usage (i.e., structural patterns), (2) support 
disjunction of alternative API feature options in a pattern (i.e., 
alternative patterns), and (3) support negation of a feature 
option in a pattern (i.e., negative patterns). 

Exploring the design space of similar APIs. Two particular 
exploration tasks emerged from the interview study of 23 API 
designers. First, participants would like to know concrete 
design choices, e.g., naming conventions, the number of pa-
rameters, the adopted design patterns. Second, participants 
would like to identify those features that are well supported 
by alternative APIs but are missing or not well supported by 
their own. Supporting the first task could be relatively straight-
forward by extracting individual dimensions from interface 
definitions and architectures. However, the second task is 
more challenging since it requires a meta abstraction to make 
concrete use cases of different libraries or DSLs comparable. 
For instance, to compare features between data visualization 
libraries such as D3 and Vega, we may want to abstract a 
visualization script as input-output pairs (i.e., input csv files 
and output graphs) and completely ignore the implementation 
details in the script. In this way, we will be able to compare 
D3 and Vega scripts despite their syntactic differences, and 
find out what types of graphs are visualized more often using 
one library but not the other. 

Live API documentation. Writing API documentation and 
keeping it up-to-date is challenging [12, 13]. Online discus-
sions, tutorials, bug reports, and emails could serve as insight-
ful crowdsourced documentation. Six participants said if they 
had access to real use cases, they would like to use those exam-
ples to augment their API documentation. Therefore, it may 
be beneficial to build new techniques that systematically glean 
real-world use cases and discussions related to an API and 
constantly update its documentation. For example, if a new 
trending usage scenario of an API emerges in the community, 
the documentation should be updated to reflect the trend. On 
the other hand, only keeping a pile of code examples and re-
lated discussions may not be useful, since users may not have 
time to read all of them. It is important to distill representative 
families of examples and insightful comments. 

LIMITATION 
In this paper, we shared observations and themes that emerged 
in interviews with 23 API designers. Because experts in qual-
itative studies specifically warned about the danger of quan-
tifying inherently qualitative data [14], we did not make any 
quantitative statements about how frequently the themes may 
occur in a broader population. We followed this guideline to 
focus on providing insights that contextualize our empirical 
findings, especially when they can serve as the basis for further 
studies, such as surveys. 

We strove to include API designers from different fields that 
work on different kinds of APIs and projects. Therefore, we 
believe the nature of identifying information needs in this 
context is meaningful. As future work, we plan to encode those 
findings in a questionnaire and conduct a large-scale survey 
study of API designers. The survey will ask participants to rate 
the importance of each finding, including usability evaluation 
practices, information needs, and desired tool support in 7-
point likert scale. We will also solicit more insights through 
open-ended questions in the survey. 

Note that we do not argue that usability concerns should al-
ways be placed first when designing an API. As participants 
mentioned, there is always a trade-off between “making hard 
things possible” and “making simple things easy.” If API 
designers focus too much on making simple things easy and 
addressing all corner cases, it is possible to lock themselves 
into a corner where they could never get hard things done. API 
design is an iterative process. Many API designers want to 
get the core features done first without concerning themselves 
much about API usability. As they get more users and more 
time, they will start looking at their APIs more closely and 
respond to usability issues reported by their users. It is bene-
ficial to establish a comprehensive understanding of real use 
cases and potential gaps between API designers’ and users’ 
expectations during the iterative design process. We argue that 
it is important to keep usability in mind and make implicit 
design decisions explicit, so API designers do not inadver-
tently create an unusable API, and if they have to do so, do it 
knowingly with minimal cost. 

CONCLUSION 
This paper presents an in-depth analysis of unmet information 
needs of, and desired tool support for, API designers in terms 
of gathering and interpreting user feedback at scale. Given the 
diversified and distributed nature of modern API communities, 
it is generally challenging to establish a comprehensive view 
of real use cases, which the majority of participants desired 
to have. Due to a lack of tool support for collecting commu-
nity usage data at scale, participants often gathered use cases 
and user feedback in an informal way, primarily through bug 
reports and online discussions. Participants also expressed a 
strong desire to understand users’ mental models, while there 
is no systematic elicitation method to do so at scale without 
human intervention. This study provides empirical insights 
and design implications on how to build interactive systems 
to enable API designers to make more data-driven decisions 
based on real use cases and user feedback at scale. 
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