
How to Make a Correct Multiprocess Program

Execute Correctly on a Multiprocessor

Leslie Lamport1

Digital Equipment Corporation

February 14, 1993

Minor revisions January 18, 1996 and September 14, 1996

Abstract

A multiprocess program executing on a modern multiprocessor must

issue explicit commands to synchronize memory accesses. A method

is proposed for deriving the necessary commands from a correctness

proof of the underlying algorithm in a formalism based on temporal

relations among operation executions.

index terms concurrency, memory consistency, multiprocessor, syn-

chronization, verification

1Author’s current address: Digital Equipment Corporation, Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301

1 The Problem

Accessing a single memory location in a multiprocessor is traditionally as-
sumed to be atomic. Such atomicity is a fiction; a memory access consists of
a number of hardware actions, and different accesses may be executed con-
currently. Early multiprocessors maintained this fiction, but more modern
ones usually do not. Instead, they provide special commands with which
processes themselves can synchronize memory accesses. The programmer
must determine, for each particular computer, what synchronization com-
mands are needed to make his program correct.

One proposed method for achieving the necessary synchronization is with
a constrained style of programming specific to a particular type of multipro-
cessor architecture [7, 8]. Another method is to reason about the program in
a mathematical abstraction of the architecture [5]. We take a different ap-
proach and derive the synchronization commands from a proof of correctness
of the algorithm.

The commonly used formalisms for describing multiprocess programs
assume atomicity of memory accesses. When an assumption is built into a
formalism, it is difficult to discover from a proof where the assumption is ac-
tually needed. Proofs based on these formalisms, including invariance proofs
[4, 16] and temporal-logic proofs [17], therefore seem incapable of yielding
the necessary synchronization requirements. We derive these requirements
from proofs based on a little-used formalism that makes no atomicity as-
sumptions [11, 12, 14]. This proof method is quite general and has been
applied to a number of algorithms. The method of extracting synchroniza-
tion commands from a proof is described by an example—a simple mutual
exclusion algorithm. It can be applied to the proof of any algorithm.

Most programs are written in higher-level languages that provide ab-
stractions, such as locks for shared data, that free the programmer from con-
cerns about the memory architecture. The compiler generates synchroniza-
tion commands to implement the abstractions. However, some algorithms—
especially within the operating system—require more efficient implementa-
tions than can be achieved with high-level language abstractions. It is to
these algorithms, as well as to algorithms for implementing the higher-level
abstractions, that our method is directed.

1

2 The Formalism

An execution of a program is represented by a collection of operation execu-

tions with the two relations - (read precedes) and - (read can affect). An
operation execution can be interpreted as a nonempty set of events, where
the relations - and - have the following meanings.

A - B: every event in A precedes every event in B.

A - B: some event in A precedes some event in B.

However, this interpretation serves only to aid our understanding. Formally,
we just assume that the following axioms hold, for any operation executions
A, B, C, and D.

A1. - is transitive (A - B - C implies A - C) and irreflexive
(A /- A).

A2. A - B implies A - B and B /- A.

A3. A - B - C or A - B - C implies A - C.

A4. A - B - C - D implies A - D.

A5. For any A there are only a finite number of B such that A /- B.

The last axiom essentially asserts that all operation executions terminate;
nonterminating operations satisfy a different axiom that is not relevant here.
Axiom A5 is useful only for proving liveness properties; safety properties are
proved with Axioms A1–A4. properties. Anger [3] and Abraham and Ben-
David [1] introduced the additional axiom

A6. A - B - C - D implies A - D.

and showed that A1–A6 form a complete axiom system for the interpretation
based on operation executions as sets of events.

Axioms A1–A6 are independent of what the operation executions do.
Reasoning about a multiprocess program requires additional axioms to cap-
ture the semantics of its operations. The appropriate axioms for read and
write operations will depend on the nature of the memory system.

The only assumptions we make about operation executions are axioms
A1–A5 and axioms about read and write operations. We do not assume
that - and - are the relations obtained by interpreting an operation

2

execution as the set of all its events. For example, sequential consistency [10]
is equivalent to the condition that - is a total ordering on the set of
operation executions—a condition that can be satisfied even though the
events comprising different operation executions are actually concurrent.

This formalism was developed in an attempt to provide elegant proofs
of concurrent algorithms—proofs that replace conventional behavioral argu-
ments with axiomatic reasoning in terms of the two relations - and -.
Although the simplicity of such proofs has been questioned [6], they do tend
to capture the essence of why an algorithm works.

3 An Example

3.1 An Algorithm and its Proof

Figure 1 shows process i of a simple N -process mutual exclusion algo-
rithm [13]. We prove that the algorithm guarantees mutual exclusion (two
processes are never concurrently in their critical sections). The algorithm is
also deadlock-free (some critical section is eventually executed unless all pro-
cesses halt in their noncritical sections), but we do not consider this liveness
property. Starvation of individual processes is possible.

The algorithm uses a standard protocol to achieve mutual exclusion.
Before entering its critical section, each process i must first set xi true and
then find xj false, for all other processes j. Mutual exclusion is guaranteed
because, when process i finds xj false, process j cannot enter its critical
section until it sets xj true and finds xi false, which is impossible until i has
exited the critical section and reset xi. The proof of correctness formalizes
this argument.

To prove mutual exclusion, we first name the following operation execu-
tions that occur during the nth iteration of process i’s repeat loop.

Ln
i The last execution of statement l prior to entering the critical section.

This operation execution sets xi to true.

Rn
i,j The last read of xj before entering the critical section. This read

obtains the value false.

CSn
i The execution of the critical section.

Xn
i The write to xi after exiting the critical section. It writes the value

false.

3

repeat forever

noncritical section;
l : xi := true;

for j := 1 until i − 1
do if xj then xi := false;

while xj do od;
goto l fi od;

for j := i + 1 until N do while xj do od od;
critical section;
xi := false

end repeat

Figure 1: Process i of an N -process mutual-exclusion algorithm.

Mutual exclusion asserts that CS n
i and CSm

j are not concurrent, for all m
and n, if i 6= j.1 Two operations are nonconcurrent if one precedes (-)
the other. Thus, mutual exclusion is implied by the assertion that, for all
m and n, either CSn

i
- CSm

j or CSm
j

- CSn
i , if i 6= j.

The proof of mutual exclusion, using axioms A1–A4 and assumptions
B1–B4 below, appears in Figure 2. It is essentially the same proof as in [13],
except that the properties required of the memory system have been iso-
lated and named B1–B4. (In [13], these properties are deduced from other
assumptions.)

B1–B4 are as follows, where universal quantification over n, m, i, and j
is assumed. B4 is discussed below.

B1. Ln
i

- Rn
i,j

B2. Rn
i,j

- CSn
i

B3. CSn
i

- Xn
i

B4. If Rn
i,j /- Lm

j then Xm
j exists and Xm

j
- Rn

i,j .

Although B4 cannot be proved without additional assumptions, it merits an
informal justification. The hypothesis, Rn

i,j /- Lm
j , asserts that process i’s

read Rn
i,j of xj occurred too late for any of its events to have preceded any

1Except where indicated otherwise, all assertions have as an unstated hypothesis the

assumption that the operation executions they mention actually occur. For example, the

theorem in Figure 2 has the hypothesis that CS
n
i and CS

m
j occur.

4

Theorem For all m, n, i, and j such that i 6= j, either CS n
i

- CSm
j or

CSm
j

- CSn
i .

Case A: Rn
i,j

- Lm
j .

1. Ln
i

- Rm
j,i

Proof : B1 , case assumption, B1 (applied to Lm
j and Rm

j,i), and A4.

2. Rm
j,i /- Ln

i

Proof : 1 and A2.
3. Xn

i
- Rm

j,i

Proof : 2 and B4 (applied to Rm
j,i, Ln

i , and Xn
i).

4. CSn
i

- CSm
j

Proof : B3, 3, B2 (applied to Rm
j,i and CSm

j), and A4.

Case B: Rn
i,j /- Lm

j .

1. Xm
j

- Rn
i,j

Proof : Case assumption and B4.
2. CSm

j
- CSn

i .

Proof : B3 (applied to CSm
j and Xm

j), 1, B2, and A4.

Figure 2: Proof of mutual exclusion for the algorithm of Figure 1.

of the events in process j’s write Lm
j of xj . It is reasonable to infer that the

value obtained by the read was written by Lm
j or a later write to xj. Since

Lm
j writes true and Rn

i,j is a read of false, Rn
i,j must read the value written

by a later write. The first write of xj issued after Lm
j is Xm

j , so we expect
Xm

j
- Rn

i,j to hold.

3.2 The Implementation

Implementing the algorithm for a particular memory architecture may re-
quire synchronization commands to assure B1–B4. Most proposed memory
systems satisfy the following property.

C1. All write operations to a single memory cell by any one process are
observed by other processes in the order in which they were issued.

They also provide some form of synchronization command, synch, (for ex-
ample, a “cache flush” operation) satisfying

C2. A synch command causes the issuing process to wait until all previ-
ously issued memory accesses have completed.

5

Properties C1 and C2 are rather informal. We restate them more precisely
as follows.

C1′. If the value obtained by a read A issued by process i is the one written
by process j, then that value is the one written by the last-issued write
B in process j such that B - A.

C2′. If operation executions A, B, and C are issued in that order by a single
process, and B is a synch, then A - C.

Property C2′ implies that B1–B3 are guaranteed if synch operations are
inserted in process i’s code immediately after statement l (for B1), immedi-
ately before the critical section (for B2), and immediately after the critical
section (for B3). Assumption B4 follows from C1′.

Now let us consider a more specialized memory architecture in which
each process has its own cache, and a write operation (asynchronously)
updates every copy of the memory cell that resides in the caches. In such
an architecture, the following additional condition is likely to hold:

C3. A read of a memory cell that resides in the process’s cache precedes
(-) every operation execution issued subsequently by the same pro-
cess.

If the memory system provides some way of ensuring that a memory cell
is permanently resident in a process’s cache, then B2 can be satisfied by
keeping all the variables xj in process i’s cache. In this case, the synch

immediately preceding the critical section is not needed.

3.3 Observations

One might think that the purpose of memory synchronization commands is
to enforce orderings between commands issued by different processes. How-
ever, B1–B3 are precedence relations between operations issued by the same
process. In general, one process cannot directly observe all the events in
the execution of an operation by another process. Hence, when viewing
a particular execution of an algorithm, the results of executing two oper-
ation executions A and D in different processes can permit the deduction
only of a causality (-) relation between A and D. Only if A and D oc-
cur in the same process can A - D be deduced by direct observation.
Otherwise, deducing A - D requires the existence of an operation B in
the same process as A and an operation C in the same process as D such

6

that A - B - C - D. Synchronization commands can guarantee the
relations A - B and C - D.

The example of the mutual exclusion algorithm illustrates how a set of
properties sufficient to guarantee correctness can be extracted directly from
a correctness proof. Implementations of the algorithm on different memory
architectures can be derived from the assumptions, with no further reason-
ing about the algorithm. An implementation will be efficient only if the
architecture provides synchronization primitives that efficiently implement
the assumed properties.

4 Further Remarks

The atomicity condition traditionally assumed for multiprocess programs is
sequential consistency, meaning that the program behaves as if the memory
accesses of all processes were interleaved and then executed sequentially [10].
It has been proposed that, when sequential consistency is not provided by the
memory system, it can be achieved by a constrained style of programming.
Synchronization commands are added either explicitly by the programmer,
or automatically from hints he provides. The method of [7, 8] can be applied
to our simple example, if the xi are identified by the programmer as syn-
chronization variables. However, in general, deducing what synchronization
commands are necessary requires analyzing all possible executions of the
program, which is seldom feasible. Such an analysis is needed to find the
precedence relations that, in the approach described here, are derived from
the proof.

Deriving synchronization commands from a correctness proof guaran-
tees correctness of the implementation. However, the set of synchronization
commands will be minimal only if the proof is based on a minimal set of
synchronization assumptions. The set of assumptions is minimal if a coun-
terexample to the theorem can be found when any assumption is eliminated.
In practice, unnecessary assumptions are often uncovered simply because
they are not used in the proof.

Although it replaces traditional informal reasoning with a more rigorous,
axiomatic style, the proof method we have used is essentially behavioral—
one reasons directly about the set of operation executions. Behavioral meth-
ods do not seem to scale well, and our approach is unlikely to be practical
for large, complicated algorithms. Most multiprocess programs for modern
multiprocessors are best written in terms of higher-level abstractions. The

7

method presented here can be applied to the algorithms that implement
these abstractions and to those algorithms, usually in the depths of the
operating system, where efficiency and correctness are crucial.

Assertional proofs are practical for more complicated algorithms. The
obvious way to reason assertionally about algorithms with nonatomic mem-
ory operations is to represent a memory access by a sequence of atomic
operations [2, 9]. With this approach, the memory architecture and syn-
chronization operations are encoded in the algorithm. Therefore, a new
proof is needed for each architecture, and the proofs are unlikely to help dis-
cover what synchronization operations are needed. A less obvious approach
uses the predicate transformers win (weakest invariant) and sin (strongest
invariant) to write assertional proofs for algorithms in which no atomic op-
erations are assumed, requirements on the memory architecture being de-
scribed by axioms [15]. Such a proof would establish the correctness of an
algorithm for a large class of memory architectures. However, in this ap-
proach, all intraprocess - relations are encoded in the algorithm, so the
proofs are unlikely to help discover the very precedence relations that lead
to the introduction of synchronization operations.

Acknowledgments

I wish to thank Allan Heydon, Michael Merritt, David Probst, Garrett
Swart, Fred Schneider, and Chuck Thacker for their comments on earlier
versions.

8

References

[1] Uri Abraham, Shai Ben-David, and Menachem Magidor. On global-
time and inter-process communication. In M. Z. Kwiatkowska, M. W.
Shields, and R.M. Thomas, editors, Semantics for Concurrency, pages
311–323. Springer-Verlag, Leicester, 1990.

[2] James H. Anderson and Mohamed G. Gouda. Atomic semantics of
nonatomic programs. Information Processing Letters, 28:99–103, June
1988.

[3] Frank D. Anger. On Lamport’s interprocessor communication
model. ACM Transactions on Programming Languages and Systems,
11(3):404–417, July 1989.

[4] E. A. Ashcroft. Proving assertions about parallel programs. Journal of

Computer and System Sciences, 10:110–135, February 1975.

[5] Hagit Attiya and Roy Friedman. A correctness condition for high-
performance multiprocessors. In Proceedings of the Twenty-Fourth An-

nual ACM Symposium on the Theory of Computing, pages 679–690,
1992.

[6] Shai Ben-David. The global time assumption and semantics for con-
current systems. In Proceedings of the 7th annual ACM Symposium on

Principles of Distributed Computing, pages 223–232. ACM Press, 1988.

[7] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-
bons, Anoop Gupta, and John Hennessy. Memory consistency and
event ordering in scalable shared-memory multiprocessors. In Proceed-

ings of the International Conference on Computer Architecture, 1990.

[8] Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo. Prov-
ing sequential consistency of high-performance shared memories. In
Symposium on Parallel Algorithms and Architectures, July 1991. A full
version available as an AT&T Bell Laboratories technical report, May,
1991.

[9] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

9

[10] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, C-
28(9):690–691, September 1979.

[11] Leslie Lamport. A new approach to proving the correctness of multi-
process programs. ACM Transactions on Programming Languages and

Systems, 1(1):84–97, July 1979.

[12] Leslie Lamport. The mutual exclusion problem—part i: A theory of
interprocess communication. Journal of the ACM, 33(2):313–326, Jan-
uary 1985.

[13] Leslie Lamport. The mutual exclusion problem—part ii: Statement
and solutions. Journal of the ACM, 32(1):327–348, January 1985.

[14] Leslie Lamport. On interprocess communication—part i: Basic formal-
ism. Distributed Computing, 1:77–85, 1986.

[15] Leslie Lamport. win and sin: Predicate transformers for concur-
rency. ACM Transactions on Programming Languages and Systems,
12(3):396–428, July 1990.

[16] Susan Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279–284, May 1976.

[17] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th

Annual Symposium on the Foundations of Computer Science, pages 46–
57. IEEE, November 1977.

10

