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ABSTRACT

Distributed Sensor Network research in the areas of tracking. aignal

processing, and system software is reported as is progress with the

design and developmelat of a DSN test bed. Two-hiode acousUc loca-

tion algorithms have been reformulated to better fit into the real-time

DSN environment. Degbosting techniques have been investigated and

the general organization of tracking tasks further refined. The devel-

opment of hardware and software for a small acoustic array and data

acquisition system which will evolve into a node of a DSN test bed has

been completed and the data acquisition system is operational. Sys-

tem software designs and ideas for initial three-node test bed use and

for more general DSN systems are presented.
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DISTRIBUTED SENSOR NETWORKS

I. INTRODUCTION AND SUMMARY

This Semiannual Technical Summary (SATS) for the Distributed Sensor Networks (DSN)

prograra reports research results for the period I October 1979 through 31 March 1980. The

DSN program is aimed at developing and extending target surveillance and tracking technology

in systems that employ multiple spatially distributed sensors and pr,•esstng resources. Such

a DSN would be made up of sensors, data bases, and processors distributed throughout an area

and interconnected by an appropriate digital data communication system. It would serve users

who are also distributed within the area and serviced by the same communication system. The

case of particular interest is when individual sonsors, cannot view the entire surveillance area

and when they can individually generate only limited information about targets in their iield of

view. The working hypothesis of the DSN program is that through suitable netting and distrib-

uted processing the information from many such sensors can be combined to yield effective and

serviceable surveillance systems. Surveillance and tracking of low-flying .aircraft, including

cruise missiles, using sensors that individually have limited capabilities and limited fields of

view, has been selected to develop and evaluate DSN concepts in the light of a specific system

problem. The research plan is to investigate these concepts and to develop a DSN test bed which

will make use of multiple small acoustic arrays to detect and t--ack low-flying aircraft.

Research in the area of raultiple-node acoustic tracking is reported in Sections II acd III

below.

Section II presents the overall structure of the multinode tracking task and the details of a

new two-node location algorithm which is planned to be the basis for initial on-line experiments

with real multinode acoustic azimuth measurements. The new two-node target location formu -

lation is convenient for real-time use. Each node cqn always mare immediate use of its own

most recent azimuth measurements, in conjunction with azimuth measurements from neighbors,

to produce the most up-to-date target locat!,on. Two-node, single-target simulation results art

presented and demonstrate the operation of the algorithm. The existence of false targets as well

as true target locamtiins fs noted with some suggestions for how to identify false targets.

Multiple targets in a multiple-node environment introduces additional false target problems.f"If azimuth measurements from two different nodes are combined to produce locations but the

measurements do not actually correspond to the same target, then a false target called a "ghost"

will result. Section III reports the results of a study of deghosting techniques for azimuth-only

sensors. Simulations were used to demonstrate various deghosting aids such as recogniticn of

unreasonable track dynamics, multiple-node redundancy, and consisteLucy requirements for esti-

matod source power levels. These and other aids will apply In a DSN because sensor ranges

tend to be on the order of node separatiokis and also targets a.•.e within range of different sensors

at different times.

Section IV reports progress with our single-node acoustic data acqisition system which is

now operational. The hardware is described with particular attention to measures taken to

achieve low system noise, equivalent to 20-dB sound level, which is below ambient except in

specially designed acoustic chambers. The gain-ranged analog-to-digital conversion system

operates from that floor to well over 100 dB, which is sufficient to deal with even very large
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aircraft at very close ranges. The status of the data acquisition software Is also surmmarised.

The software kernel (DAK) which supports data acquisition is to be modified and used for multi-
node experiments involving signal pro~esqing as well as data acquisition, The modifications,

Invoicing system calls to access move memory, are described. The first three test-bed DSN
nodes to be deployed will initially use this modified software and the hardware will be like the
data acquisition system, with signal-processing hardware added.

Work in two signal-processing areas is reported in Sec. V. An Interact.ve data analysis
package has been developed to process data produced by the data acquisition system, and we have
started work on the software to make use of array processors for raid-time USN signal process-
Ing. The interactive package it in use on our PDP-ii/70 running the UNIX operating system.
Depending on options selected, it will output waveforms, spectra, or asimutital power files in

well-defined formats for which access and manipulation packages are available. Use of this
package is lust startirg. It will be utilized to help select single-node signal-processing param-

eters. Modules for single-node azimuth tracking and multino" ,racking will be added as work I
on such algor-thms proceeds. The second part of Set. V reviews the hardware planned for sig-
nal processing at each DSN test-bed node anid outlines plans for providing L user interface for
programs running In the host computer included in each node.

Section VI reporta on r-esoarch in the area of system software designed for use in c. real-
time distributed network such as a DSN. The data acquisition kernel (DAK) which has been de-
veloped and is being modified for signal processing as well as data acquisition tasks is edequat3
for initial DSN experiments. DAK is a single computer system and ,the DSN must ultimately d'e-
velop a truly multicomputor system, The multicomputer design ideas presented in See. VI are
an extension o. idew already incorporated in DAK. In particular, all interprocess comnmunica-

don is accomplished by means of structured queueable objects which are exchanged between ,pro-

ceases. Topics discussed mclude queue organization for a distributed environment, passing, of

queues or processes between computers, and reliability.



II. ACOUSTIC TRACKINC ALGORITHMS

The major technical achievements in tie area of acoustic tracking have been the development

of a new method for position location, and the subsequent refinet.int cf the tracking task. The
new position location method, which is det;cribed in the next sectiok.0 enables target locations to

be determined by a pair of nodes in a manner that is easy to incorpoi'ato within a Kalman or

similar filtering scheme.

Using this methoe., the levels of tracking are:

(a) Ineividual nodes forri azimuth tracks for targets and broadcast new

points, as they are determined, to neighbors.

(b) Nodes use received azimut;h track data, combined with their own

r azimuth data, to determine target locations on a node puirwise

basis. Thvsc node pair locatians are broadcast to neighbors, along

with an estimate of the accuracy of the locations.

(c) NcKles use --eceived locations, along with their own locally generated
target locations, to determine target spatirl tracks. These data ar'e

then communicated to users and other nodes to satisfy overall system

operational requirements.

In forming single site azimuth tracks, we plan to 'ise a tracking algorithm patterned after

the work of Reid* and Kevarian.t Recursive filtering and estimation will be used to smooth

data, obtain estimates of the azimuth vs time tracks, and obtain estimates of azimauth variances.

The asimuth variances for in-track tarLts will be used to form azimuth gatea as shown in

Fig. Il-i. Peaks found to fall within the gates will be associated with that target. Peaks, such

as C in Fig. II-i, will be recorded for an appropriate acquisition time (probably 5 sec%. If the

peak appears at close azimuths in a statistically significant number of plots (probably 80 percent),

rl then a new target track and filter will be initiated provided that the variance is within acceptable

limits. This method avoids generating large numbers of kiew tracks at each irne step which

would have to be eliminated as being false at a later time.
When 'he gates for two peaks overlap, as shown in Fig. 11-2, we then mý dify our techniques

to allow for the fact that there is a probabilistic association between each peak and both existing

tracks. For this situation, both measurements are factored into both filters, based on the close-

ness of each peak to the predicted track. Also, we will detect when there is no longer any sta-

tistically significant difference between'the tracks and determine when they should be combined

into one track.

When these azimuths are combined into locations of targets, the variances will be carried

along, giving an error ellipsoid for each target location as shown in Fig. 11-3. These target

positions will be formed for the last point of common observation by the pair of nodes. If one

node has a more recent observation on a node, these data will not be used until a corresponding

observation is reciived from another node. This means that the locations are for the most

recent time in ths past that a location can be formed by any pair of nodes.

*D. B. Reid, "An Algorithm for Tracking Multiple Targets," IEEE Trans. Auto. Cont. AC-2-4,
No. 6 (1979).

t K. M. Kevarian, "Multi-Object Tracking by Adaptive Hypothesis Testing," B. Sc. Thesis, De-
partment of Electrical Engineering, Massachusetts Institute of Technology (1979).
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These two-node positions can then be formed into a track by Any node that generates or re-

ceives the position reports. The positions will be formed into tracks using Kalman filters to

smooth the data and to get an estimate of the variances in target location aud velocity ostimates.

Two-node trackers may also deal directly with single-node azimuth tracks as well as with the

two-node location estimates. In general. segments of track will be formed by pairs of nodes

as a target fies through a DSN network. The locations from these multiple segments of track

cat. then be combkneti into a sinqle track by any node that receives the location atibrates. Other

multiple site trac ters which are driven by azimuth rather than location estimates are also poe-

sible and will be hivestigated in the course of our ongoing work.

Multiple site tracking ushig location rather than azimuth inputs reduces the spatial tracking

to a form that is similar to radar tracking. In doing so. we are hoping to use many of the tech-

niques that have been developed in this field. The major differences are that a track formed

from observateons by nodes A and B is not ,tatistically independent from a track formed from

observations by B and C, and possibilities of target ambiguities or ghosts exist as discussed

in Sec. III of this report.

A. TARGET LOCATION ALGORITHM

Our prior method for position location involved finding the intersection of two curves in

space. These curves were generated from the azimuth vs time curves, for some time ir. the

past, T, as shown in Fig. 11-4 by projecting the azimuths at t -sec intervals forward from T

and equating these to increments of C meters in range (where C is the velocity of sound).

OBSERVED FROM NODE A

p. z I

EO S~EFIROM N

ONSERVto I" •/O& a

Fig. 11-4. Determination of position location I
using possible position curves.

TIME

CUVSFRTMPOSSIBLE LOCATION

LOCATION
AT TIME T

OT V"~ F

51 
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However, we would like to update the state of the target every time we determine a new

asimuth. With our prior method, a particular reading allowed an extra point to be appeoded to

each of the curves for each time, T, in the past. This was cumbersome to implement in a real-

tinie environment because of ouch factors as the need to maintain possible position curves for

: 11 times in the past. To o ercome real-time implementation problems an altermate method

has been developed which is called the "Reflected Observation* r-thod. The following is a

description of this method.

Consider the situation where we have a target flying past node A which is observing the

target and sendinC the auimuth vs time data to node B. Node 8 then makes its first obeerva-

tion on the target at angle * . This observation may correspond to an observation nmde by A,

as shown in Fig. 11-5. If the travel time of sound froin the target to A is tA and from the targe

to B is tlE then A would have observed the target at a time 6 tB - tA in the past. As shown

in Sec. C below, we can relate 6 to the angles and the distance d between the nodes by

d (ain(OA) - ain(#,)i
tG min(#A + 0B) •

This equation is only valid for the range in which the ar4gular observations from A and 8

intersect.

Using this formula, we can translate the observation 0 to a curve of possible ob•ervatioun

of 6 t v A as shown in Fig. 11-6. The intersection of this reflection curve with the curve of

TARGET

1 Fig. II-5. Target observed by A and B.

-%Lww

REOU

OF#~o , 1
IMTER~ CT--'oaseRVATIO 0 0m

Fig. II-6. Intersection of actual obsemttions by A with reflection to
node A observation by B.

6



observations ttom A gives the wgle of obae--zation of A that is common with the anglM of ob-

servation of B for which the reflection curve is generated. The common observation azimuths

can then be triangulated to find the location of the target. The time at which the target was at

this location can then be determined by subtracting the travel time from the location to node 13

from the time of observation at node B. This position location can then be used as input to a

conventional Kalman spatial filter tracking scheme, except that the filter runs at a time that

corresponds to the last time which gave rise to a common observatio'a at nodes A and B As

B makes each new observation, it c *; rompute a new positiUn, ard use this as its input to the

Kalman fl!fer.

There are several special canes of interest. The first is when the reflected curve does

not intersect the observed curve. In this case, the observation at B does not correspond to a

prior observation by A. B could save up its results and wait for A to make an observation.

It id probably better for B to just transmit .he observation to his neighbors. In this way, the

rode making the confirming ý,servation will do the processing. At first look, this would seem

to dist-ibute the processing load in the network in an effective manner. The procedure would

be for a node to always transmit its observation, but only to use its current observation in

forming and updating tracks.

The second case is where there are multiple observation curves from A as shown in

Fig. 11-7. In this case, there will be ambiguities which will need additional discriminants. We

can use spectra or an observation from a third site C. If we reflect 0. onto the observations

from C, we should find only one intersect correspoiiJing to the intersects on the observations

from A. If therc is more than one, then we must assur.e that there is more than one target

and track it accordingly. In general, the problem of multiple observation curves is a major

topic of continuip'g rmsearch. Incorrect associations result in ghost' targets which do not

occur and which must ultimately be identifiexi and removed (see Sec. I11).

F OSSERVATIoNS
. :) j BY NODE A

i • . REFLECTION CURVE
NOW

TIME

Fig. H-7. Multiple observation curves from A showing possible intersects
with reflection curve.

We also find that the reflection curve can intersect the observation curve at more than one

place. This implies ambiguity in the position location. It may be possible to eliminate one or

the other of the ambiguous locations by comparing it with the current target state. Otherwise,

it will be necessary to track both targets until one or the other is proved to be the true target.
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Fig. H-8. Use of projected observation curve for target iocation.

REFLECTION CURVES
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z a
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-I 100 -OOrnm/sec

-,0 -to 0 to 40 go

TIME (sec)

Fig. 11-9. Observations and reflections for aircraft flying past two nodes.
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There is also the came wxere A was obeerving the torget. b't lost it before B required it

as shown in Fig. 11-8. In this case, it may be possible to project the observation curve to in:br-

act with the reflection curve. to obtain a location for the target. In the case that k actually
i ~had the target in location track in conjunction wirt. another nods. that location track could be

: ~~extrapolated ý,nd converted to m projected azimuth obseevat;on curve for use w~th the P.

:! observation.•

B. SOM•E RESULTS USING THE REFLECTED OBSERVATION
LOCATION METHOD

Figure 11-9 ahows the simulation of the azimuths at which peaks would be observed by two

nodes, A and B, for an aircraft flying parallel to them. The aircraft is assumed to have a

closest point of approach (CPA) of I km from node A, at time 0, and is flying due east at

100 m/sec. The observations of B at times of -15. 0, 20. and 40 sec relative to the CPA at

node A were converted into reflection curves. The interseet of these curves with the curve of

observations from node A gives the angles of observation nt node A correspond'Ang to the angles

of observation from node B. These angle., were then triangulated to find the locations at the

times of common observz~ion, and these were shown to be on the simulated aircraft track. In

Fig. 11-9, the reflection curves are plotted for all angles observed at A up to the time of ob-

servation at B for which the reflection curve is plotted. For -,his reason, the curves for iktar

reflection times are longer. The curve for a reflection time of 40 rec no longer intersects with

the curve from node A. This is because the aircraft was closer to B than t, A, anJ A had not

yet received the sound that B was observing. Strictly speaking, the curve for 40 sec should ba

termir•ated at 40 sec since that is the time of observation.

Figure II-tO shows the results obtained with the aircraft flying past the same two nodes,

except that the course has been changed so that the aircraft flies between the nodes with its

CPA to node A behig slightly closer than its CPA to node B. Again reflection curves were

n ,o iis-lI

100.4

REFLECTION CURVE
FOR TIME - 4 4,.

II:+~~~AS W" +s[+,,l'. TRhUE TARO[T

41 AIRCRAFT AT CPA OBSERVED BY A
TO NODE A s.',

24km I 2.4km"

00 -to100 m/,21.

TIME (see)

Fig. 11-10. Cbservations and ,keflections for an aircraft flying between two
nodes showing false targets.
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r generated, and the alitci-aft warn tracked. In this came however. a false target appeared in the
form of a second intersection between the reflection curve and the observations by A. In
Fig. II-i') the refl.ection curve for only one time is shown, whic). is during the tire that false
targets *nre observe~d. Th- gebometrical explanation of the false target can be seen from
Fig N-1 1. In determining the intersect, we are only using a singular observation of B. Thcre
ave two obsoertations that A made prior to 13 for which the time difference of arrival (TDOA)
fits the inutual observations of A and B. As a consequience. we have no way of determining
from & singular meastrrement made by B which is the true target.

TARGETFtLSIF. TARCET

OBSERVATION aTRE RC

............... 
;

Figure U1-12 shows the track for the true and false targets. It can be seen that the false
target appears in the vicinity of the nod-is and "flies" from the true track into one of the nodes.
This false tsarget "ri. be e'irninated u.3ing several possible mechanisms. First, if B had been
able to make a prior observation corresponding to A's observation n (see Fig. II-it), then he
would be able to tag thr-t observation a,- already having been used. This point would then not
be used in generating the reflection curve and thn false track would be eliminated. Alternately,
if an~ ýntervening hill had preclumded B from making this prior observation, then it wouid be nec-

essary to tt'ack the faisp' target until it disappeared by flying into node A. As both the true and
false tracks are Glipported by B's observation, it may well be possible to eliminate the false
target on the basis that it is 'rompeting ugainst a well-established track for the use of the sin-
galar Observation~. Thvs, using decision making techniques, we may well be able to elimirate

such false targets long before they would be displayed to operators.

10



C. DERIVATION OF REFLECTION CURVE

Following Is the dortvation of the r.)floctioa curve used for the reflected observwtion loca-

tion method presented and discussed above.

1TJzREIT

I I

a j
Fig. 11-13. Geometry for determining reflection curve.

Considsr the geumetry shown inFig. 11-I 3. For that geometrt,

,A s-i--A .l 4P•- -B •

=B A )
6 t T" - "T

t AcosoA +B coosB =d

and fro-Ni Eq. (1),

t 'B'AsFliT '*IB = A sin @

Substitating into Eq. %3) gives

sin~

d=

IA coo #A 4 'Asi03' O

d sin 0,3

A sint 0coaA + sin4Acos 0B_

d sin 0,
•al s(OB + OA)

d sin OA

and finally

(sin CA - sin 0,)

, C&



This is valid only in the range where the observations intersect, namely;

if 0B "'O: O < 4A< w-OB

if0< 0 0" IW O

ifOB 0: thenOA= nr for n 0,1, Z, 3...

an~d the position must be determined •:y the inter'section of the ray from node B with a proJtection

of the prior observations.
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HII. flEGHOSTING TECHNIQUES FOR AZIMUTH-ONLY SENSOR NE'I WORKS

A basic element of target information available from a node using a small array of

microphones as sensors is azimuth as a function of time. For a single target, its location is

fixed by projecting the azimuth data at two separate nodes to an intersection as discussed in
Sec. 1! above. But beyond the difficulty involved in processing the array data into an azimuth

and acoustically projecting that azimuth out in space and back in time is the problem of an inter-

section that results from azimuths that in reality correspond to different targets (i.e., the prob-
lem of ghosting). The problem can be severe since at each pair of sensor nodes n-taxlets can

produce n2 tntersections (n2 - n ghosts) and in m nodes there are m(m - 1)/2 pairs. For ex-
anmple, 4 targets simultaneously being tracked by 3 nodes can have 36 ghosts. When targets are

at ranges large compared to the node separation, many ghosts can have track characteristics

like those of true targets. * A study of the azimuth-only multisensor ghosting problem has been

completed and the conclusion reached is that for a DSN there are sufficient deghosting aids avail-
able to solve the ghosting problem. For simplicity, the finite velocity of sound has been ignored

for this study.

In a DSN, node separation and target detection range are generally comparable distances.

Additionally, the field of "iew of a DSN is largely internal to its perimeter. The effects are that
a target of interest is in the field of view of at most a few nodes at any given instant of time and,
in general, a target will subtend a large range of angles during tht total encounter period it has

with any node pair. Since ghosting is strictly a seni3or pair phenomenon, it is then reasonable
to expect that track dynamics will vary enough to distinguish true targets from gho its and, since

any target will continuously pass from one sensor pair to another, that only true target tracks

will be continuous. To quantify this behavtor, an m-target n-sensor simulation program has

been written and used to investigate the ghosting problem in a number of realistic multitarget

scenarios in a DSN geometry.
In addition to purely geometrical considerations, targets are characterized by their sound

signatures. Since a ghost is a target pair phenomenon, the acoustic signature attached to a

ghost will be inconsistent from node to node. The most basic signature characteristic is signalr power. The targets producing sound may be much closer or farther from the sensor nodes thr-n

the ghosts. If so, the sound power apparently being emitted by a ghost may be larger or smaller

than is reasonable for an aircraft. In most cases, real targets will be at different ranges from

sensing nodes so that the power attributed to the ghost by each of the two detecting nodes will
differ. When a ghost results from detecting two targets with different propulsion systems an
even stronger discriminant will exist. Par exampý_, a ghost due to an azimuth on a helicopter

and one on a jet will have a widely different spectra at the two detecting nodes. This spectral

property is very robust and nearly independent of target range and aspect. Its proper application

to deghosting should occur before tracking is initiated so that location algorithms will be run
only on data with consistent target signatures. For this reason, the simulator does not consider

target spectra. However, the apparent power deghosting characteristic is included.

Two other deghosting aids have also been considered: redundancy and the consistency of the

appearance and disappearance of target tracks. Redundancy here implies the number of con-
firming nodes contributing to track. It is, in the geographically local sense, a rather weak

* W. P. Harris, C. D, Forgie, and F.C. P•rick, 0The JAMTRAC Study," Technical Report 180,
Lincoln Laboratory, M.I.T. (8 July 1958), DDC AD-133860.
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Fig. 11-i. Ghost tracks due to 2 targets (Ti. Tz) observed by 2 azimuth-only
sensor nodes (SI, S 2). Targets are progressing eastward. Successive loca-
tions are plotted at constant 2-sec intervals. Ghost GI is due to the false inte! -
section of S1 strobed on T2 and S2 on Ti. Ghost G2 is due ,o S1 on Tj and S2
on TZ. G1 is born at S1 and dies near S2. Gz is born at very large range to tho1
NW and recedes at very high velocity to the NE.
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Fig. 111-2. Velocity of the ghost tracks in Fig.Ill-1. G2 remains 4
supersonic over its entire path, Gi exhibits a wide range o subsonic
velocities.

14

.. ... .... .



discrimninant but In the network sense probably the beat discriminant. A hs location Is aT?
two-target two-sensor effect and the location of a ghost Is a function o! the specific two-target

two-sensor geometry. The likelihood of one sensor pair generating a complete ghost track that

will be confirmed by adjacent sensor pairs is small. It is very unlikely that a ghost will form a

reasonable track across the! network. However. In the local sense where redundancy Is mnea-

sured by the nuamber of s.imultaneous azimuths contributing to a single location. the situation is

not as clear. Even though a ghost has two and only two contributing azimuths It is easy to find
realistic examples where ghosts will cluster within the system location resolution. Since the

economy of a DSN is maximized when it is constructed such that targets are not simultaneously

being detected at very large numbers of nodes, local redundancy then cannot be used exclusively

to eliminate ghosts. As will be seen in the simulation examples. ghosts often appear and dis-

appear at inconsistent places. for example, at a node or well beyond any possible aensov det.-c.'

tion range. This characteristic then can also be used for deghosting.

The simulator is. constructed as follows. Targets -ire specified by their initial location.

acoustic power level. and velocity. Sensor nodes are specified by their location and a detection

range. Time is Incremented and as each target flies within the detection range of any sensor

pair, Its location is noted. When a target Is in range o~f any node and any other target is in range
of any other node and if two azimuth strobes intersect the ghost is noted. Tracking is assumed

(a ghost track is the set of false intersections due to the same real target pair observed by the

same sensor pair in time). For all tracks, the velocity, the acceleration, the apparent power

that is needed to be generated at the intersection location given the observed power at each de-

tecting sensor, and the rate of change of that apparent power are calculated.
Figures 111-1 through -5 show these functions for the case of 2 targets and a single sersor

pair. In Fig. 111-1, T4 and T2 mark the Initial target locations. Speed for both targets is

250 rn/sec and radiated acoustin power is 120 dB. Locations are shown every 2 sec. S , and

S2 give the ? sensor node locations. Ghost tracks begin at G, and G 2 . Recalling that adjacent

points in the ghost tracks are also at 2-sec intervals, the G , track is seen to slowly accelerate

out of the S1 node and to slow to near zero velocity as It approaches the S2 node. The G2 track

flies bi from large range at very high velocity and exits in the same m..nner. Figures 111-2

and -3 show the calculated velocity and acceleration for each track in Fig. 111-1. The true target

tracks appear with fixed velocity and zero acceleration. Mach I and a nominal velocity for a

very slow jet are also shown in Fig. 111-2. Physical reasonableness of velocity and acceleration

are clearly useful deghosting aids. Figure 111-4 shows the apparent power attributed to each

track by each sensor. Sound levels for various different types of jets are also shown. Each

ghost not only exhibits wide power variations over its track but Inconsistent values from sensor

to sensor at each point In time. The time derivatives of the average track power for each track

are shown in Fig. 111-5.
Figures 111-6 and -7 show the resulting tracks for 2 targets at 3 sensors and 3 targets at

2 sensors, respectively. The variations in the ghost tracks again point to unusual and, at times,
impossible target behavior. With respect to using local redundancy as a deghosting parameter.
Fig. ITT- 8 shows one instant in time of the simulation in Fig. IT1- 6. if the small square In the

figure represents system location resolution then the two ghosts with It are Indistinguishable

from one another. Since these two gkiosts are the result of three beartngs, just as each target.

there Is as much confirming evidence for the ghost as for the targets.
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and their 3 associated az•imuth strobes would produce the same degree !of redindati i nformation as would be attached to the actual targets.
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The above simu~ations are generally characteristic of all the simulations we have conducted.
In summary, software has been written and used to examine the ghosting problem in a DSN.

From a number of examples it was established that track dynamics in a DSN geometry are robust

deghosting parameters. Additionally, we found that acoustic aignature estimation, primarily

perceived power level, could also be used to deghost. Local redundancy cannot be used exclu-

sively for deghosting; however, network redundancy (i.e.. ghost track consistency from sensor

pair to pair) Is a strong deghosting aid. Though we did not Investigate the algorithms needed to

do the deghosting nor did we account for the effect of acoustic propagation in determining track

parameters, the work does indicate that the structure of a DSN designed for tracking low-flying

aircraft by acoustics Is such that the ghosting problem. thuugh computationally demanding, is

solvable.

Ii
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IV. DATA ACQUISITION SYSTEM

"Bioth the hardware and the software for our Data Acquisition System have been made I
operational. The following sections summarize hardware and software aciviiUes related to

this system. j!
A. HARDWARE

The Data Acquisition System described in our previous SATS* is now operationaL A nin,-
element array has been installed on the roof of one of the Laboratory buildings, and preliminary
data have been acquired. Analysis of these data showed that there was significant system noise

masking the data, and considerable effort has been expended in reducing that noise to an accept-

able level. This section reports on the configuration that resulted in a satisfactory system noise
level and also on how some of the other problums, such as providing overload protection for

microphone preamplifiers, were solved.

I~fl?-SIELECTRkT

AND
PKAMPRLFIERS

ON ROOF

S.i. 3-WIRE SIELDEO CABLES(of' w mlcte,,m)

2-111IRE 514(LDD CABLE
10" s p aWo n0 )

DATA
ACQUISITION

SYSTEM

Fig. IV-t. Data collection system.

Figure IV-i shows the configuration used for the microphones. TLe array is a 3 by 3 sym-
metric d'.'jn with a 1-m spacing. This configuration is not necessarily optimum and we expect

to experiment with others in the future. The particular configuration was mechanically easy to
construct an!l the regular rectangular grid will allow use of computationally efficient array pro-

cessing algorithms which exploit the regular grid.

*Distributed Sensor Networks Semirinn:ial Technical Summary, Lincoln Laboratory. M.ILT.
(30 September i979), DDC AD-AO86800.
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Fig. IV- 2. Acoustic array on L-Building roof.
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The physical construction of the array is shown in Fig. IV-2. The support stand is made

f-ore 2-in. pipe, braced with threaded cross ties that enable the array to be squared. The mi-

crophones are supported by open-cell foam rubber supports in the vertical pipes. This mini-

mites problems wit.i microphonics and enables final leveling of the microphones to a horizontal

"plane. The cables run through the pipes and then out to the battery box.

Figure.IV-3 shows the microp.hone assem' lies. The microphones are electret microphones

mounted in a ported housing. These were chosen because the element is able to resist dampness.

and the frequency response and sensitivity are adequate at frequencies as low as 10 Hz. The

microphones are mounted on top of preamplifiers which convert the weak pressure-induced

change of capacitance of the electret element into a substantial current capable of driving a

1000 ft or more of cable. The cable to the battery box then plugs into the base of the preampli-

fier, making for an assembly that is weatherproof. The microphone itself is surrounded by a
2.25-in. open-cell foam wind shield.

Each of the microphones is connected to the battery box, by a three-wire cable as shown in

Fig. IV-4. The output of the preamplifier is a balanced feed with a separate shield and power

feed. The shield is connected to the cable shield and the casing of the battery box. The output

from the battery box is a two-conductor shielded cable for each microphone. Here again, bal-

anced feed is used to minimize noise.

Within the battery box, three mercury batteries are wired in series to provide the 20 V

needed by each microphone. Separate sets of batteries are used for each microphone to mini-

mize crosstalk in the power supplies. Each power line has an overload protection relay in

serias with it. This relay opens the circuit in the event that the microphone input is shorted

such that the preamplifier draws more than 15 mA. Once off, the power is latched off until the

reset button is pressed for that relay.

BATTERY lOX

| ATTERY AND OVERL04O
PAOTECTION CmCUrT

:" •HC S W L OD C

SHIELDED010 a-wiI__-WIN[
M MRIGNAL TO MC"OP-EN

Nr tor*V

CORRNECTOR
smsL0 0 . L

MONITOR
METER

Fig. IV-4. Shielding and power supply arrangement for microphones and preamplifiers.
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Correct interconnection of the signals, the analog grounds, the shields, and the eiectrical

supply neutral is essential for minimization of system noise. The principles that w'e Wolowed

were to use balanced feeds where possible, to avoid ground loons, and to ensure that tbh analog

ground only connected with the power neutral at one point.

MICROPHONE
INTERFACE INSTRUMENTATION

box AMPLIFIER A/D
2 -WIRE1

SHIELDED CABLE

BATTERY BO:

+ EC EC +

siS1II SIGNAL 0E OUTPUT

" 3- NAL -
•EU) •._ S ~ -0 --o Ls;6 -,-- ---.-.- SIGNAL -

-SHELCD MULTIPIN S:MDDCOIETR

POTEN TOM TER 
GNTERROL

(aod t sitphout e) INOig a

-. dl POWER kANALOQ POWER
AROUN0 NEUTRAL GROUND NEUTRAL

ErC ELCO MULTIPIN SHIELDED CONNECTORS

CAeINZ.T
GROUND

Fig. IV-5. Shielding and balancing arrhgement for instrumentation amplifier
and the A/D.

As shown in Fig. IV-5, a I -kQl potentiometer was used to balance the signals with respect

to the line. This I -kil resistor serves to discharge any charge built up between the signal lines

and the shield. Without this resistor there is no discharge path and very high voltages can arise

which exceed the instrumentation amplifier common mode rejection limit of 5 V. This potenti-

ometer is used to balance the noise components picked up on the line.

The instrumentation amplifier has a shielded balanced input, but only a single--ended output

with the signal minus connected to analog ground. The input to the AID is balanced with respect

to its analog ground. However, we had to feed this single ended because of the single-ended

output of the instrumentation amplifier. Ground loops and noise were minimized by connecting

signal minus to signal minus between these units with local connection to analog ground on the

A/D and no direct connection between analog grounds except through the signal cables.

Fo:- safety reasons all units must have. their shields connected to the neutral of the elec-

trical power supply at some point. By making this a single point connection, noise was mini-

mized. To this end, the microphone connector box iu isolated from "ts front panel in the rack,

so that pover noise is not induced in the shield at tais point. The box and the microphone plugs

have been installed in the middle of the rack so that noine cannot be introduced by human contact.

When these precautions L-re taken, the lnstrumnentation amplifier noise is typically i 5tC iRV

in a 10-Hz band whet measured with a dummy microphone on the preamplifier. This reprerents

a level that corresponds to a 20-d). level of sound at the microphone. To put this in perspective,

we note that ambient conditions where the microphones are now located arý% typically 50 to 60 dB
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and even very quiet locaticna and conditions would be no less than 30 to 40 dB, Usually the peak

level of system noise is at 60 Hz, although we have seen cases where RF breakthrough of the

anti-allasing filters Ln. the inh-trumentation amplifier is significant. The overall system is set

Po the gain-ranged AID conversion system will operate from the noise floor up to 114 dB, which

is large enough to handle very large aircraft at very close range without saturation.

Fig. IV-6. Data Acquisitlion System
hardware.

The configuration of the Data Acquisition System during the prelimrr.ary tests is shown in

SFig. IV-6. This has pow been modified to isolate the microphone inputs which are shown at

lower left. When thig, system is converted to a DSN node, a third rack will be added to hold the

array processor. Based upon experience with the acoustic array, battery box, and cable con-

figurations described above we are ,ow in the process of engineering the actual configuration

which will be incorporated in other DSN nodes. Changes are being made primarily to further

weatherproof the system and make it easier to routinely operate and maintain.

B. SOFTWARE

In our lapt SATS (September 1979) we described the Data Acquisition System (DAS) program

and the Data Acquisition Kernel (DAK) that supports DAS. These programs have now become

operational. DAS consists of 1,969 lines of code and 483 lines of short-form documentation,

while DAK consists of 10,334 lines of code and 2,119 lines cf short-form documentation. (Short-

form documentation is compact documentation suitable for reference use.)
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The followir,v tour DAS modul-e3 are defined:

usr The user interface.
rec The recording server, a foreground process that does the actual

data copying and also delivers sample datp. to the user interface
for display.

dar The data record module, -which for'mats data for magtape 1/0.
par The parar. .eter record module, which formats run parameters

for magtape 1/0.

The rec and dar modules nrr finished, and DAS currently consists of theae modules plus C small

test program that serves as a user interface. The cu.rrent simplified user interface, though not

well suitee to naive uvers, is functionally adequate and no substantial e~nhancements are currently
scheduled. Implementation of the par module defining parnmeter x'itords has been held up by
memory space limitations of the current version at DAIK. Suffiuert Epace will be availa)ý!e

under the next version planned for relcase in July. We will then r~onvert DAS to the enhanced
version of DAK and add parameter record capabilities.

As notid above, the major current limitation -,Nn use of the DAK is that all programnming, in-
cluding DAK and uaer code, mList fit into 57K boytes of memory, the maxcimum size of 2- i'tual
Addrevs space on a 46-bit minicomputer atvih as a PDP-11, minus 8K bytes needets .'.jr the
PDP-11 1/0 register page. We are now enhancing flAK to allow the user to address 262K bytes

of memory ind-.rectiv' thro-Agh a system call that copies any contiguous part of that memory to
a-iy other part of the memory. 1/0 devices wrill aloo be able to addrefis the full 262K bytes of

mem~ory. aIL-)wing arty part, of that memory to serve as an 1/0 buffer. Thus ir, effect, the user
will have 26ZK bytes of memory, only the first 57K bytes of which can be addressed by normalA

code. This enhLNoced veraion of flAK will be used to support signal processing as well as data

acquisition fmtin~tons in initial three-node experiments.
This syistem for adding to the memory available to a 46-bit minicomputer user process is

simple and suitable for interim use. However, over the next year we plan to replace flAK with
a more substantial rerisior, callew1 OlSD/RIENE, which will support multiple~ virtual memory

spaces cn one computer as well as distributed programming using multiple computers. OF.D.
the Object Structured Discipline, is a revised version o! the basic software layer oiZ fAK, and
it.; usable fcr computation, memory mannAgerrient, and multiprocess schedulizrj within a single

vtrtua) addrexis space under any operating system. RENE, ti.- R'al-Time Network Kernel, will

be b-uilt on inop o1 06D ami wili Drovide fMndamental ~conminuicawdons servers and multiple me Mory

Dpace management aerver3. One goal of OSD/IIENE devalopmenxt is to providte a version whichI

runs underneath UND., as' wc 1Lisa in an inde-Pendent PDP-1 1, thereby allowing software to be
shared between the real-time ncde computers and a UNIX-based analysis and programn develop-I
mEnt computer. See Sec. VI for more details on RENE de~sign.
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V. SIGNAL PROCESSING

Work has continued on non-real-time signal-processing software for use in conjunction with
algorithm development and work has started on real-time software which will make use of spe-

cial real-time hardware. The following two sections report on these task areas.

A. ACOUSTIC ANALYSIS PROGRAM

One of the major technical activities in the area of signal analysis has been the develop-

ment of the Acoustical Data Analysis Program (ADAP) for our general research computer. The

function of this computer program is to take data from the Data Acquisition System and analyze

it, producing output in a form suitable for input to tracking algorithms. This section describes

ADAP and some of its capabilities. The computer which supports ADAP is our PDP-11/70 run-

ning the UNIX operating system.

DATA ACQUISITION PARAMETER
SYSTEM TAPES DATAS

•: DATA BASE
DISK FILES

I WY, ORMWA/VEFR

ig.V- Input/output diagram for ADAP.

{ As shown in Fig.V-i. ADAP can accept data from DAS tapes, from seismic Waveform

S• ,.Data Unit (WDU) disk files, and from Parameter Data Base (PDB) waveform disk files. Its out-

J put is one of three types of PDB files, namely waveform, spectra, and azimuthal power files.

; In creating these files ADAP converts the input data into fixed blocks, performs Fourier trans -

; forms to produce the spectra, and performs maximum likelihood method (MLM) or conventional

i beamforrning to produce the azimuthal data. ADAP also has the capability to produce plots of

the waveforms, spectra, and the azimuthal data.

The DAS tapes contain 4K byte blocks of data in gain-ranged 16-bit word format. ADAP de-

multiplexes the data and decodes their format prior to any analysis. Because DAS tapes are

collected in real-time there may be tape errors which could not be corrected. Thus, ADAP

I,
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checks for proper time sequence of records, makes other error checks, and selects out se-

quences of good data blocks for analysis. ADAP will accept input of test conditions such as ar-

ray configuration and calibration information and, in addition to using this information internally.

will include it in output files.

When the Ft. Huachuca data* were originally converted from analog to digital form, they

were converted into our standard seismic data format WDU files. To enable ADAP to handle

old data as well as new, it was given the ability to input this format. This also enabled us to

use existing synthetic data generation programs to create test data &or ADAP.

Paramneter Data Base files have data in fixed-length records with keyed access based upon

parameter values. The structure of the three types of PDB files is shown in Fig. V-2. Each

PDB file has a header which contains access information followed by a variable block of text.

FILE FORMAT: ACCESS -
INFORMATION HEADER

TEXT

RECORD I

RECORD 2

RECORD S

RECORD FORMATS:

WAVEFORM FILES:

TIME CHANNEL AMPLITUDE vs TIME DATA
NUMBER

SPECTRUM FILES:

TIME NUMBER COMPI SPECTRAL COMPONENTS

AZIMUTH FILES:

TIME FREQUENCY WAVENUMUER POWER vs AZIMUTH DATA

Fig. V-2. File formats for ADAP.

This text information contains a description of all the parameters pertinent to the data, such as

the array configuration. The header is followed by fixed-length records which contain one or

more access parameter values followed by a data block for those parameters. The simplest

PDB file format is that for waveforms. Here the amplitude data for one channel for a given

number of samples are written into a record. The time key is the time of the first data point.

*Distributed Sensor Networks Semiannual Technical Summary, Lincoln Laboratory, M.I.T.
(30 September 1977), DDC AD-AO50160.
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Spectral files are similar except that each record contains the Fourier transformed data from

a waveform data block.

Azimuthal files have records containing power vs azimuth, parameterized by time, fre-

quency, and normalized wavenumber. In tracking we need to find peaks at each time as a func-

tion of frequency, azimuth, and wavenumber. This involves searching through the azimuthal
data, which is made very easy by the direct access mechan!sm provided by the PUB subroutine

package which was developed under another program for seismic use. It was for this reason
that the PDB file structure was chosen. The spectral and waveform PDB files were added for

compatibility and convenience.

In performing spectral analysis, the user can select window functions. In computing power

vs azimuth, the user can select from conventional and MLM adaptive beamforming. The covari-
ance matrices can be normalized if so required, and they can be stabilized by adding fractional

noise along the diagonal. The user can select the block length, the spectral analysis parameters.

and the number of blocks over which to average in forming the covariance matrices. The user
can also select the number of azimuths and the normalized wavenumbers at which to perform

the analysis.

Techniques of frequency selection for performing spa•vxl (power vs azimuth) analyses are

currently under development. Prior to the analysis of each set of blocks over which we are

going to average, we must select the frequencies at which we are going to do the analysis. The

process of determining power as a function of azimuth is computationally intensive. It is there-

fore desirable to restrict the number of frequencies to those which will yield data of interest.

The current method of frequency selection is to select frequencies which had the highest

power during the previous analysis interval. (Analysis intervals are typically i sec long and
separated from each other by I sec.) The spectrum used for frequency selection is the average
spectrum over all the channels. We have also started to investigate the use of maximum en-

tropy spectral analysis for the purpose of frequency selection and power spectral density esti-

mation. It is expected that frequency selection devices will eventually be added, such as ob-

serving frequencies at which we have already acquired a target. Also, there exists the possi-

bility of picking frequencies to maximize spectral discrimination.

The plotting capabilities of ADAP are currently limited to plotting a single record of a PDB

file. The plotting capabilities are now being expanded to allow multiple channels for an arbi-

trary time period, aggregate spectra for multiple channels, and azimuthal data for multiple
time periods to be displayed on the same plot. ADAP is also being expanded to allow the cre-

ation of WDU files from DAS tapes or PDB waveform files. This is being done so that tools al-

ready developed for analyzing seismic data can be applied to our acoustic data where appropriate.

B. REAL-TIME SIGNAL-PROCESSING SOFTWARE

The DSN test-bed node design contains a DEC PDP-ii'34 minicomputer and a Floating

Point Systems AP-120B array processor (AP). The AP will perform the signal processing for

detection and tracking of targets. The AP is a single instruction stream, multiple data path.

pipelined processor capable of performing one floating point addition or multiplication every

167 nsec. The AP's multiple ciata paths permit paralleling of computations to incr<tase through-

put. The PDP and the AP are linked by the PDP-ii UNIBUS which can be used for either pro-

grammed input/output or DMA transfers. The following summarizes current design approaches

for AP software. This software will be integrated with DAK for interim use and with OSD/RENE

for longer term use. (See Secs.IV-B and VI for DAK and OSD/RENE details.)
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Communication between the two processors through the I2NIBUS will be under the control of

an "analysis server." This software is a module that will reside in the 11/34. It has three prin-
cipal subdivisions corresponding to the functions it performs. It will Implement a virtual arra)

processor to accept high-level commands from user processes in the 11/34; it will contain a
manager for AP memory; and it wil! inuorporate a driver to execute commands on the AP hard-

ware. The analysis server will enable the DSN user to execute signal-processing algorithms on

the AP while minimizing the user's programming task. The user's communication with the anal-

ysis server is stmiliar to that with other DAK servers. Requests for computation will be 3ent
to the server and results returned via queueable objects. In its role as manager of AP memory,
the analysis server will maintain maps of AP data and program memory to avoid conflicts be-

tween programs. Finally, the server will have low-level driver software to read/write AP data
and program memory, read/write internal and device registers, initiate DMA and programmed

data transfers, and monitor interrupts.

A typical DSN user process will execute algorithms described elsewhere in this and previous

DSN SATS. During this year, the principal requirement will be to execute frequency-domain
beamforming algorithms in real-time on data collected from the DSN acoustic arrays. To per-

form a calculation, the user will send a request for service to the analysis server's queue. The
requests are objects in the sense of OSD. A request object - called an anop (analysis operation)

will consist of a control header similar to an to_op (an input/output operation in DAK). a vari-

ety of parameters necessary to control execution of the function, the name of the function (e.g.,

FFT, matrix inversion, power as a function of azimuth and elevation, etc.), and the location of

the input data on which the function is to be calculated. For example, a typical user sequence

might be:

Code Effect

anoalloc(op) Creation: Storage is allocated for
the analysis operation, which the
user calls "op."

an olnit(op, parameters) Initialization: The user specifies
parameters which are not expected
to change between calculations.
These include the name of the anal-
ysis operation, the function, the
operation priority, the analysis
server (in the case more than one
AP is available to the user), the
queue to which to return the op-
eration after processing, etc.

anoset(op, buffer, size) Setup: Data for a particular cal-
culation are specified.

anpower(op, elev. freq. azimuth) Execution: The operation is queued
on the analysis server queue and the
analysis server processes the oper-
ation. In this case, a high-level re-
quest is being made to calculate
acoustic power for elevations, azi-
muths, and frequencies as specified
by input objects "elev,# "freq," and
"azimuth."

30



The analysis server will process its queue according to the following algorithm:

(I) If there are no operations on the queue, wait until one arrives.

(2) Mark the first operation, op. on the queue BUSY.
(3) Interpret parameter fields of op.

(4) Download op to AP.

(S) Wait for op to return.
(6) Mark op DONE or ERROR as appropriate.

(7) Dequeue op.

(8) Return op to user's queue.

(9) Go to I.

When the analysis operation object is returned to the user, it contains the function output, if the
computation was error-free, otherwise status information in the control header indicates the

type of exception encountered during the computation. The user has the freedom to respond to

exceptions in the manner appropriate to his arplication.

The analysis server will manage all the AP's resourcss. The server will contain memory

allocation maps for data and program memory. The AP main data memory is to be partitioned

into two parts: a static region of user allocatable memory, and a work region. In the static
area, the user may store results for input to other algorithms. For example, the user might

allocate accumulators for' cross-correlation matrices, pcvwez averages, etc. Memory in the

work space is to be automatically allocated for each routine loaded in program memory. De-

pending upon the type of computations being performed, it is possible that not all the user's pro-
grams can be loaded in AP program memory at the time of system start-up. In this case, rou-

tines will neef" to be downloaded when required. The loading will be managed by the server.

The curr,.,t design calls for a fairly conventional software driver to perform the low-level

interaction with the AP hardware. It will be constructed from a library of routines for reading

and writing internal AP registers and AP device registers. Work on these routines has already

begun in order to perform acceptance tests on an FPS AP-iZOB purchased by another group in

Lincoln Laboratory. The operation of the driver will Consist of responding correcty to AP in-

terrupts. When an AP iterrupt occurs, the driver must decide whether it indicates completion
of an analysis operation or an error condition, and respond accordingly. If an operation has

been completed successfully. output results will he stored. A new operation, if present on the

driver quew,. will be loaded. Data will be transferred by DMA uAder AP control. The driver
will then start the AP executing the next program wait until an interrupt occurs again. This

cycle repeats itself indefinitely.
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Vt. REAL-TIME NETWORK KERNEL DESIGN

In the previous SATS1 we defined a real-time network kernel as an opt.ating system con-

taining network communications, process scheduling, basic memory management, and no 1/O

drivers. In such a system the I/O drivers and user processes are coequal users of the kernel

and they communicate with each other exclusively through the kernel network communications

system. The logical network comnmunication mechanisms must be good enough to support all

communications, including those betwpen real-time I/O drivers and real-time user processes.

We further require that communicating processes should be made insensitive as to whether or

not they reside in the same virtual address space. in different spaces on the same computer, or

on different computers. The only difference in these circumstances should be differences in

throughput and turnaround time.

Queueable objects are the mechanism we plan to use as the basis for interprocess communi-

cation. Based upon this idea we have developed a real-time kernel, the Data Acquisition

Kernel, that we feel presents an approximately correct user interface for a real-time network

kernel, even though DAK itself requires all processes using it to reside in the same virtual ad-

dress space. DAK is now debugged and in use (see Sec. IV-B). While we were implementing

DAK, we studied the problems that would arise in building a true multicomputer real-time net-
work kernel, and identified first cut solutions. It is these problems and solutions that are dis-

cussed below. We are now in the process of carrying out the detailed design and initial coding
of a successor to DAK, called RENE (REal-time NEtwork kernel), which embcdies these solu-

tions and which will be our first version of a truly multicomputer system. In the meantime, we

shall continue to use DAK, which is very similar in structure to RENE.

A. QUEUEABLE OBJECT STrRUCTURE

A queueable object is a structure beginning with a special queueable object header. DAK

queueable object headers initially contained a few list pointers that allowed the objects to be
placed on queues. The prototype queueable object was the input-output operation, or loop. We

found that many ioop structure elements were needed in virtually all queueable objects, and be-

gan the process of moving these to the queueable object header. This process is still continuing:
in RENE we expect the header to contain an 8-bit command code, 32 option flag bits. an 8-bit

termination code, 32 status flag bits, a pointer to the object's user queue (see below), an op-

tional pointer to a character string print name for the object, a 32-bit sequence number, and a

circuit designation (see below) that behaves like a priority-level specification. In addition, there

are elements specialized for transmitting the object through a network. These record when the

object was last sent. whether and when its receipt was acknowledged, whether and when retrans-
j mission has been requested, and the formats governing transmission and reception of the object.

In DAK, running on a PDP-Ii/34, the CPU overhead time required to transmit a queueable

object is on the order of 100 Asec, and the consequent limit on the total system object trans-

mission rate is several thousand objects per second. But, when processes do not share an ad-

dress space, transmission overhead per object increases substantially, so that we expect a typ-

ical minicomputer to be able lo transmit or receive only several hundred objects per second

either between its own separate virtual address spaces, or between itself and the outside world.

Consequently, it will be necessary to transmit mostly large objects between separate address
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spaces or between st comptiter and the external world. We will retain the option of improving

communications efficiency by putting two processes in the same virtual address space.

B. QUEUE ORGANIZATION

When communicating processes are in the same address space, as in DAK, one process

(called the server) owns a queue, and the other process (called the user) sends an object to the

server by enqueueing it on the server's queue. The server processes the object, and passes it

back to the user by enqueueing it on a return queue owned by the user. This is the standard

method for communicating with queueable objects, as described in Sec. IV-B-2 of the previous

SATS. We will retain this system in RENE when the user and server processes are in the same

virtual address space.

COMPUTER 3

s-SERVER QUEUE

OBJECT_ I

OBJFECT_ 2 1

OB-.'ECT_ 1 2

CONNECTION-i CONNECTION_2

COMPUTER 1 COMPUTER 2

USER-QUEUEj USER OjUcii 2

Fig.VI-1. Queues, connections, and objects in RENE.

If the user process is in a different address space from the server process, an extra queue.

which we call a user queue, must be introduced (see Fig. VI-1). The user queue resides in the

user process address space and holds a copy of all objects sent by the user process to the server

queue in the server process separate address space. The userqueue is a surrogate for the server

queue: it represents the server queue to the user process. When the user places ar, object on

the user queue, the object is copied onto the server queue, where the server processes it, and

copies the object back to the user queue, from whence it may be dequeued and returned to a sep-
arate user process return queue. While the server processes the object there are in (act two

copies of the object: one on the user queue and one on the server queue. Only object elements

read by the server need be sent from the user to the server, and only elements written by the

server need be returned to the user; so that transmission formats determining which elements

to transmit need to be provided for each object type and direction of transmission.

The user and server queues are coupled by a connection. One server queue can be con-

nected to many user queues, but each user queue can be connected to only one server queue.

Each of the many user queues connected to the same server queue represents only part of that
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server queue, and contains only objects sent to that server queue by user processes in the same
address space as the user queue. In addition. the server queue may contain objects sent by pro-

ceases in the same address space as the server process. For such objects there is no separate
user queue.

There are a number of advantages to such a scheme. One advantage has already been men-
tioned: the use of a single communications interface that works with improved efficiency when
processes share an address space but also works with normal efficiency when the processes are
in different spaces. Two other advantages are that an initial copy of each object is always avail-
able in the user process for retransmission, and that the user process provides all its own buf-
fers in a direct and simple way that gives it control of communications buffering anti can relieve
the network and server of difficult buffering problems.

C. CONNECTION MOBILITY, RECONNECTION, AND PROTECTION

In DAX we found it convenient to pass servers from one process to another. For example.
a user interface process might open a tape drive server, write labels on the tape, and then
pass the whole server to a real-time process that would record data on the tape. When the data
recording was done, te recording process returned the tape drive server to the user in-
terface process.

In a network or multiple address space environment a user queue, which may be passed
among processes, is an analog to a DAK server which can be passed around between processes.
To implement such user queue passing we propose to use two levels of connection: real and vir-
tual. A real connection is between a user queue in a particular address space and a server
queue in another particular address space. A virtual connection is a seqtuence of real connec -

tions all having a common user queue object, though that object may migrate from address
space to address space without break~ing the virtual connection. Processes using normal system
calls see only virtual connections.

At any time the real connection that Implements a virtual connection may become broken.

For example, a real connection will be broken when its user queue is passed between address

spaces. It is also possible for a connection's server queue to disappear, and the virtual con-
nection must then make a real connection with a different server queue. This could be the re-

slofa computer crash or could be scheduled by the server, for example, to enforce adherence
to nwprotection or access rules it has adopted.

naue andprtachs for handling these situations Is to endow every virtual connection with a path -

nam an sttusInformation that can be used to remake the real connection whenever necessary.
Thispatnam isgenerated when the virtual connection is first established. The pathname does

not define ot through the network but unambiguously identifies the process or file to which

a connection is made. In the case of connections to a file, the pathname identities a specific
version so that -'econnection can be unambiguously made to the correct version or cannot be
made at all if the version no longer exists. Pathnameaa may be sent to directory servers, which

myeither set up a server to be the other end of the real connection, or name another directory
server to which the pathname should be sent. Servers for virtual connections will also be iden-
tified by pathnames.

D. RELIABILITY

One approach to distributed system reliability is to require that each user process IUe made
responsible for its own reliability, and be able to survive such network and server failures as
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commonlY ocour. This is the approach we are taking and it is a major factor behind our com-

munication design.

Server reliability is one very important problem. Experience with existing network servers

and with modern hardware I/0 controllers, which are analogous to software servers In many

ways, has indicated that it may not be possible or practical to write servers that correctly re-

cover from all error situations. Therefore, we propose to defend against server failures by

requiring servers to be reinitializable, where possible. A reinitializable server is constructed

so that the user retains a precise copy of server status, at least as it affects the user. and if

the server fails, the user simply reinitializes the server, supplying the proper status to return

the server to the state where it left off. In this way the user is able to recover from a server

failure. An example is an open disk file i/0 server. with the user process retaining the path-

name of the file, the read-write access privileges for the open file, and the current position

within the open file.

A second major reliability problem is loss of messages by the network. The only cure for

such network failures appears to be time-out driven retries. Moreover. experience with existing

networks has led us to the viewpoint that if the user process is to be reliable, that process must

be the process which uses time-out driven retries and we intend to design and implement soft-

ware adhering to this point of view.

To support user driven retries and still defend against server memory overload we introduce

the concept of a retryable request. A request is an object sent by a user to a server, which

processes the object and returns results as part of the object. A retryable request has the prop-

erty that if the same object is transmitted several times to the server, and if the server fully

processes at least one copy of the ubject, then the effect on the server will be the same as if the

object was sent only once and was fully processed. Furthermore, if several object copies are
fully processed by the server and cause several copies of results to be sent back to the user.
then there must be some way of constructing a single final result which is the same as if a single

Ji copy of the request was processed by the server and its single complete result received by the

user. Reliability of retryable requests is in the hands of the user process. Use of the re.tryable

requests by servers avoids the need for the server to keep copies of objects being returned to

users until the server receives acknowledgment from the user that the returned object has been

received. An example of a server which can be designed to use retryable requests for the bulk

of its activities is a random access memory server, such as a disk file manager. or a virtual
2

address space memory rmanager; for an example see the Xerox PARC Distributed File System.

Of course, some nonretryable requests will be unavoidable and we expect tc handle them on a

negotiated basis with the server accepting the request when there is no danger of server memory

overload.

Note that although users control time-out driven retries, the network and servers also can

and should request retransmission in many circumstances. For example, when confronted with

congestion the network may discard objects in its transmission buffers, and request the user to

retransmit these after a delay (for example see a propo3ed congestion control algorithm for
3AUTODIN II in Sevcik). In another example, if a server receives an object completely, and

some time later is forced to discard the object in order to free memory space for higher pri-

ority requests that arrived after the object, then the server may ask the user to retransmit

the object at an appropriate time.
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Another reliability-throughput problem arises when a user sends many requests at once to

a server, the first request is temporarily lost, and the other requests must wait for the first.
To combat this we propose that servers be allowed to proceiis requests in non-sequential order

where possible.
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