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Abstract. Understanding the fundamental performance limits of wireless sensor networks is critical
towards their appropriate deployment strategies. Both the data transmission rate and the lifetime of sensor
networks can be constrained, due to interference among the transmissions and the limited energy source
of the sensor. In addition to presenting the general results with respect to the maximum sustainable
throughput of wireless sensor networks, this chapter focuses on the discussion of the energy-constrained
fundamental limits with respect to the network throughput and lifetime. With an adequate definition of
operational lifetimes, our asymptotic analysis shows that, with fixed node densities, operational lifetime of
sensor networks decreases in the order of 1/n as the number of initially deployed nodes n grows. Even
with renewable energy sources on each of the sensors (e.g., solar energy sources), our analysis concludes
that the maximum sustainable throughput in energy-constrained sensor networks scales worse than the
capacity based on interference among concurrent transmissions as long as the physical network size grows
with n in the order greater than log n. In this case, when the number of nodes is sufficiently high, the
energy-constrained network capacity dominates.
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1. Introduction. When compared to other categories of wireless networks, wireless
sensor networks possess two fundamental characteristics: multi-hop transmission and con-
strained energy sources. First, since sensor nodes have limited transmission ranges and
organize themselves in an ad hoc fashion, two wireless sensor nodes that can not reach each
other directly rely on other sensor nodes to relay data between them. In general, data
packets from the source node need to traverse multiple hops before they reach the desti-
nation. Second, since sensors are usually small and inexpensive, they are assumed to have
constrained energy sources, and any protocols to be deployed in sensor networks need to
be aware of energy usage. These two characteristics have important implications to the
fundamental performance limits of wireless sensor networks.

With respect to the performance of wireless sensor networks, the data transmission
capacity and the lifetime of the sensor networks are critical and influential towards the
design of optimal deployment strategies of these sensor networks. The fundamental limits
of these two critical performance parameters lead to a few interesting open problems. First,
what is the maximum sustainable throughput of the network? Second, what is the maximum
lifetime of the network? These questions are usually considered given a set of parameters
of the sensor network, and under the assumption that optimal network management is
achievable. The set of parameters of the sensor network under consideration includes the
number of sensor nodes in the network, as well as the area occupied by the sensor network.
Issues relevant to network management usually includes packet routing, power management,
and topology control.

The answers to the questions previously asked are of great importance to both theo-
retical and practical aspects of wireless sensor networking research. First, studies on the
asymptotic behavior of network throughput and lifetime with respect to the network size and
area provide insights pertinent to the network scalability and feasibility of deploying large-
scale wireless sensor networks. Second, the results with respect to the maximum network
throughput and lifetime offers important guidance to research on the network management
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issues such as topology control and routing, especially when it comes to the performance
evaluation of proposed protocols.

This chapter discusses the problems and solutions on the important topic of fundamental
performance limits of wireless sensor networks, especially with respect to sustainable network
throughput and lifetime. In addition to presenting the general results with respect to the
maximum sustainable throughput of wireless sensor networks, we concentrate our discussion
on the energy-constrained fundamental limits on network throughput and lifetime.

The remainder of this chapter is structured as follows. Sec. 2 gives a brief introduction
to the general notion of wireless sensor networks, especially in the context of the subsequent
discussions. Sec. 3 discusses interference-constrained capacity of wireless sensor networks.
Sec. 4 to Sec. 11 introduce and discuss open problems on energy-constrained performance
limits of sensor networks. Finally, Sec. 12 concludes the chapter.

2. Wireless Sensor Networks. A wireless sensor network consists of a large number
of sensors [8], each of which are physically small devices, and are equipped with the capability
of sensing the physical environment, data processing, and communicating wirelessly with
other sensors. Generally, we assume that each sensor in a wireless sensor network has
certain constraints with respect to its energy source, power, memory, and computational
capabilities.

The communication paradigm of wireless sensor networks has its root in wireless ad hoc
networks, where network nodes self-organize in an ad hoc fashion, usually on a temporary
basis. In a wireless ad hoc network, a group of wireless nodes spontaneously form a network
without any fixed and centralized infrastructure. When two nodes wish to communicate,
intermediate nodes are called upon to forward packets and to form a multi-hop wireless
route. Due to possibilities of node mobility, the topology is dynamic and routing protocols
[1, 2, 3] are proposed to search for end-to-end paths. The network nodes rely on peers for
all or most of the services needed and for basic needs of communications. Due to the lack
of centralized control and management, nodes rely on fully distributed and self-organizing
protocols to coordinate their activities. In both scenarios, distributed protocols need to
accommodate dynamic changes at any given time: (1) a node may join or leave the network
arbitrarily; (2) links may be broken; and (3) nodes may be powered down as a result of node
failures or intentional user actions. Fig. 2.1 illustrates a wireless ad hoc network formed by
the mobile nodes. As shown in the figure, each network node has a finite transmission range
represented by the dotted loop around the node. The arrows represent the network topology
resulted from the transmission ranges.

With respect to the characteristics previously discussed, wireless sensor networks (or
sensor networks for simplicity) are very similar to wireless ad hoc networks, as sensors act
as network nodes. Fig. 2.2 illustrates a wireless sensor network. As shown in the figure,
each sensor can only reach its neighboring sensors directly. Intermediate sensors may relay
the messages when source sensors (s1 and s2) and destination sensors (r1 and r2) are far
away from one another.

Notwithstanding many similarities between wireless sensor networks and wireless ad
hoc networks, sensor networks have its own unique characteristics [8]. First, the number of
the nodes in a sensor network is significantly larger than that in a typical wireless ad hoc
network. The difference can be of several orders of magnitude. Second, sensors are usually
low-cost devices with severe constraints with respect to energy source, power, computation
capabilities and memory. Third, sensors are usually densely deployed. Fourth, the probabil-
ity of sensor failure is much higher. Finally, the sensors are usually stationary rather than
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Fig. 2.1. The communication paradigm of wireless sensor networks has its root in wireless ad hoc
networks. Each network node in a wireless ad hoc network has a finite transmission range, represented by
the dotted loop around the node. The arrows represent the network topology resulted from the transmission
ranges.

Fig. 2.2. A wireless sensor network. Each sensor can only reach its neighboring sensors directly. The
intermediate sensors may relay messages when source sensors (s1 and s2) and destination sensors (r1 and
r2) are far away from one another.

constantly moving. However, the topology of sensor networks can still change frequently
due to node failure.

It is important to understand the similarities and differences between wireless ad hoc
networks and sensor networks. A significant body of research work has been undertaken in
the field of wireless ad hoc networks. On one hand, understanding the similarities between
ad hoc and sensor networks makes it straightforward to effectively apply existing research
results in wireless ad hoc networks to the field of sensor networks. On the other hand,
understanding the differences between the two types of networks leads to insights on new
research problems in sensor networks.

Much effort have been devoted to the problems of topology control, power management
and optimal routing in wireless ad hoc and sensor networks. For example, [10] studied
topology control, [7, 9] studied energy-aware routing in wireless ad hoc networks, [17] stud-
ied minimum energy cost problems for broadcast and multicast, and [5, 6] studied energy
management in wireless sensor networks. More recently, [14] presented a competitive and
efficient algorithm for the routing of messages in energy-constrained ad-hoc networks. As
discussed in the introduction, the study on fundamental performance limits can offer im-
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portant guidance to the research on the aforementioned network management issues.

3. Interference-Constrained Capacity.

3.1. Network Throughput and Fundamental Constraints. Much progress has
been made towards understanding the network throughput of wireless ad hoc networks. The
performance limit of the network throughput is defined as the maximum stable throughput
(MST) of the network [12]. The maximum stable throughput is the maximum amount of
traffic per unit time (usually measured in bits/sec) that can be injected into the network
from all the sources while the size of the queue at any network node is bounded. Usually,
it is assumed that all nodes generate equal amount of network traffic. In this case, the
maximum stable throughput per node can be similarly defined.

In most of the literature on performance limits with respect to network throughput,
the term capacity is used to refer to the maximum network throughput achievable. We will
follow this convention in this chapter when it is appropriate. The works reviewed in this
section concentrate on the interference-constrained capacity of the network. The results on
the energy-constrained capacity will be discussed in the remainder of this chapter, along with
a comparison between interference-constrained capacity and energy-constrained capacity.

The interference-constrained capacity is caused by two factors. First, when more than
one nearby network nodes transmit at the same time, the signals at the receiving node can
be corrupted. Therefore, some nodes in the network may not be able to transmit at the same
time. Consequently, the network throughput is reduced. The aforementioned phenomenon
is referred to as the spatial concurrency constraint by Gupta and Kumar [19]. Second, in
multihop wireless networks such as wireless ad hoc and sensor networks, the amount of
network traffic produced by each transmitting node is proportional to the number of hops
taken from the source node to the destination node. The reason is that every intermediate
relay node must retransmit the same data in order to forward the data to the next relay
node. This phenomenon is referred to as as the multihop traffic constraint.

3.2. Transport Capacity. In their pioneer work on the capacity of wireless ad hoc
networks, Gupta and Kumar [19] concluded that per-node throughput diminishes with the
increasing number of nodes in the network. The results of Gupta and Kumar are built upon
two transmission models1: the Protocol Model and the Physical Model, which are defined
respectively as follows.

Protocol Model Let Xi denote the network node i. The physical location of the node
i is also referred to by Xi. Suppose node Xi transmits over a sub-channel2 to node Xj . Xj

receives the transmission successfully if

|Xk −Xj | ≥ (1 + ∆)|Xi −Xj |
where Xk represents the nodes that are transmitting simultaneously over the same sub-

channel; and ∆ > 0 models the protocols that require a guard zone.
Using the same definitions for Xi, Xj and Xk, the physical model is defined as follows.
Physical Model Xj receives the transmission from node Xi successfully if

Pi

|Xi−Xj |α

N + Σk∈Γ,k 6=i
Pk

|Xk−Xj |α
≥ β

1A transmission model defines the condition under which successful transmission occurs.
2Gupta and Kumar define the transmission models based on sub-channels, in order to accommodate the

situation in which one main channel is divided into multiple sub-channels.
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where Γ represents the set of the nodes transmitting simultaneously over the same
sub-channel; Pk is the power level used by node Xk, k ∈ Γ; β is the minimum signal to
interference ratio needed for successful reception; N is the ambient noise power level; and
the signal decays as 1

rα with distance r.
The physical model states that the reception is successful if the signal power at the

receiver is higher than the sum of the power of the ambient noise and the signal power of
other senders by a factor of β. The protocol model is a simplified abstraction of the physical
model. For instance, the transmission power is assumed to be the same for all the nodes.

Gupta and Kumar [19] and later Xie et al. [24] use the concept of network transport
capacity when developing the scaling law of the transmission capacity of wireless ad hoc
networks. The network transport capacity is defined as

CT : = sup(R1,...,Rm)feasible

m∑

l=1

Rl · ρl(3.1)

where ρl represents the distance between the lth source node and its corresponding
destination node; Rl represents the transmission rate of the lth source node.

Gupta and Kumar have studied the transport capacity of wireless ad hoc networks and
identified the scaling law as Θ(

√
An) (n being the number of nodes in the network), if the

network nodes are optimally placed, the traffic pattern is optimally chosen, and if the range
of the transmission is optimally chosen. Suppose that all n network nodes participate in
the transmission and the transport capacity is equally divided among all the n nodes, for
ad hoc networks that occupies fixed area A, the scaling law of per-node maximum stable
throughput can be derived based on Eq.( 3.1) as Θ( 1√

n
). If the network nodes have random

location and destination nodes, the per-node throughput is Θ( 1√
n log n

) for ad hoc networks
with a fixed area. This result is significant, because it shows that the per-node throughput
capacity of wireless ad hoc networks diminishes as the number of nodes increases.

Gupta and Kumar [19] offers an intuitive account of how the multihop traffic constraint
and the spatial concurrency constraint lead to the diminishing per-node capacity of wireless
ad hoc networks. The account does not give the exact form of the aforementioned scaling
law with respect to the per-node throughput. Still, it explains the dynamics among the
throughput of wireless ad hoc networks and its influencing factors. Consider a wireless ad
hoc network in which the network nodes are randomly located. Every node transmits to a
randomly chosen destination. Each packet may traverse one or more hops before it reaches
its destination. Suppose that the mean distance between the source and the destination is
L̄ and the transmission range of the transmission is r. The number of hops traversed by
the packet is at least L̄

r . Assume that the per-node throughput is λ, then each node will
generate no less than L̄λ

r bits/sec of network traffic, which will be served by other nodes in
the network. The total amount of traffic generated by all n nodes in the network is thus
at least L̄nλ

r bits/sec. To keep the queue lengths of the network nodes bounded, the total
amount of traffic can not exceed nW , where W is the maximum throughput that can be
achieved by each network node. Consequently, the following inequality must be satisfied:

λ ≤ Wr

L̄
(3.2)

Eq. (3.2) shows how the multihop traffic constraint affects the per-node throughput λ.
More hops between the source node and the destination node means a smaller value of r

L̄
,
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which in turn leads to smaller per-node throughput λ. Eq. (3.2) may suggest that increasing
r can improve the per-node throughput λ. However, due to the spatial concurrency con-
straint, increasing r will prevent more nodes from transmitting at the same time. The loss
of λ from increased r is quadratic due to the fact that the spatial concurrency constraint
affects all the nodes in the neighboring area of the transmitting node. Consequently, it is
more desirable to reduce the transmission range r as much as possible. However, reducing
r may cause the wireless ad hoc network to lose connectivity. Gupta and Kumar [18] prove

that r needs to be at least Θ(
√

log n
πn ) in order to keep the network connected. Therefore,

the per-node throughput λ diminishes with the increasing number of nodes n.
The work by Gupta and Kumar [19] can also be applied to wireless ad hoc networks

with a variable area A. However, their results are weaker than that of Xie et al. [24]. In [19],
the transport capacity scales as Θ(

√
An), which increases with

√
A. In [24], the transport

capacity scales as O(n) for network whose area A grows at least linearly with n. In both
works, the per-node throughput for wireless ad hoc networks in which the destination nodes
are randomly chosen is Θ( 1√

n log n
).

3.3. Cut-based Analysis. In addition to the works based on the concept of transport
capacity [19, 24], Peraki et al. [12] use a cut-based approach to analyze the upper bound of
network throughput in sensor networks.

Fig. 3.1 illustrates the cut-based approach for deriving the maximum stable throughput.
As shown in the figure, network traffic needs to flow from the left part of the network to
the right part of the network. According to the max-flow/min-cut theorem [4], the traffic
must move across the cut shown in the figure. L and R represent the sections of width dn

on two sides of the cut. dn is the transmission range of the sensors. The main idea of the
cut-based approach as shown in the figure is that not all the nodes in the section L can
transmit at the same time due to the spatial concurrency constraint. Consequently, the
network throughput is constrained.

Fig. 3.1. The cut-based analysis of maximum stable throughput. L and R represent the sections of
width dn on the two sides of the cut. Only a portion of the nodes in the section L can transmit at the same
time due to the spatial concurrency constraint.

Peraki et al. derive the scaling law of maximum stable throughput per node as
Θ(

√
1

n log n ) for omnidirectional antennas. This result is the same as that of [19] and [24].
Peraki et al. also study the maximum stable throughput for two other situations. In the first
situation, the senders can send a single arbitrarily narrow beam. The receiver can decode
the signals from multiple transmissions as long as the transmissions are not co-linear. In
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this situation, the scaling law of the maximum stable throughput per node is Θ(
√

log n
n ), an

improvement in the order of log n. In the second situation, the senders can send multiple ar-
bitrarily narrow beams. The receiver operates as in the first situation. In this situation, the

scaling law of the maximum stable throughput per node is Θ(
√

1
n log

3
2 n), an improvement

in the order of log2 n.
Towards a better understanding of fundamental performance limits in wireless sensor

networks, many other works have been produced. Grossglauser et al. [20] proposed that
mobility can increase the capacity of wireless ad hoc networks. Li et al. [21] demonstrated
that the scalability of mobile ad hoc networks depends on whether the network traffic can
be localized. Scaglione et al. [13] also used the cut-based analysis to study the impacts
of routing and data compression on the maximum stable throughput. Barros et al. [22]
studied the reachback capacity of sensor networks. Servetto [23] investigated the feasibility
of large-scale sensor networks under the condition that data at nearby sensors is correlated.
The interested readers are referred to these excellent references for a more in-depth coverage
of these topics.

4. Energy-Constrained Fundamental Performance Limits. A fundamental lim-
itation of sensor networks is the constrained energy source at each node (< 0.5 Ah, 1.2V
[8]), since most of sensors are micro-electronic devices. During signal propagation, the signal
decays as r−α with transmission range r, where α is the loss exponent of the signal [11].
The limited power and signal loss during propagation impose fundamental constraints on
the operational lifetime of the sensor network, and other performance issues such as the
capacity of data transmissions. In most cases, it is impossible to replenish energy levels
in the sensor nodes. In this case, the initial energy levels in the sensor nodes and ongoing
energy consumption rates directly affect the operational lifetime and the data transmission
capacity of the sensor network.

There have been a few studies on network lifetime. Bhardwaj et al. [16] studied the
upper bound of lifetime of sensor networks with a single data source. However, the lifetime
studied in this paper is the active lifetime, i.e., the time at which the total energy consumed
equals the the total energy in the network available at the start. As shown in this chapter,
such definition of upper bound yields very little relevance to the practical network. Since the
network fails to function long before the last node in the network fails from energy depletion.
In addition, [16] uses very simple models that fail to consider the stochastic behavior of relay
nodes along the path between the source and data sink. Another work is by Shakkottai et
al. [15]. In this work, it is shown that the the necessary and sufficient conditions for the
coverage and the connectivity of the random grid network are p(n)r2(n) ∼ log(n)

n . The
authors claimed that, using a node failure model as a function of time, the results in the
paper can be used to answer the question pertaining to the maximum length of time over
which one can expect the network to provide coverage and be connected with probability
no smaller than 1− ε, where ε is a small value. Zhang et al. [26] studied the upper bound of
lifetime of the large sensor networks. Zhang et al. first derive the necessary and sufficient
condition with respect to the node density in order to maintain the k-coverage. The network
lifetime, which is defined based on complete coverage, is found to be upper bounded by kT ,
where T is the lifetime of each sensor.

In the remainder of this chapter, we take a different angle when we examine the problem
of extending the operational lifetime of wireless sensor networks. Given a set of network
characteristics and definitions, we seek to answer the following fundamental question: What
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is the operational lifetime3of a particular wireless sensor network under the control of optimal
power management schemes? An answer to this question leads to insights on the funda-
mental limits with respect to the performance gains using any energy-aware algorithms and
protocols. As well, additional insights on the scalability of wireless sensor networks with
respect to their energy costs may be derived when we study the relationships between the
network lifetimes and sizes.

Studies on the scalability of sensor networks may lead to surprising results that must be
well understood at the time of network deployment. Naturally, a sensor network that fails
to function towards the end of its mission should not be deployed, or should be replenished
by deploying additional nodes before functional failures. With adequate analysis, we may
observe that the network lifetime after its initial deployment may not be arbitrarily extended
by simply increasing the number of nodes initially deployed. Before communication failures
due to energy costs, provisions must be made to replenish the network by adding additional
nodes on the fly after its initial deployment.

Towards extending the lifetime, strategies with respect to such network replenishment
due to sensor energy costs have never been studied in previous work. However, we argue
that these are critical to the lifetime of sensor networks. A simple strategy may be that,
a minimum number of nodes is deployed initially, with new nodes subsequently added to
the network according to certain schedules. However, the optimal timing, location and size
of node additions are still unknown. Theoretical studies on influential factors with respect
to sensor network lifetime may lead to insights towards optimal network replenishment
strategies.

Addressing these fundamental questions on sensor network lifetime, our original contri-
butions in this chapter are as follows. First, we rigorously define the concept of operational
lifetime of sensor networks. After such lifetime expires, a certain percentage of data trans-
missions fails. Though more complex, such a concept of lifetime is more relevant than
definitions in previous studies, e.g., the time elapsed until the last sensor node fails [16]. We
show that network fails to function with respect to transmissions long before the failure of
the last node. Second, we develop the lower and upper bounds of operational lifetime using
a stochastic model and a cut-based methodology. Our asymptotic analysis shows that, for
fixed network sizes, operational lifetime decreases in the order of 1/

√
n as the number of

initially deployed nodes n grows. For fixed node densities, the lifetime decreases in the order
of 1/n. Our analysis also shows that the operational lifetime of the network is shorter than
the average lifetime of individual nodes by a certain factor, which supports our definition
of operational lifetime. Finally, we examine the impact of constrained energy levels on the
maximum sustainable throughput in sensor networks. For sensor networks with renewable
energy sources (e.g., solar energy sources), our analysis shows that the maximum sustainable
throughput in energy-constrained sensor networks scales worse than the capacity predicted
based on interference among concurrent transmissions, if the physical network size grows
with n in the order greater than log n. In this case, when the number of nodes is sufficiently
high, the energy-constrained network capacity dominates. We believe that the effects of
energy constraints on the operational lifetime and the capacity of wireless sensor networks
are still largely unchartered territories, as there exists no previous work seeking to answer
these questions analytically to the best of our knowledge.

The remainder of the chapter is structured as follows. Sec. 5 formally defines the network
operational lifetime. Sec. 6 introduces the assumptions and definitions that will be used to

3The operational lifetime will be formally defined in Sec. 5.
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analyze the operational lifetime. Sec. 7 analyzes the energy cost for relaying network traffic.
Sec. 8 derives the lower and upper bounds of the operational lifetime. Sec. 9 discusses
the implications of the results derived in Sec. 8. Sec. 10 derives and discusses the energy-
constrained transmission capacity. Sec. 11 summarizes the main contribution of this chapter
with respect to the energy-constrained performance limits. Finally, Sec. 12 concludes the
chapter.

5. Definition of Network Operational Lifetime. The primary functionality of
wireless sensor networks is to sense the environment and transmit the acquired information
for further processing. As a result of constrained energy levels, sensors will eventually fail.
However, intuitively, a network may fail to continuously support data transmissions — its
primary functionality — long before the last sensor node fails (such intuition is shown to be
correct later in this chapter). This will occur when the number of failed nodes in the network
reaches a certain critical threshold. Therefore, the operational lifetime of a network should
be defined such that, after such lifetime expires, a certain percentage of data transmissions
fail.

Let ε be a real number that satisfies 0 < ε < 1, we define the operational lifetime of a
wireless sensor network as follows (detailed derivations that motivate such a definition are
postponed to Sec. 8).

Definition 5-1. The operational lifetime of a network is the expected time after which
at least 100(1− ε2)% data transmissions fail.

The understanding of the asymptotic behavior of operational lifetimes is essential to the
study of sensor network feasibility: whether or not a sensor network can function till the
end of its mission. If a sensor network is proved to be infeasible, either the network should
not be deployed, or a network replenishment strategy has to be devised. The replenishment
strategy may propose to add additional nodes — and thus to add additional energy — to
the network, in order to ensure that the network will complete its mission successfully.

6. Assumptions and Definitions.

6.1. Network Model. We begin our journey towards proving the correctness of our
key observations and claims previously stated. Fig. 6.1 illustrates the setup of the problem.
Without loss of generality, consider a wireless sensor network with n nodes uniformly de-
ployed within a square area of size A as shown in Fig. 6.1. Each node has constrained energy
sources. Optimal power schedules are assumed, achievable by optimal power management
strategies. The objective is to find asymptotic impact of constrained energy resources on
the fundamental performance limits of the network, such as the operational lifetime and
data transmission capacity.

We consider the typical scenario in which all nodes behave as sources and the data
sink is the destination of all transmissions. In the case that the source can not reach
the destination directly, intermediate nodes will act as relays to forward messages to the
destination via multiple hops.

As shown in Fig. 6.1, we consider nodes near y-axis (or x-axis) cuts close to the data
sink. 4 Such a cut-based technique has been used in [12] and [13]. We argue that the
analysis of the energy cost and thus the lifetime of the nodes near the cut can provide
adequate insights into the energy cost and performance of the entire sensor network.

4The y-axis and x-axis cuts will be formally defined in Sec. 6.3.
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data sink

Fig. 6.1. We study a wireless sensor network with n nodes in a square area. The goal is to examine
the asymptotic impact of constrained energy resources on the fundamental performance limits of the sensor
network. The size of the square area is A.

6.2. Radio Model. Before we progress to a position to analyze the energy cost of
data transmissions and the operational lifetime of the network, we need to clarify our basic
assumptions and establish a few terms by definitions.

We first define the radio model used in this chapter. In this chapter, we adopt the first
order radio model used in [6], [16] and many other literatures. In this model, the following
energy parameters are included: transmit (α11), receive (α12), and transmit amplify (α2).
Without loss of generality, all respective energy costs are for one bit. We do not include
the energy costs of sensing. The reason is that energy costs for sensing depends heavily on
the specific application. Nevertheless, such energy costs can be easily integrated into our
solution once the sensing model is defined. Based on such a radio model, the energy costs
for transmitting the signal across the distance of r is

Er = α11 + α2r
α + α12 = α1 + α2r

α(6.1)

where α1 = α11 + α12. When a source sends a message to a destination whose distance
from source is d, it can use intermediate nodes to relay the message. Under the first order
radio model, the optimal distance between relay nodes is the characteristic distance denoted
by dm [16]. dm is defined as

dm = α

√
α1

α2(α− 1)
(6.2)

dm is independent of the source-destination distance d. Theorem 2 of [16] proves that
dm is the optimal hop distance for any d and the optimal number of hops taken, K, is given
by either K = b d

dm
c or K = d d

dm
e. Without loss of generality, we assume d À dm in our

chapter to facilitate discussions. Hence K = d
dm

.

6.3. Concept of Cut. We then formally define the concept of cut and failed cut. A
y-axis cut at position x is a line segment parallel to the y-axis whose x-axis position equals
x. The y-position of the line segment starts from 0 and ends at

√
A. When the nodes near

the cut fail, network traffic can not cross such a y-axis cut. Such a y-axis cut is referred to
as a failed y-axis cut. An x-axis cut at position y and a failed x-axis cut can be similarly
defined.

7. Energy Cost across the Cut. We now consider the energy cost of nodes near
a y-axis cut. As illustrated in Fig. 6.2, a y-axis cut is placed at position x = b. We are
interested in the energy costs of the nodes in a set R, where R is defined as
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dc

x=bB

r

r

 

source

destination

dm

G



o

Fig. 6.2. A y-axis cut is placed at position x = b. B = [b− dc, b]× [0,
√

A]. Any message from source
to destination must be relayed by one or more nodes in B.

R = {v|(vx, vy) ∈ [b− dc, b]× [0,
√

A]}(7.1)

where dc is the maximum transmission range used by the nodes in the network. In the
case that each node uses different maximum transmission ranges, since dc must apply to all
the cuts, dc should be interpreted as the average of the maximum transmission ranges used
by all nodes. Informally, R represents the nodes within the rectangular area immediately left
of b, whose width is dc. Denote the area occupied by R as B. We have B = [b−dc, b]×[0,

√
A].

Definition 7-1. The relay position set G is defined as the set of possible positions of
relay nodes.

Without loss of generality, assume that the transmission is from left to right. Then G is
the right half of the circle centered at the sender. We assume that each node in the network
needs to send 1 bit of information in each time slot. Since dc is the maximum transmission
range, any source must rely on one or more nodes in R to relay the messages in order to
cross cut b. Let hb be the number of hops a 1-bit message needs to take in B in order to
cross cut b. Let rj be the distance traversed in the jth hop, where 1 ≤ j ≤ hb. Let oj and
zj be the sender and receiver of the jth hop, where obviously zj−1 = oj for 2 ≤ j ≤ hb. Let
cb be the energy spent by oj , 1 ≤ j ≤ hb. cb is in fact the total energy spent by v ∈ R in
order to forward such 1-bit message to cross cut b. We then have

cb =
hb∑

j=1

Erj =
hb∑

j=1

(α1 + α2r
α
j )(7.2)

rj are in fact iid random variables. This claim is based on the observation that sub-
paths of shortest paths are shortest paths. Further, the setup of cut b and area B is artificial.
The optimal schedule of each hop does not depend on the result of the previous hop. The
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only limitation is that the maximum transmission range can not exceed dc. Another way to
interpret this is that each hop actually belongs to multiple cuts.

Since rj are iid random variables, Erj are also iid random variables. Therefore, whenever
appropriate, we will omit the subscript j and use r and Er respectively in later discussions.
For instance, we can write

Er = α1 + α2r
α(7.3)

For practical applications, dm ¿ dc. In addition, we are able to show that, the proba-
bility of r À dm is very low. Therefore we have the equality5

dc =
hb∑

j=1

rj cos(θj)(7.4)

where θj is the angle between ~rj and the x-axis. We are interested in the expectation
of cb under optimal power management. From Eq. (7.2), we have

E[cb] = E[hb]E[Er] =
dc

E[r cos(θ)]
E[Er](7.5)

Lemma 7-1. cb satisfies

dc(α1 + α2d
α
m)

dm
≤ cb ≤ dc(α1 + α2d

α
c )

dm
(7.6)

E[cb] <
dc(α1 + α2ωα(λ, dc))

dm(1− e−λ
πd2

c
2 )

≤ dc(α1 + α2d
α
c )

dm(1− e−λ
πd2

c
2 )

(7.7)

where λ = n
A and ωα(λ, dc) < dα

c .
Asymptotically, ωα(λ, dc) satisfies a) limn→∞ ωα(λ, dc) = (1 + κ)dα

m, κ > 0; or b)
ωα(λ, dc) grows with n.

Proof: The proof of Eq. (7.6) is trivial. As proved in [16], the relay path with the least
energy cost is the straight line parallel to the x-axis (Fig. 6.2). In addition, the distances
traversed by each hop must equal to the characteristic distance dm defined in Eq. (6.1) in
order to achieve the minimum energy cost. Consequently, the minimum energy cost to relay
a 1-bit message across the cut shown in Fig. 6.2 is dc(α1+α2dα

m)
dm

. This minimum value can
be achieved iff network nodes occupy the positions whose distances from the point o are
multiples of dm, which is not the case in general. The proof of Eq. (7.7) is much more
involved. However, the asymptotic results of this chapter actually do not depend on the
details of the closed form of ωα. In fact, the qualitative claims pertaining to ωα can be

explained intuitively. Since dm is the optimal distance [16], we can use dm(1 − e−λ
πd2

c
2 ) as

the first order approximation of E[r cos(θ)]. Since Er = α1 + α2r
α, the expectation E[Er]

5In general, the inequality dc ≤
Phb

j=1 rj cos(θj) ≤ 2dc rather than the equality in Eq. (7.4) holds. For
simplicity of presentation, we introduce the equality here. The asymptotic results of this chapter remain
the same if the inequality is applied.
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must have the form of α1 + α2ωα, where ωα = E[rα]. Obviously, ωα ≤ dα
c . Because dm is

the optimal distance, if the network node density increases with larger n (λ increases), the
optimal distance dm will more likely be chosen. In such cases, limn→∞ ωα(λ, dc) = (1+κ)dα

m.
For α = 2, it can be proved that κ = 1

2π . if the network node density decreases with larger
n (λ decreases), ωα increases since dc À dm

6 However, ωα never exceeds dα
c . ut

Fig. 7.1 shows the comparison of our theoretical bounds and simulation results. The
energy parameters used in simulation and theoretical bounds are α1 = 50nJ/bit, and α2 =
0.1nJ/bit/m2. The lower bound shown is calculated based on the assumption that the node
at the optimal distance dm along the straight line parallel to the x-axis will always be chosen
as the relay node. As shown in this figure, the upper bound derived above is reasonable
tight.
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Fig. 7.1. Comparison between simulation results and theoretical lower and upper bounds, where dc =
200m, and A = 4× 106m2. For convenience of illustration, the number of nodes shown is

√
n rather than

n. The unit of y-axis is nJ. α = 2.

8. Operational Lifetime of Sensor Networks. In this chapter, we are interested
in the operational lifetime tc of the sensor network. The nature of tc can be explained as
follows. With the progress of time, some of the network nodes may fail after the depletion
of their energy resources. Even though the distributions of the failed nodes are random,
there exist certain probabilities that some nodes that are physical proximate, such as the
nodes in the region B near a cut (Fig. 6.2), may fail faster than some of the other nodes in
the network. If this event happens, all the network transmissions that across that cut will
break. When the number of the failed cuts in certain critical region (as will be analyzed
in Fig. 8.1) reach certain threshold, more than 100(1 − ε2)% data transmissions fail and
the network reach its operational life. Our study of operational lifetime tc explores the
aforementioned characteristics of the network. In general, the operational lifetime can be
reached long before the last node in the network fails.

As assumed in Sec. 7, each node in the network needs to send 1 bit of information
in each time slot. As shown in Fig. 8.1, we assume that there are m y-axis cuts, whose

6If dc ¿ dm, ωα will approach a constant > 0, because dm > 0 is the optimal distance.
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......

1/m

 
data
sink

B

Fig. 8.1. There are m y-axis cuts, whose positions are i
m

√
A, 1 ≤ i ≤ m. For the convenience of

illustration, the figure shown above has been normalized to the size of 1. When considering y-axis only,
100ε% transmissions will break iff there is at least one failed y-axis cut whose position x ≥ (1− ε)

√
A.

positions are i
m

√
A, 1 ≤ i ≤ m. The value of m will be determined later in the proof of

Lemma 8-1. For the cut at the position i
m

√
A, the amount of traffic needs to be relayed is

i
mn. Therefore, the total energy costs in t time slots for nodes v ∈ R near such a cut is

ct,i =
t∑

k=1

i

m
ncb,k,i(8.1)

where cb,k,i is the average energy cost of, in the kth time slot, to forward a 1-bit message
across cut i. During the development of the upper bound of cb, we consider the probability
of occupying, the probability that a position in region B (Fig. 6.2) is occupied by a node,
based only on the initial deployment. In practice, the probability of occupying is affected
by the energy cost as well. A node will fail after depleting its energy resources. Because
of the failed nodes, the effective number of the nodes in the network decreases over time.
Therefore, to model cb,k,i, the energy cost in the network after the number of nodes decreases,
the value of λ needs adjustment accordingly. λ should equal to n

Aτk,i, where 0 < τk,i ≤ 1.
However, because the initial distribution of the nodes in the network is random and the
random nature of the network traffic, the distributions of the failed nodes are also random.
Consequently, the results from Lemma 7-1 still hold for cb,k,i. In fact, the inequality in
Eq. (7.6) and the qualitative claims pertaining to the asymptotic behavior ωα hold even for
uneven distributions of network nodes. In practice, we are interested in the values of n and
A smaller than some finite values nmax and Amax. Because a smaller λ leads to a larger cb,
there exists a value τmin, whose corresponding cb,max satisfies

E[cb,max(
n

A
τmin, dc)] ≥ max

i,k,n<nmax,A<Amax
E[cb,k,i](8.2)

In addition, the value of cb,max is independent from tc. cb,max depends on the node
distribution characterized by λ = n

Aτmin. Therefore, we have
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E[ctc,i] ≤ i

m
ntcE[cb,max](8.3)

In the remainder of the chapter, all references to cb are actually the references to cb,max.
For simplicity, we drop the subscript max and use cb hereafter.

Lemma 8-1. The operational lifetime tc satisfies 2bεeo√
nA[α1+α2ωα(λ,dc)]

dm(1− e−λ
πd2

c
2 ) <

tc ≤ 2εbεeodm√
ndc(α1+α2dα

m)
.

Proof: We consider the y-axis cuts first. Because the data sink is the destination of all
the transmissions, 100ε% transmissions will break iff there is at least one failed y-axis cut
whose position x ≥ (1 − ε)

√
A. As shown in Fig. 8.1, we define the region covering these

cuts as Bε.
We develop the lower bound first. Let nf (t) be the number of failed cuts in region Bε

by time t, we then have

nf (t) =
mε∑

i=1

It,m−i+1(8.4)

where It,m−i+1 is the indicator variable defined as

It,j =
{

1, cut at the position j
m

√
A has failed by time t.

0, cut at the position j
m

√
A is active by time t.

(8.5)

E[nf (t)] =
∑mε

i=1 E[It,m−i+1] =
∑mε

i=1 P [It,m−i+1 = 1], where, based on Markov in-
equality, P [It,m−i+1 = 1] = P [ct,m−i+1 ≥ ndcreo] ≤ E[ct,m−i+1]

ndcreo
, where eo is the initial

energy available at each node, and dcr = dc√
A

. Hence tc, the expected time required for
100× (1− ε)% network transmissions to fail due to failed y-axis cuts satisfies the following:

1 ≤ E[nf (t)] ≤
mε∑

i=1

E[ct,m−i+1]
ndcreo

≤ tcE[cb]
dcreo

mε∑

i=1

m− i + 1
m

=
tcE[cb]
dcreo

mε[(1 +
1
m

)− 1
2
ε− 1

2m
]

Since there are n nodes in the network, we then have m =
√

n 7. Therefore, as n →∞,
tc satisfies

1 ≤ tcE[cb]
dcreo

√
nε(1− 1

2
ε)

7A more precise estimate of m is m ∝ √
n. For simplicity of discussions, we let m =

√
n, since it will

not affect our discussions of the asymptotic behavior of tc.
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Let bε = 1
ε(2−ε) , we then have

lim
n→∞

tc ≥ 2bεdcreo√
nE[cb]

>
2bεeo√

nA[α1 + α2ωα(λ, dc)]
dm(1− e−λ

πd2
c

2 )

Using the second inequality of Eq. (7.6), we can follow the steps similar to the above
derivation process, but without the need to reference Eq. (8.2) and Eq. (8.3), to develop a
relatively loose lower bound of tc as follows:

lim
n→∞

tc >
2bεeo√

nA(α1 + α2dα
c )

dm

To develop the upper bound, we use the condition that the total energy cost of all the
cuts in the region Bε can not exceed nεeo. We then have

nεeo ≥
mε∑

i=1

ct,m−i+1

=
mε∑

i=1

tc∑

k=1

m− i + 1
m

ncb,k,i

Applying Eq. (7.6) of Lemma 7-1, we have

nεeo ≥
mε∑

i=1

tc∑

k=1

m− i + 1
m

n
dc(α1 + α2d

α
m)

dm

= ntc
dc(α1 + α2d

α
m)

dm

mε∑

i=1

m− i + 1
m

Applying m =
√

n as before, we have

lim
n→∞

nεeo ≥ ntc
dc(α1 + α2d

α
m)

dm

√
nε(1− 1

2
ε)

Therefore, the upper bound of tc is

lim
n→∞

tc ≤ 2εbεeodm√
ndc(α1 + α2dα

m)
(8.6)

The upper bound just derived is a loose bound. To achieve the equality in Eq. (8.6), two
conditions must be met. First, all the energy resources on all the nodes in the region Bε must
be depleted at the time tc. Second, the minimum energy cost dc(α1+α2dα

m)
dm

must be achieved
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for all data transmissions throughout the lifetime of the network, which is not possible at the
later stage of network life. Nevertheless, the upper bound in Eq. (8.6) offers additional proof
that the energy-constrained capacity scales worse than the interference-constrained capacity.
For instance, for fixed λ, the upper bound of tc scales as 1√

n log n
because dc must grow with n

in the order of Θ(
√

log n
πn ) in order to keep the network connected [18]. Note that in Gupta

and Kumar [18], it is assumed that the network occupies unit area. Compare 1√
n log n

,
the upper bound of tc for fixed λ with the interference-constrained capacity Θ( 1√

n log n
)

[19, 12, 24], we prove that, since the upper bound of tc is not attainable, the energy-
constrained capacity scales worse.

In the above derivations, we only consider the broken network transmissions due to
failed y-axis cuts. In fact, when the expected number of failed y-axis cuts reaches 1, the
expected number of failed x-axis cuts in Bε also reaches 1. Therefore, at time tc, there are
at least 100× (1− ε2)% network transmissions broken.

Let tlow represent the lower bound of the network lifetime, we then have

tlow =
2bεeo√

nA[α1 + α2ωα(λ, dc)]
dm(1− e−λ

πd2
c

2 )(8.7)

ut

9. Discussion on Lifetime.

9.1. Fixed A, variable n. In such a scenario, the node density varies while the de-
ployment area of the sensor network remains the same. As shown in the proof of Lemma
7-1, limn→∞ ωα(λ, dc) =constant. Using Lemma 8-1, we have tlow ∝ 2bεeo√

nA
, when n is large.

Therefore, tlow will decrease in the order of n−
1
2 .

9.2. Fixed λ, variable n. In such a scenario, the size of the network varies
while the node density remains the same. When λ is fixed, we are able to prove
limn→∞ ωα(λ, dc) =constant for both fixed and variable dc by using the result that dc

needs to grow with n in the order of Θ(
√

log n
πn ) in order to keep the network connected[18]8.

Thus tlow ∝ 1√
nA

=
√

λ
n . That is, tlow decreases in the order of 1

n when the coverage of the
sensor network grows while node density remains the same.

9.3. Comparison with the Average Node Lifetime. Let to represent the average
lifetime of an individual node. Then to ∝ ndcreo

nE[cb]/2 . Compare this with the result from
Lemma 8-1, we conclude that the operational lifetime of a wireless sensor network is shorter
than the average lifetime of an individual node by a factor of bε/

√
n for fixed network sizes

and bε/n for fixed node densities. Since ε can not be too small, bε can not be too large.
Therefore, the operational lifetime is much smaller than the average lifetime of an individual
node when the number of nodes in the network is large.

This result confirms the validity of the definition of the operational lifetime proposed
in this chapter. It shows that the network has ceased to function long before the last node
fails from energy depletion.

8In Gupta and Kumar [18], it is assumed that the network occupies unit area.
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9.4. Intuitive Interpretation. Intuitively, for fixed network sizes, when there are
more nodes generating traffic, there are more nodes available to relay the traffic across the
cut because the node density will grow with n. Under optimal power management, when
the number of nodes is sufficiently large, the characteristic distance will always be chosen.
Thus the network lifetime depends mainly on the number of cuts vulnerable. We can then
conclude that adding more nodes in the initial deployment does not add redundancy, since
each new node needs to generate traffic and relay traffic for other nodes. Note that as n
grows, the absolute number of transmissions remaining after tc is larger, but it is much
easier for a certain percentage of transmissions to fail when n is larger.

When the network size needs to grow with the number of nodes, the node density
remains the same. Therefore, there will be relatively fewer nodes available to relay the
growing traffic across the cut. Such disparity will grow in the order of 1√

n
. Together with

the 1√
n

factor introduced by the number of vulnerable cuts, the lifetime decreases with n in
the order of 1

n .
The above discussion leads to the significance of the characteristic distance. If α1 = 0

(in which case the characteristic distance is not significant), more nodes will always lead to
less energy costs and a longer lifetime. However, when α1 is significant, the relay energy
cost will remain the same after n reach a certain threshold.

10. Energy-Constrained Transmission Capacity.

10.1. Scalability of Maximum Sustainable Throughput. For sensor networks
depending on renewable energy such as solar energy, the maximum amount of data that can
be transmitted in any given time period is limited by the energy available during the same
time period. Let w denote the maximum sustainable throughput, i.e., the maximum number
of bits can be injected into the network by each node without causing network failure as a
result of energy depletion. Based on Eq. (8.7), w can be found by solving following equation:

t =
2bεestdm(1− e−λ

πd2
c

2 )
w
√

nA(α1 + α2ωα(λ, dc))

w =
2bεesdm(1− e−λ

πd2
c

2 )√
nA(α1 + α2ωα(λ, dc))

(10.1)

where es is the power renewal rate. Therefore, w ∝ bε√
n

for fixed network sizes and

w ∝ bε

n for fixed node densities.

10.2. Comparison with Interference-Constrained Capacity. We compare the
above result with the capacity predicted based on the interference among concurrent trans-
missions. Interference-constrained capacity per node scales as Θ( 1√

n log n
) [19, 12, 24].

When λ is fixed, it is obvious that the energy-constrained capacity scales much worse than
interference-constrained capacity. In fact, ωα(λ, dc) either approaches a constant or grows

with n, and (1 − e−λ
πd2

c
2 ) either approaches zero or a constant no greater than 1. There-

fore, as long as A grows with n in the order greater than log n, the maximum sustainable
throughput w scales worse than interference-constrained capacity. In this case, when the
number of nodes is sufficiently high, the energy-constrained network capacity dominates.
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For a fixed A, since
√

log n grows very slowly with n, the scalability of the energy-
constrained capacity and interference-constrained capacity with respect to n are comparable.
Therefore, in the case that the power of the renewable energy source is constrained compared
to the power consumption of the system (after the adjustments necessary for considering
other variables and constants in Eq. (8.7)), if due to technology advances, the raw system
transmission capacity of the sensors grows much faster than the system power efficiency, or
the system power is increased in order to produce higher network throughput (as proposed
in [24]), the energy-constrained capacity will dominate.

11. Summary of Results. In this chapter, we systematically study the lower and
upper bounds of operational lifetime based on a stochastic model, and then identify its
influential factors. Let bε = 1

ε(2−ε) Our key results with respect to the operational lifetime
are established in the following theorem.

Theorem 11-1.
(1) For fixed network sizes, the operational lifetime of a wireless sensor network decreases

in the order of 1/
√

n as the number of nodes n grows.
(2) For fixed node densities, the operational lifetime of a wireless sensor network de-

creases in the order of 1/n.
(3) The operational lifetime of a wireless sensor network is smaller than the average

lifetime of individual nodes by a factor of bε/
√

n for fixed network sizes and bε/n for fixed
node densities.

Since
∑

i
1√
ni

> 1√P
i ni

and
∑

i
1
ni

> 1P
i ni

, Theorem 11-1 shows that, a good network

replenishment strategy is to replenish the network by adding additional batches of sensor
nodes in subsequent stages, and these batches should be organized so that the sizes of
different stages are as small as possible.

However, there exist several constraints to the smallest batch. These constraints include:
(1) The requirement of minimum coverage for sensing purposes (both in terms of node
density and network size); (2) The deployment overhead incurred in addition to the cost of
sensors; and (3) the limited deployment window due to realistic causes (e.g., enemy positions
in battlefields or weather conditions). Theorem 11-1 may be used to identify the optimal
network replenishment strategy under such constraints.

For sensor networks that rely on renewable energy sources such as solar energy, the
maximum amount of data that can be transmitted in any given time period is limited by
the energy available during the same time period. Our investigation towards the operational
lifetimes of sensor networks also leads to significant results with respect to the maximum
sustainable throughput. The following theorem establishes our key observation with respect
to the maximum sustainable throughput.

Theorem 11-2.
(1) The maximum sustainable throughput of a wireless sensor network with renewable

energy sources is limited by n in the order of bε/
√

n for fixed network sizes and bε/n for
fixed node densities.

(2) The energy-constrained capacity scales worse than interference-constrained capacity
if the size of the network grows with n in the order greater than log n.

The above results imply that, if the growth of the network size is not exceedingly
slow compared to the growth of n, and when the number of nodes in the network is suffi-
ciently large, the fundamental performance limits with respect to network capacity are dom-
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inated by the energy-constrained capacity, rather than interference-constrained information-
theoretic capacity.

12. Conclusion. In this chapter, we studied the fundamental performance limits of
wireless sensor networks. In particular, we studied the asymptotic behavior of operational
lifetime and energy-constrained capacity of sensor networks. For sensor networks with re-
newable energy sources, our analysis shows that the maximum sustainable throughput in
the network scales much worse than the capacity predicted based on interference among
concurrent transmissions, if the growth of the physical network size is not exceedingly slow
compared to the growth of n. Our results can be used to study the feasibility of deploying
energy-constrained sensor networks and their replenishment strategies.

Because of constrained energy levels, the feasibility of deploying sensor networks has
to be studied prior to its deployment. We can use Eq. (8.7) and Theorem 11-1 and 11-2
to calculate the expected operational lifetime of the network. In such cases, there usually
exists minimum coverage requirements on node density (for fixed A) or area covered (for
fixed λ). There may also exist minimum requirements on the network throughput. If the
operational lifetime calculated based on such minimum coverage requirements can not cover
the entire mission, a network replenishment strategy has to be devised to add additional
nodes — thus more energy — into the network to ensure that the network will complete
its mission successfully. Using Eq. (8.7) and constraints such as the deployment cost and
the time window, a linear programming problem can be formulated to identify the optimal
timing, location, size of node additions, and the schedule and amount of data transmissions,
while minimizing the costs and risks involved.
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