Finite Differencing of Computable Expressions

Aj Shankar
It all comes down to laziness

- I’m lazy
- Say I’m making a PowerPoint presentation…
- I realize I need to cover a new topic
- What do I do?
 - A) Do the entire presentation over
 - B) ???
 - C) Profit!!!
Okay, what have I done?

- I used the work I had already done.
- And *incrementally* constructed a new presentation.

That’s pretty much all finite differencing is.

THE END
Okay, okay…

- Things we still need to figure out:
 - What are the benefits of differencing?
 - When is it safe?
 - (and what do we mean by safe?)
 - Can I compute Go positions incrementally?
 - How does it work?
 - Can it be automated?
 - Does the content of this paper really justify its 50 page length?
 - And more…
First, a more relevant example

- Goal: compute the successive sums of each m-element window in an n-element array (with m < n)

\[
\begin{array}{cccccccc}
2 & 1 & 4 & 2 & 7 & 0 & 3 & 5 & 2 \\
\end{array}
\]

n = 9; m = 4
The simple way

for (int i = 0 ; i < n-m ; i++) {
 for (int j = i ; j < m ; j++) {
 sum[i] += ary[j];
 }
}

- Sum up each window independently
Using finite differencing

- Compute a running sum

```c
for (int j = 0 ; j < m ; j++) {
    sum[0] += ary[j];
}
for (int i = 1 ; i < n-m ; i++) {
    sum[i] = sum[i-1] - ary[i-1] + ary[i+m-1];
}
```
Benefits of differencing

- Speedups
 - Possibly in asymptotic complexity
 - (What happened in the example?)
- If done automatically, simple code can become efficient
 - Can stick to “the simple way”
 - No need to uglify it yourself
Sounds unbelievably good

- This is going to revolutionize computing
- We took that $O(n^2)$ algo to $O(n)$…
- Let’s difference that $O(n)$ algorithm to get an $O(1)$ algorithm!
- The fun never ends
- (Sanity check…)
When is it safe to difference?

- Must guarantee the transformation is *semantics preserving*
 - Just like any other optimization
 - Stay tuned…
Finite differencing overview

- Derivative
 - The building block of differencing
- Chain rule
 - Stringing differential expressions together
- Tricks for initialization
Computable derivatives

- “Differencing”: figuring out the difference between $f(x)$ and $f(y)$
- **Derivative**: how f changes with respect to x
- We extend this notion to code
Computable derivatives

- Let $E = f(x_1, \ldots, x_n)$
 - E is the incremental replacement for f
- Let dx_i be an update to x_i, e.g.

 $E = f(\text{list}) = \text{length(list)}$;

  ```
  while (*) {
    list = item :: list;  // $dx_0$
  }
  ```
Derivative example

- Here, \(E = f(\text{list}) = \text{length(\text{list})}; \)
- \(\text{dllist is list = item :: list; } \)
- Then \(dE(\text{dllist}) = E += 1 \)

- What should we expect of the derivative of \(E \)? \(dE(dx_0) \)
 - What properties must hold?
Derivative: formal definition

- Derivative is code blocks \([B1, B2]\):

 \[
 B1 \\
 \text{d}x_i \\
 B2
 \]

 \(\{\text{Differenced code}\}\)

- With properties:
 - \(B1\) and \(B2\) only modify locals and \(E\)
 - Semantics of \(\text{d}x_i\) are preserved
 - If \(E = f(x_1, \ldots, x_n)\) before, then \(E = f(x_1, \ldots, x_n)\) afterwards
Derivative questions

- Why is this definition semantics preserving?
- How broad is it?
 - Can it be applied to our sliding window example?
- Why do we need B1 and B2?
- Where do these derivs come from?
Differentiable code

- So we have derivatives of f... when can we apply them?
- $E = f()$ is differentiable w.r.t a code block C if:
 - We know the derivatives of f w.r.t. for each x_i updated in C
 - f is known, or at least computable, at the start of C
- This should intuitively make sense
Doing the differencing

To difference f w.r.t. C:
- Replace all $d x_i$ in C by $B_1_i; d x_i; B_2_i$;
- Replace all uses of f with E
- Initialize E properly

Does this preserve the semantics of C?

... Works for $C_1; C_2$ as well
Example

```plaintext
a := {};
while eof = false
    read(i);
    a with:= i;
end while;
print({x \in a | x \mod 2 == 0});
```
Example

```plaintext
a := {}; E := {}; while eof = false
    read(i);
    if (i mod 2 == 0) then
        E with:= i;
        a with:= i;
    end while;
print(E);
```

```
dE(a := {})
da
E = f(a)
dE(da)
```
Chaining

- So we’ve got the whole program differenced on f
- But what about g, h, etc?
- Just apply them in turn
Chaining, cont’d

- We have E_1 and E_2. Can chain if
 - $E_1 = f_1$ is differentiable w.r.t. B, transforming it to B'
 - And $E_2 = f_2$ is differentiable w.r.t. B'
- How does this preserve semantics?
- What if all E_i were differentiable w.r.t. just B?
Computing speedups

- There’s a lot of stuff in the paper about figuring out when differencing will produce a speedup.
- But: it’s pretty obvious stuff:
 - Initial costs should be relatively low.
 - Derivatives should be faster than recomputing f.
- ...
Initialization tricks

- We have a bunch of differenced code
- But need to initialize $E_i = f_i(\ldots)$ first
 - “setting up the invariant”
- Doing each E_i separately wasteful
- Jamming…
Vertical Jamming

- Want to initialize c_1, c_2

```latex
\begin{verbatim}
for (x in s) {
  if (k_1(x))
    c_1 with: x;
}

for (x in c_1) {
  if (k_2(x))
    c_2 with: x;
}
\end{verbatim}
```
Vertical Jamming, cont’d

Remember, we’re lazy.
Vertical Jamming, cont’d

\[
\begin{array}{ccccccc}
\text{s} & 2 & 1 & 4 & 2 & 7 & 0 & 3 & 5 & 2 \\
\text{c}_1 & 1 & 4 & 7 & 3 & 5 \\
\text{c}_2 & 1 & 7 & 3 \\
\end{array}
\]

- Wow, that saved a lot of effort.
- Except for the effort it took me to make these slides.
The resulting code

for (x in s) {
 if (k₁(x)) {
 c₁ with: x;
 if (k₂(x))
 c₂ with: x;
 }
}
Horizontal jamming

- I’ll spare you the animations

```plaintext
for (x in s) {
    if (k_1(x))
        c_1 with: x;
}

for (x in s) {
    if (k_2(x))
        c_2 with: x;
}
```
Horizontal jamming, cont’d

- Becomes

```plaintext
for (x in s) {
    if (k_1(x))
        c_1 with: x;
    if (k_2(x_i))
        c_2 with: x;
}
```
Automating the process

- What are the hurdles?
 - Picking an f
 - Coming up with a derivative
 - How comprehensive is the list in the paper?
 - What else?
- “Already implemented a semiautomatic system”
 - “Results reported in near future”
Practical concerns

- Are there any language hurdles?
- What other problems are in the way?
 - (Why isn’t this system used now?)