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Abstract
We argue that the principal cause of sensornet deploy-
ment and development difficulty is an inability to ob-
serve a network’s internal operation. We further argue
that this lack of visibility is due to the activity and
resource constraints enforced by limited energy. We
present the Mote Network (MNet) architecture, which
elevates network visibility to be the dominant network
design principle. We propose a quantitative metric for
network visibility and explain why network isolation
and fairness are critical concerns. We descibe the Fair
Waiting Protocol (FWP), MNet’s single-hop protocol
and show how its fairness and isolation can improve
throughput and efficiency. We present the Pull Collec-
tion Protocol (PCP) as a case study in designing effi-
cient multihop protocols in the architecture.

1. INTRODUCTION
This paper argues that the often-cited difficulty in

programming low-power sensornets is due to a lack of
visibility into their operation and behavior. While other
factors contribute to making development challenging,
the principal cause is the fact that an operator can-
not easily and inexpensively observe what is happening
within a network. This lack of visibility is a direct result
of energy constraints. With unlimited energy, a node
could keep detailed logs and send large amounts of de-
bugging information. Sensornets are grey-box systems,
where an operator has a few limited pieces of informa-
tion with which to diagnose a problem or failure.

Two of our routing protocol experiences present good
examples of this phenomenon. The first involved a situ-
ation where the TinyDB developers observed very high
packet loss rates in a small test network deployed in the
Intel Research Berkeley lab. To test the hypothesis of
overflowing send queues, the test query had queue depth
as a field. As a full queue prevented the query from en-
queueing a packet reporting its size, however, they were
unable to observe a full queue. The cause of the queue
overflows, — transient routing loops — was only dis-
covered after many hours with the TOSSIM simulator.

The TinyOS net2 Working Group had similar chal-
lenges when developing CTP [1], the collection protocol
in TinyOS 2.0 (T2) [2]. Initial tests of isolated compo-

nents and full protocol simulations were promising. The
first real-world test was abysmal: 4% data yield. This
sparked a three-week effort to determine the causes.
The eventual solution was to integrate a comprehensive
logging system that reports every important event to a
testbed UART backchannel. This timestamped, high-
fidelity view of the protocol explains when, where, and
why every packet was dropped. Once we could observe
the internal operation of the network, it became easy
to identify causes quickly and unambigiously. For the
same tests, CTP now has a minimum yield of 98.2%.

This paper proposes the Mote Network (MNet) archi-
tecture, whose design addresses the fundamental diffi-
culties in deploying mote systems. The principal prin-
ciple of the MNet architecture can be summarized as:

“Minimize the energy cost of diagnosing
the cause of a failure or behavior.”

The visibility principle has broad implications to sys-
tem and network design. Isolation emerges as a fun-
damental design goal, as it minimizes unforeseen in-
teractions, thereby simplifying the system and reduc-
ing the number of possible causes. System isolation is
a long-standing topic in operating systems (e.g., pro-
cesses and virtualization) and a major consideration in
sensornet OS design [11, 13]. Where system isolation
deals with interactions on a single node, network isola-
tion addresses the problem of protocols interacting or
interfering across many nodes.

In the internet domain, one common example of net-
work isolation is TCP-friendly congestion control [9,
22]. Under certain conditions, TCP-friendliness ensures
that each of n flows receives approximately 1

n+1 of the
available bandwidth. Just as an operating system iso-
lates processes by giving them an equal virtualized share
of the processor, TCP-friendly congestion control iso-
lates applications by giving them an equal virtualized
share of the network.

Unlike the Internet, sensornets have many multihop
protocols, not all of which are end-to-end flows. This
diversity calls for the “narrow waist” protocol of the
architecture to be single-hop (layer 2) rather than mul-
tihop (layer 3) [7]. Protocol friendliness must corre-
spondingly move down the stack, from transport (layer
4) to multihop (layer 3). We can take a lesson from the
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complications that UDP traffic introduces to the Inter-
net’s stability [17]. Rather than require every transport
protocol to implement the needed mechanisms, the ar-
chitecture can mandate it by incorporating them into
the unifying narrow waist protocol.

To judge whether our visibility hypothesis is valid,
we surveyed papers and technical reports describing
deployment experiences and canvassed a subset of the
low-power sensornet research community through the
tinyos-help mailing list. In several cases we directly con-
tacted the authors to have further details. Section 2 de-
scribes an overview of the results. More often than not,
those queried could not definitively identify the cause
of deployment failures. Furthermore, we found that the
dominant identifiable cause was insufficient isolation be-
tween systems or protocols.

In Section 2 we argue that increasing network visi-
bility will simplify system and network design as well
as deployment. This simplification will lead to larger,
more complex, and more advanced systems. In short, it
will lead to improved research and technological progress.
Section 2 concludes with a suggestion of a quantitative
measure of network visibility and how two factors – fair-
ness and isolation – are critical to improving this metric.

Section 3 describes the Fair Waiting Protocol (FWP),
the unifying protocol of the MNet architecture. FWP
sits on top of a CSMA MAC and isolates network pro-
tocols using a novel grant-to-send (GTS) mechanism.
A grant-to-send transmission can grant the channel to
the recipient by enforcing a quiet time on other nearby
nodes. FWP uses GTS quiet times to allocate the chan-
nel fairly. Section 3 gives a brief description of FWP’s
mechanisms to address issues that arise from inconsis-
tent views of the channel. We refer the reader to a tech
report for further details [6].

Section 4 is a case study of how one might design a
network protocol in the MNet architecture. It describes
the Push Collection Protocol (PCP), a tree collection
protocol that gives each node a fair share of the avail-
able bandwidth to the root. The case study shows how
the visibility principle affects protocol design decisions
and how FWP can be used to enable high-bandwidth
packet exchanges without sacrificing its isolation or fair-
ness properties.

Section 5 discusses some implications of the architec-
ture, states areas of intended future work, and briefly
touches on major issues such as power conservation.

2. BACKGROUND
The difficulty in deploying mote-based sensornets has

motivated a large spectrum of research, from program
analysis [26] to programming languages [12] to entire
system architectures [10]. To better understand why
developers encounter so many software problems, we re-
viewed the existing deployment literature and surveyed

developers through mailing lists and personal commu-
nication. We broadly clump the observed failures into
four major classes.

System interactions. Often, components that were
designed to work in isolation interfered with each other
at a systems level. Conflicting network protocol snoop-
ing requirements have led to MAC protocol failures [19].
In some cases, base station failures – due to battery ex-
haustion [3, 19] or unpredicted program behavior [3, 14]
– disconnected many motes from the network [4, 34].

Network saturation and congestion were major
causes of correlated failures [3, 5, 14, 16, 27, 31]. Colli-
sions occur under heavy load [27], light but correlated
load [5], or when routing protocols self-interfere [15].
Congestion affected link symmetry by congesting one
direction of link [14]. These problems were often at-
tributed to environmental causes, such as weather or
RF interference [4, 5, 18, 34].

Protocol conflicts and failures. In some cases, a
single protocol can create failures across the entire net-
work. For example, Deluge can saturate the network
and prevent other data transfers [19].

Unknown. In many cases the reason for failure is not
known or could not be determined [5, 19, 31]. The pres-
ence of so many possible sources of problems leads many
deployment codes to have significant debugging and re-
mote querying code which in some cases comprises 80%
of the total source code [35].

2.1 Deployment Performance
Low-level failures degrade application-level performance.

The Great Duck Island network had a median node data
yield of 58% [29]. A deployment in a California red-
wood forest reported a median data yield of 40% [30].
A deployment designed to use the latest out-of-the box
components reported a frustrating 2% data yeild [19]. A
more recent deployment at a volcano in Ecuador, nom-
inally built with more mature technology, reported a
mean data yield of 68% [34].

Some losses had clear causes, such as a base station
failure. Each deployment used a routing collection tree,
and the cause of many losses remains unknown. In some
cases, extensive post-facto analysis lead to reasonable
hypotheses, but they cannot be validated [30].

2.2 Management and Debugging
The difficulties in understanding the causes of system

failure have motivated several management and debug-
ging tools. These tools improve visibility by layering on
top of existing systems and providing a mechanism to
gather data that would otherwise be internal to the net-
work. They range in complexity from network snoop-
ing [14] to lightweight RPC [35].

The Sympathy system builds on these approaches,
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providing an expert system that can diagnose failures
from gathered metrics [24]. The challenge that Sympa-
thy faces is the cost of gathering needed information: it
either requires frequent updates of node state metrics
or a way to query the metrics.

The MNet architecture seeks to achieve the same goals
as these systems – improving the visibilty of a network –
but takes a completely different approach. Rather than
try to improve the visibility of an obfuscated network
by adding additional layers on top of it, it improves
the visibility of the network architecturally. The MNet
architecture complements and seeks to improve all of
these existing tools by using preventative measures: it
simplifies Sympathy decision trees and reduces the need
for RPC queries.

2.3 Visibility Metric
In order to compare how well protocols follow the

visibility principle, we must have a quantifiable metric.
As an initial attempt to do so, we propose borrowing
Sympathy’s decision tree approach. A protocol’s visi-
bility can be quantified by measuring the energy cost to
traversing the decision tree in order to reach a hypothe-
sis. A protocol that has a smaller or less expensive tree
follows the visibility principle better. We leave whether
causes are equally weighted or not as an open question,
and expect that initially each is equally weighted.

2.4 Isolation and Fairness
The visibility principle leads to two major design cri-

teria for network protocols: isolation and fairness. Iso-
lation simplifies reasoning. For example, isolation be-
tween processes in an OS can make failures due to an-
other program exceedingly rare. In a network architec-
ture, isolation between protocols can make failures due
to another traffic pattern similarly rare. Isolation by
itself, however, is insufficient. While isolation ensures
that two separate elements do not conflict, it does not
promise that both of them can operate. In addition
to isolation, the architecture must provide fairness. In
combination, these two criteria allow debugging tools
to shrink the decision tree and lead to more efficient di-
agnosis. The next section describes grant-to-send, the
low-level protocol mechanism that MNet uses to provide
a sound basis towards these goals.

3. FWP: THE NARROW WAIST
Fair Waiting Protocol (FWP) [6] is a narrow waist

protocol which sits between network protocols and a
CSMA/CA MAC. FWP provides network protocol iso-
lation and fairness by controlling which packets to sub-
mit to CSMA and when to submit them. Since not all
sensornet protocols are end-to-end, FWP is single-hop.

FWP provides isolation using a grant-to-send (GTS)
mechanism. GTS adds one additional byte to the nor-
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Figure 1: GTS Mechanism example. Solid lines are received
packets, dashed lines are overheard packets. Boxes represent quiet
times. Node A sends a packet to B with a nonzero quiet time.
A, the transmitter, must be quiet, but B, the receiver, is not
supressed. When B sends to C, both B and A are supressed.
A must wait the maximum of the two quiet times. With this
mechanism, FWP aims to clear the channel except for the receiver
and the protocol which it selects to send.

mal packet header to indicate a post-transmission quiet
time. During this time, only the recipient of the packet
may transmit, suppressing transmissions by the sender
and overhearing nodes. Figure 1 shows a simple ex-
ample of this mechanism in a multihop line-topology
network. One basic use of GTS is to enforce traffic
rate-limiting [25] across protocols.

FWP provides fairness between protocols with De-
mers et al.’s fair queueing algorithm [8]. FWP uses
the grant duration and packet transmission times to
estimate how long the channel has been occupied by
a protocol. When there are requests for transmission
from multiple network protocols, FWP chooses the pro-
tocol with the least channel occupancy and submits it
to CSMA. Protocols which reserve the channel for long
periods send fewer packets.

Inconsistent views of the channel, however, can have
detrimental effects on fairness. Channel views are inher-
ently different in multihop networks, and packet losses
complicate this even further. Periodically decaying the
protocol channel utilizations filters out small aberra-
tions and restores fairness. In a 40-node testbed exper-
iment, periodic decaying channel utilization improves
the median Jain fairness index from 0.40 to 0.99.

CSMA is fair to nodes, not protocols. Differences in
traffic patterns between motes can result in unfairness
between protocols at the channel level. The algorithm
by Vaidya et al. for providing MAC-level fairness [32]
indicates that delay needs to be introduced before be-
ginning CSMA. Therefore, in addition to deciding which
packet to transmit, FWP also adjusts when it submits
it to the CSMA layer. A larger range of delay values
improves fairness at the cost of throughput. We are cur-
rently exploring delay functions to better understand
the tradeoffs.

If every packet has a quiet time of 0, then FWP oper-
ates as a standard CSMA layer albeit with fair queueing
(packet lengths are factored into channel use). FWP
leaves choosing quiet times to network protocols, based
on their requirements and traffic patterns. For exam-
ple, single-hop protocols such as Trickle [20] may spec-
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Figure 2: Goodput and cost for two separate ARC instances
running in the presence of PSFQ and Trickle on top of CSMA
and FWP. FWP increases goodput by 23-30% and decreases cost
by 5-10%.

Disconnection Temporarily or permanently broken link.
Destruction Depleted batteries or permanent hardware

failure.
Reboot Software failure loses packets in RAM.
Egress drop Retransmit threshold is reached.
Ingress drop Receiving a packet when the queue is full.
Suppression Temporary loops cause nodes to mistake

looped packets as duplicates and drop them.

Table 1: Causes of CTP packet loss. Temporary disconnections
can introduce huge latencies, which may or may not actually drop
packets. For example, if a disconnected node thinks it has no
parents, it will not encounter egress drops, but if it erroneously
thinks it has parents it will.

ify quiet times of 0, while routing protocols such as
ARC [36] may specify quiet times that ensure no one
transmits before a packet leaves the local interference
range. Link quality and topology also affect the neces-
sary quiet time, so network protocols should have adap-
tive mechanisms to find the best quiet time. While we
have explored a few simple cases such as those above,
estimating and calculating quiet time is an open area for
future research. Section 4 describes one way to obtain
high bandwidth using quiet times.

FWP does not aim to be a perfect protocol. CSMA
race conditions preclude providing perfect isolation, and
quiet times can reduce network capacity by introducing
suppression and delay. However, the isolation benefits
of choosing good quiet times can outweigh these costs.
Figure 2 shows the performance of FWP in 40-node
experiment running four protocols: separate ARC [36],
PSFQ [33], and Trickle [20]. With proper parameters,
there is a 23-30% increase in the goodput and 5-10%
decrease in the energy/goodput for ARC. PSFQ and
Trickle are minimally affected by FWP due to their low
traffic rates. This result shows that isolation can not
only improve visibility but also improve throughput by
preventing interference.

Because FWP is a protocol rather than a program-
ming abstraction [23], it is OS and platform-independent.
While our current implementation is for the CC2420
radio under TinyOS 2.0, we do not foresee challenges
porting it to other OSes or CSMA layers.

4. PCP: A DESIGN EXAMPLE
To demonstrate the implications of this network ar-

Receive Packets?

Disconnect/
Failure

Seq. No is zero?

Reboot Jump in THLs?

Duplicate
Suppression Below Max Tx?

Ingress DropCollisions?

Collisions Interference

(a) CTP Decision Tree

Receive Packets?

Disconnect/
Failure

Seq. No is zero?

Reboot Duplicate
Suppression

(b) PCP Decision Tree

Figure 3: Decision trees for identifying causes of data loss. Left
branches are true; right branches are false.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
C P reserved THL

ETX
Origin Node

Sequence No. Protocol ID
Data...

Figure 4: CTP data packet header.

chitecture, we present the design of a tree collection
protocol, Pull Collection Protocol (PCP), which follows
the visibility principle. This protocol is based on T2’s
Collection Tree Protocol (CTP) [1]. Table 1 lists the
conditions that prevent CTP from delivering packets.

Following the visibility principle, we want to mini-
mize the energy required to traverse the decision tree
shown in Figure 3(a). We can do this both by removing
leaves from the tree, and by minimizing the amount of
additional queries or updates required to traverse the
remaining portion.

To reduce the number of leaves in the tree, PCP elim-
inates causes of packet loss. PCP uses a novel approach
to limit ingress drops. Unlike in CTP and other tra-
ditional pull-based protocols (Figure 5), in PCP, sinks
pull data from the network(Figure 6). Parents use FWP’s
GTS mechanism to request packets from a child. Chil-
dren keep their buffers full by requesting packets from
their children. This is similar to 802.11e’s PCF pro-
tocol; however, GTS allows PCP to work over wireless
hops while PCF requires a wired backchannel.

PCP removes another leaf from the tree by eliminat-
ing ingress drops. It does this by allowing infinite re-
transmissions of a packet. Because all data packets have
the same destination, there is no reason to penalize one
packet in favor of another. Thus, PCP shortens the
decision tree into the one shown in Figure 3(b).

PCP’s design allows the traversal of the remainder of
the tree without additional queries. PCP uses CTP’s 8-
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(a) (b) (c)

Figure 5: Traditional Push-Based Method for Rate Limiting: a)
Children send data to parent at high rate. b) Parent sends rate-
limiting information. c) Children send data to parent at reduced
rate.

(a) (b) (c) (d)

Figure 6: Pull-Based Method for Rate Limiting: a) Parent sends
GTS to one child. b) Child sends a burst of packets to the parent.
c) Parent sends GTS to another child d) Child sends a burst of
packets to the parent

byte packet header format, shown in Figure 4. As with
CTP, a source node fills in the sequence number and the
origin field, and sets the Time-Has-Lived(THL) to 0. If
no packets are received from a node after many requests,
it is dead or disconnected. The sequence number field
of the packet, which is used by the protocol itself for
duplicate suppression, can indicate if a node rebooted
if the sequence number returns to 0. Observing this can
explain correlated packet loss from a subtree.

The THL field indicates the number of hops the packet
has traversed so far. This is used by the protocol to
avoid false positive duplicate suppression. At the sink,
a sudden increase in THL of received packets means
that there was a temporary routing loop in the net-
work, so correlated losses were probably caused by false
positive duplicate suppression.

Experimental results have shown that it can be ad-
vantageous to send packets in bursts, because links re-
main stable and link estimations are more reliable [28].
The use of FWP, with its limits on channel usage and
enforcement of fairness between protocols, seems in op-
position to this goal. Actually, FWP can facilitate
bursts, because it can guarantee that the channel will be
clear for a node to send many packets for an arbitrarily
long quiet time. The isolation property of FWP en-
sures that another protocol will not disturb the stream
of packets until the reserved quiet time runs out.

The open research question for PCP is how to avoid
maintaining too much per-child state. We are exper-
imenting with probabilistic methods of counting and
voting [21] to allow balanced pulling from children
without maintaining state.

5. EXTENSIONS AND LIMITATIONS
Increasing visibility has a cost. Fairness and isolation

introduce delay, thereby increasing latencies. Our re-
sults for ARC suggest that delay can improve network
performance under heavy load by preventing collisions.
When load is very light, protocols can use quiet times
of zero, reverting to a standard CSMA network. Ex-
ploring quiet time selection algorithms is a clear area
of future work: we plan to revisit a range of protocols
from the literature and investigate how they could be
optimized within the MNet architecture.

FWP assumes that nodes can snoop on all packets.
For radios such as the ChipCon CC2420, this can come
at the cost of relinquishing hardware mechansisms such
as synchronous acknowledgements. Our current soft-
ware FWP implementation does not have layer 2 acks,
but we are actively working with the TinyOS CC2420
developers to reintroduce them.

5.1 Low Power
Our goal is to start with a simple, flexible architecture

which allows optimization later, as has been the case in
successful abstractions such as files, threads, and TCP.
Reducing power consumption is one such critical opti-
mization, and instances of the MNet architecture can
use many different approaches.

One way is using low power listening with packet
bursts. Prior work [28] showed packet bursts can have
fewer retransmissions. Packet bursts also work well
with low power listening, as a single long preamble can
be amortized over many packets. Grant-to-send inter-
feres with this approach when bursts are transmitter-
driven, as a transmitter must obey the quiet time. How-
ever, PCP showed a way in which receiver-driven GTS
can be used to send an uninterrupted burst of packets.

5.2 Security
Designing a new network architecture from scratch

allows us to incorporate security from the beginning.
FWP raises several open questions such as snooping en-
crypted MAC frames and detecting cheaters or collud-
ing suppressors. Fairness provides simple mechanisms
to detect egregious cheaters – they aren’t fair – and are
currently studying how to take advantage of FWP’s iso-
lation and fairness to introduce security into the narrow
waist.

5.3 Isolation and Fairness
The need for network isolation affects system imple-

mentation. For example, if an operating system does
not allocate packet buffers fairly to protocols, then it
is possible they will not be able to offer equal loads,
thereby compromising fairness. Similarly, if an OS does
not isolate the software of the protocols from one an-
other, then a failure in one can cascade, increasing the
size of the diagnosis decision tree. With inter-protocol
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isolation, a network monitoring protocol can work even
when others malfunction.

While FWP provides fairness between protocols, but
not within them. For example, IFRC [25] and ARC [36]
protocols provide node fairness, in that they seek to give
each node in a collection tree an equal share of the band-
width to the collection sink. FWP provides fairness at
the level of single-hop communication: protocols built
on top of it (such as IFRC and ARC) can provide higher
levels of fairness as needed, with the knowledge that
FWP will give them a fair share of local bandwidth.
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