Synthesis

Of

First-Order Dynamic Programming Algorithms

University of California, Berkeley

Yewen (Evan) Pu
Rastislav Bodik
Saurabh Srivastava
Do you feel lucky?
A new way to build an island?

Conventional Domain Specific Compiler:
- Require deep domain theories
- Takes a long time to implement

Constraint Based Synthesizer:
- Write a template for desired algorithm
- Constraint solver fills in the template
Suppose we want to optimize $x + x + x + x$

With domain-specific **rewrite rules**:

\[x + x + x + x \rightarrow 4 \cdot x \rightarrow 2^2 \cdot x \rightarrow x \ll 2 \]

With a template in SKETCH [Solar-Lezama]:

- `spec(x)`: return $x + x + x + x$
- `sketch(x)`: return $x \ll ?? 2$

program equivalence found using bounded model checking
A Search for a Correct Program

Synthesizer finds in a space of candidate programs a correct one (it matches the specification)
Can we write a synthesizer for an entire problem domain using a single template (sketch)?
The Challenge

How do we write a template that covers all of our domain, yet the constraints it induces can be efficiently solved?
Our Approach

Define a general template that contains the entire domain
Optimize the search by reducing the search space
Dynamic Programming Algorithms

A well-defined domain

We have no “DSL compiler” for it (taught as an art)

Difficulties:
• inventing sub-problems
• inventing recurrences

We focus on a first-order sub-class, FORDP, which captures many O(n) DP algorithms
An Easy Problem

Fibonacci Sequence:
\[
fib(n) = fib(n-1) + fib(n-2)
\]
A Harder Problem

Maximal Independent Sum (MIS)

Input: Array of positive integers

Output: Maximum sum of a non-consecutive selections of its elements.

\[\text{MIS}\left(\left[6, 2, 3, 5, 1, 7, 3\right]\right) = 18 \]
mis(A):

best = 0

forall selections:

if non_consec(selection):
 best = max(best, value(A[selection]))

return best
What does the template do?

- Define a general template that contains the entire domain
A General Template

for_dpa(a):
 p1 = array()
 p2 = array()
 p1[0] = init1()
 p2[0] = init2()
 for i from 1 to n:
 p1[i] = update1(p1[i-1], p2[i-1], a[i])
 p2[i] = update2(p1[i-1], p2[i-1], a[i])
 return term(p1[n], p2[n])

Covers every FORDP algorithm
General Template for **update**

All possible compositions of user provided operators
All FORDP recurrences have this syntactic form
Space Reduction: Optimality

Recurrence for MIS:

\[p[i] \]
\[A[i] \] \[+ \] \[o[i] \] \[\max \] \[o[i] \]
Space Reduction: Symmetry

Many operators are commutative

Pick a canonical representative syntactically

![Diagrams showing commutative properties and selecting a canonical representative](image)
Space Reduction: Recap

All possible compositions

Syntactically Reduced

2,000x (MIS)
DEMO
Benchmarks

Here are some synthesized recurrences

mis:
\[p(i) = o(i-1) + a(i) \]
\[o(i) = \max(p(i-1), o(i-1)) \]

assm:
\[l_1(i) = \min(l_1(n-1) + \text{stay}_1(n), l_2(n-1) + \text{switch}_2(n)) \]
\[l_2(i) = \min(l_2(n-1) + \text{stay}_2(n), l_1(n-1) + \text{switch}_1(n)) \]

extended euclid:
\[P_1(i) = P_2(i-1) \]
\[P_2(i) = P_1(i-1) + P_2(i-1) \cdot \frac{q_1(n)}{q_2(n)} \]
Experiments

Synthesizer solving time, in seconds

![Bar chart showing synthesizer solving time in seconds for different configurations: mis, mss, mas, mmm, asm, osm, euc. The chart includes categories for comp, symm, and opti, with some configurations exceeding the memory limit indicated as "out of memory".](image-url)
Conclusion

It is possible to build a domain-specific synthesizer for FORDPA

Synthesizer developer only find a **syntactic domain structure**

The lessons learned in building the synthesizer may be general

If so, we can build more islands with constraint-based synthesis