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SAS Recap

• Partitioning = Decomposition + Assignment
• Orchestration = coordination and communication

– SPMD, Static Assignment
– Implicit communication
– Explicit Synchronization: barriers, mutex, events

P0

P1

P2

P4

Sweep

Test Convergence

Processes

Solve Solve Solve Solve
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Message Passing Grid Solver

• Cannot declare A to be global shared array
– compose it logically from per-process private arrays
– usually allocated in accordance with the assignment of work

» process assigned a set of rows allocates them locally

• Transfers of entire rows between traversals
• Structurally similar to SPMD  SAS
• Orchestration different

– data structures and data access/naming
– communication
– synchronization

• Ghost rows
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Data Layout and Orchestration

P0

P1

P2

P4

P0

P2

P4

P1

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program
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10. procedure  Solve()
11. begi n
13. i n t  i , j ,  pid ,  n’ = n/ nprocs,  done = 0;
14. f l o a t  t e mp,  t e mpdiff ,  my d i f f  = 0; /*private variables*/
6.  myA ←  ma l l o c ( a  2 - d  a r r a y  o f  s i z e  [ n / nprocs + 2] by n+2);

/*initialize my rows of A, in an unspecified way*/

15. whi l e  ( ! d o n e )  d o
1 6 .  my d i f f  = 0; /*set local diff to 0*/

/* Exchange border rows of neighbors into myA[0,*] and myA[n’+1,*]*/
16a. i f  ( pi d ! =  0 )  then  SEND(&myA[ 1 , 0 ] , n*si z e o f ( f l o a t ) , p i d - 1 , ROW) ;
16b. i f  ( pi d  =  nprocs-1)  then

SEND(&myA[ n’, 0] , n * s i z e o f ( f l o a t ) , p i d + 1 , ROW) ;
16c. i f  ( pi d ! =  0 )  then  RECEI VE(&myA[ 0 , 0 ] , n*si z e o f ( f l o a t ) , p i d - 1 , ROW) ;
16d. i f  ( pi d ! =  nprocs-1 )  then

RECEIVE(&myA[ n’+1,0] , n*si z e o f ( f l o a t ) ,  p i d + 1 , ROW) ;
17.  f o r  i  ←  1 to n’ do /*for each of my (nonghost) rows*/
1 8 .  f o r  j  ←  1 to n do /*for all nonborder elements in that row*/
19. t e mp = myA[ i , j ] ;
20. myA[ i , j ]  = 0.2 * ( myA[ i , j ]  + myA[ i , j - 1 ]  +  myA[ i - 1 , j ]  +
21. myA[ i , j +1]  +  myA[ i +1, j ] ) ;
22. my d i f f  += abs( myA[ i , j ]  -  t e mp);
2 3 .  endfor
2 4 .  endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

2 5 a .  i f  ( pi d  ! =  0 )  t h e n /*process 0 holds global total diff*/
2 5 b .  SEND( mydi f f , s i z e o f ( f l o a t ) , 0 , DIFF) ;
2 5 c .  RECEI VE( d o n e , s i z e o f ( i nt ) , 0 , DONE) ;
2 5 d .  e l s e /*pid 0 does this*/
2 5 e .  f o r  i  ←  1  to  nprocs-1  do /*for each other process*/
2 5 f .  RECEIVE( t e mpdi f f , s i z e o f ( f l o a t ) , * , DIFF) ;
25g.  my d i f f  += t e mpdi f f ; /*accumulate into total*/
25h.  endfor
25i i f  ( mydi f f / ( n*n) < TOL) then  done = 1;
2 5 j .  f o r  i  ←  1  to  nprocs-1  do /*for each other process*/
2 5 k .  SEND( d o n e , s i z e o f ( i n t ) , i , DONE) ;
2 5 l .  endfor
25m. endif
26. endwhil e
27. end procedure
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Notes on Message Passing Program
• Use of ghost rows
• Receive does not transfer data, send does

– unlike SAS which is usually receiver-initiated (load fetches data)

• Communication done at beginning of iteration, so no
asynchrony

• Communication in whole rows, not element at a time
• Core  similar, but indices/bounds in local rather than global

space
• Synchronization through sends and receives

– Update of global diff and event synch for done condition
– Could implement locks and barriers with messages

• REDUCE and BROADCAST simplify code
/*communicate local diff values and determine if done, using reduction and broadcast*/

25b .  REDUCE( 0 , mydi f f , s i z e o f ( f l o a t ) , ADD) ;
2 5 c .  i f  ( p i d  = =  0 )  t h e n
2 5 i .  i f  ( mydi f f / ( n * n )  <  T OL)  t hen done = 1;
25k . endi f
2 5 m.  BROADCAST( 0 , d o n e , s i z e o f ( i n t ) , DONE) ;
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Send and Receive Alternatives

• extended functionality: stride, scatter-gather, groups

• Sychronization semantics
– Affect when data structures or buffers can be reused at either end
– Affect event synch (mutual excl. by fiat: only one process touches data)
– Affect ease of programming and performance

• Synchronous messages provide built-in synch. through
match

– Separate event synchronization may be needed with asynch. messages

• With synch. messages, our code may hang.  Fix?

Send/Receive

Synchronous Asynchronous

Blocking asynch. Nonblocking asynch. 2/3/99 CS258 S99.5 8

Orchestration: Summary

•  Shared address space
– Shared and private data (explicitly separate ??)
– Communication implicit in access patterns
– Data distribution not a correctness issue
– Synchronization via atomic operations on shared data
– Synchronization explicit and distinct from data

communication

•  Message passing
– Data distribution among local address spaces needed
– No explicit shared structures

» implicit in comm. patterns
– Communication is explicit
– Synchronization implicit in communication

» mutual exclusion by  fiat
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Correctness in Grid Solver Program

• Decomposition and Assignment similar in SAS
and message-passing

• Orchestration is different
– Data structures, data access/naming, communication,

synchronization
– Performance?

SAS          Msg-Passing

Explicit global data structure? Yes      No

Assignment indept of data layout? Yes      No

Communication Implicit           Explicit

Synchronization Explicit      Implicit

Explicit replication of border rows? No      Yes
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Performance Goal => Speedup

• Architect Goal
– observe how program uses

machine and improve the
design to enhance
performance

• Programmer Goal
– observe how the program

uses the machine and
improve the implementation
to enhance performance

• What do you observe?
• Who fixes what?
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Analysis Framework

• Solving communication and  load balance NP-
hard in general case

– But simple heuristic solutions work well in practice

• Fundamental Tension among:
– balanced load
– minimal synchronization
– minimal communication
– minimal extra work

• Good machine design mitigates the trade-offs

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup   <
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Load Balance and Synchronization

Sequential Work
Max Work on any Processor

Speedup problem(p)   <

• Instantaneous load imbalance revealed as wait
time

– at completion
– at barriers
– at receive
– at flags, even at mutex

P0

P1

P2

P3

P0

P1

P2

P3

Sequential Work
Max (Work + Synch Wait Time)
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Improving Load Balance

• Decompose into more smaller tasks (>>P)
• Distribute uniformly

– variable sized task
– randomize
– bin packing
– dynamic assignment

• Schedule more carefully
– avoid serialization
– estimate work
– use history info.

P0

P1

P2

P4

for_all i = 1 to n do 

     for_all j = i to n do 

               A[ i, j ] = A[i-1, j] + A[i, j-1] + ...
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(a) The spatial domain (b) Quadtr ee r epresentation

Example: Barnes-Hut

• Divide space into roughly equal # particles
• Particles close together in space should be on

same processor
• Nonuniform,  dynamically changing
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Dynamic Scheduling with Task Queues

• Centralized versus distributed queues
• Task stealing with distributed queues

– Can compromise comm and locality, and increase
synchronization

– Whom to steal from, how many tasks to steal, ...
– Termination detection
– Maximum imbalance related to size of task

QQ 0 Q2Q1 Q3

All remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per process)

Others may
steal

All processes
insert tasks

(a) Centralized task queue
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Impact of Dynamic Assignment

• Barnes-Hut on SGI Origin 2000 (cache-coherent
shared memory):
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Self-Scheduling

volatile int row_index = 0; /* shared index variable */

while (not done) {

     initialize row_index; barrier;

     while ((i = fetch_and_inc(&row_index) < n) {

          for (j = i; j < n; j++) {

               A[ i, j ] = A[i-1, j] + A[i, j-1] + ...

          }

     }

}
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Reducing Serialization

• Careful about assignment and orchestration
– including scheduling

• Event synchronization
– Reduce use of conservative synchronization

» e.g. point-to-point instead of barriers, or granularity of pt-to-pt
– But fine-grained synch more difficult to program, more synch ops.

• Mutual exclusion
– Separate locks for separate data

» e.g. locking records in a database: lock per process, record,
or field

» lock per task in task queue, not per queue
» finer grain => less contention/serialization,  more space, less

reuse
– Smaller, less frequent critical sections

» don’t do  reading/testing in critical section, only modification
– Stagger critical sections in time
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Impact of Efforts to Balance Load

• Parallelism Management overhead?
• Communication?

– amount, size, frequency?

• Synchronization?
– type? frequency?

• Opportunities for replication?

• What can architecture do?
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Arch. Implications of Load Balance

• Naming
– global position independent naming separates decomposition

from layout
– allows diverse, even dynamic assignments

• Efficient Fine-grained communication & synch
– more, smaller

» msgs
» locks

– point-to-point

• Automatic replication
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Reducing Extra Work

• Common sources of extra work:
– Computing a good partition

» e.g. partitioning in Barnes-Hut or sparse matrix
– Using redundant computation to avoid communication
– Task, data and process management overhead

» applications, languages, runtime systems, OS
–   Imposing structure on communication

» coalescing messages, allowing effective naming

• Architectural Implications:
– Reduce need by making communication and orchestration

efficient

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup   <
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Reducing Inherent Communication

• Communication is expensive!
• Measure: communication to computation ratio
• Inherent communication

– Determined by assignment of tasks to processes
– One produces data consumed by others

=> Use algorithms that communicate less
=> Assign tasks that access same data to same

process
– same row or block to same process in each iteration

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup   <
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Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
•Depends on n,p:  decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

Domain Decomposition

• Works well for scientific, engineering, graphics,
... applications

• Exploits local-biased nature of physical
problems

– Information requirements often short-range
– Or long-range but fall off with distance

• Simple example:  nearest-neighbor grid
computation
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Domain Decomposition (contd)

•Comm to comp:           for block,         for strip
•Application dependent: strip may be better in other cases

– E.g. particle flow in tunnel

4*∀ p
n 2*p

n

Best domain decomposition depends on information requirements
Nearest neighbor ex ample:  block versus strip decomposition:

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p
------

n

p
------
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Relation to load balance

• Scatter Decomposition, e.g. initial partition in
Raytrace

Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...
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Implications of Comm-to-Comp Ratio

• Architects examine application needs to see
where to spend effort

– bandwidth requirements (operations / sec)
– latency requirements (sec/operation)

» time spent waiting

• Actual impact of comm. depends on structure
and  cost as well

• Need to keep communication balanced across
processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup   <
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Structuring Communication

•Given amount of comm, goal is to reduce cost
•Cost of communication as seen by process:

 C = f * ( o + l +           + tc - overlap)

» f = frequency of messages
» o = overhead per message (at both ends)
» l = network delay per message
» nc = total data sent
» m = number of messages
» B = bandwidth along path (determined by network, NI, assist)
» tc = cost induced by contention per message
» overlap = amount of latency hidden by overlap with comp. or

comm.

–   Portion in parentheses is cost of a message (as seen by processor)
» ignoring overlap, is latency of a message

– Goal: reduce terms in latency and increase overlap

nc/m
B
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Reducing Overhead

• Can reduce no. of messages m or overhead per
message o

• o is usually determined by hardware or system
software

– Program should try to reduce m by coalescing messages
– More control when communication is explicit

• Coalescing data into larger messages:
– Easy for regular, coarse-grained communication
– Can be difficult for irregular, naturally fine-grained

communication
» may require changes to algorithm and extra work

• coalescing data and determining what and to whom to send

» will discuss more in implications for programming
models later
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Reducing Network Delay

• Network delay component = f*h*th
» h = number of hops traversed in network
» th = link+switch latency per hop

• Reducing f: communicate less, or make
messages larger

• Reducing h:
– Map communication patterns to network topology

» e.g. nearest-neighbor on mesh and ring; all-to-all

– How important is this?
» used to be major focus of parallel algorithms
» depends on no. of processors, how th, compares with

other components
» less important on modern machines

• overheads, processor count, multiprogramming
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Reducing Contention

• All resources have nonzero occupancy
– Memory, communication controller, network link, etc.
– Can only handle so many transactions per unit time

• Effects of contention:
– Increased end-to-end cost for messages
– Reduced available bandwidth for individual messages
– Causes imbalances across processors

• Particularly insidious performance problem
– Easy to ignore when programming
– Slow down messages that don’t even need that resource

» by causing other dependent resources to also congest
– Effect can be devastating:  Don’t flood a resource!
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•Module: all-to-all personalized comm. in matrix transpose

–solution: stagger access by different processors to same
node temporally

•In general, reduce burstiness; may conflict with making
messages larger

Flat Tree structured

Contention Little contention

Types of Contention

• Network contention and end-point contention
(hot-spots)

• Location and Module Hot-spots
– Location: e.g. accumulating into global variable, barrier

» solution: tree-structured communication
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Overlapping Communication

• Cannot afford to stall for high latencies
–   even on uniprocessors!

• Overlap with computation or communication to
hide latency

• Requires extra concurrency (slackness), higher
bandwidth

• Techniques:
– Prefetching
– Block data transfer
– Proceeding past communication
– Multithreading
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Communication Scaling (NPB2)
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Communication Scaling: Volume

Bytes per Processor
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What is a Multiprocessor?

• A collection of communicating processors
– View taken so far
– Goals: balance load, reduce inherent communication and

extra work

• A multi-cache, multi-memory system
– Role of these components essential regardless of

programming model
– Prog. model  and comm. abstr. affect specific performance

tradeoffs
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Memory-oriented View

• Multiprocessor as Extended Memory Hierarchy
» as seen by a given processor

• Levels in extended hierarchy:
– Registers, caches, local memory, remote memory (topology)
– Glued together by communication architecture
– Levels communicate at a certain granularity of data transfer

• Need to exploit spatial and temporal locality in
hierarchy

– Otherwise extra communication may also be caused
– Especially important since communication is expensive
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Uniprocessor

• Performance depends heavily on memory
hierarchy

• Time spent by a program
Timeprog(1) = Busy(1) + Data Access(1)

– Divide by cycles to get CPI equation

• Data access time can be reduced by:
–   Optimizing machine: bigger caches, lower latency...
–   Optimizing program: temporal and spatial locality
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Extended Hierarchy

• Idealized view: local cache hierarchy + single
main memory

• But reality is more complex
– Centralized Memory: caches of other processors
– Distributed Memory: some  local, some remote; + network

topology
– Management of levels

» caches managed by hardware
» main memory depends on programming model

• SAS: data movement between local and remote transparent

• message passing: explicit

– Levels closer to processor are lower latency and higher
bandwidth

– Improve performance through architecture or program
locality

– Tradeoff with parallelism; need good node performance and
parallelism
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Artifactual Communication

• Accesses not satisfied in local portion of
memory hierachy cause communication

– Inherent communication,  implicit or explicit, causes transfers
» determined by program

–   Artifactual communication
» determined by program implementation and arch.

interactions
» poor allocation of data across distributed memories
» unnecessary data in a transfer
» unnecessary transfers due to system granularities
» redundant communication of data
» finite replication capacity (in cache or main memory)

– Inherent communication assumes unlimited capacity, small
transfers, perfect knowledge of what is needed.
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Communication and Replication

• Comm induced by finite capacity is most
fundamental artifact

– Like cache size and miss rate or memory traffic in
uniprocessors

– Extended memory hierarchy view  useful for this relationship

• View as three level hierarchy for simplicity
– Local cache, local memory, remote memory (ignore network

topology)

• Classify “misses” in “cache” at any level as for
uniprocessors

» compulsory or cold misses (no size effect)
» capacity misses (yes)
» conflict  or collision misses (yes)
» communication  or coherence misses (no)

–   Each may be helped/hurt by large transfer granularity
(spatial locality)
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Working Set Perspective

– Hierarchy of working sets
– At first level cache (fully assoc, one-word block), inherent to algorithm

» working set curve for program
– Traffic from any type of miss can be local or nonlocal (communication)

•At a given level of the hierarchy (to the nex t further one)

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a 
tra

ff
ic

Other capacity-independent communication

Cold-start (compulsory) traffic

Replication capacity (cache size)

Inherent communication
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Orchestration for Performance

• Reducing amount of communication:
– Inherent: change logical data sharing patterns in algorithm
– Artifactual: exploit spatial, temporal locality in extended

hierarchy
» Techniques often similar to those on uniprocessors

• Structuring communication to reduce cost
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Reducing Artifactual Communication

• Message  passing model
– Communication and replication are both explicit
– Even artifactual communication is in explicit messages

» send data that is not used

• Shared address space model
– More interesting from an architectural perspective
– Occurs transparently due to interactions of program and

system
» sizes and granularities in extended memory  hierarchy

• Use shared address space to illustrate issues
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Exploiting Temporal Locality
– Structure algorithm so working sets map well to hierarchy

» often techniques to reduce inherent communication do well here
» schedule tasks for data reuse once assigned

– Multiple data structures in same phase
» e.g. database records: local versus remote

– Solver example: blocking

•More useful when O(nk+1) computation on O(nk) data
–many linear algebra computations (factorization, matrix
multiply)

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4
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Exploiting Spatial Locality

• Besides capacity, granularities are important:
– Granularity of allocation
– Granularity of communication or data transfer
– Granularity of coherence

• Major spatial-related causes of artifactual communication:
– Conflict misses
– Data distribution/layout (allocation granularity)
– Fragmentation (communication granularity)
– False sharing of data (coherence granularity)

• All depend on how spatial access patterns interact with
data structures

– Fix problems by modifying data structures, or layout/alignment

• Examine later in context of architectures
– one simple example here: data distribution in SAS solver
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Spatial Locality Example

–   Repeated sweeps over 2-d grid, each time adding 1 to
elements

–   Natural 2-d versus higher-dimensional array representation
  

 

   

P6 P7P4

P8

P0 P3

P5 P6 P7P4

P8

 
   

 
 

P0 P1 P2 P3

P5

 
   

  

P2P1

Page straddles
partition boundaries:
difficult to distribute 
memory well

Cache block
straddles partition
boundary

(a) Two-dimensional array

Page does
not straddle
partition
boundary

Cache block is 
within a partition

(b) Four-dimensional array

Contiguity in memory layout
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Architectural Implications of Locality

• Communication abstraction that makes
exploiting it easy

• For cache-coherent SAS, e.g.:
– Size and organization of  levels of memory hierarchy

» cost-effectiveness: caches are expensive
» caveats: flexibility for different and time-shared

workloads
– Replication in main memory useful? If so, how to manage?

» hardware, OS/runtime, program?
– Granularities of allocation, communication, coherence (?)

» small granularities => high overheads, but easier to
program

• Machine granularity (resource division among
processors, memory...)
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Tradeoffs with Inherent
Communication
• Partitioning grid solver: blocks versus rows

– Blocks still have a spatial locality problem on remote data
– Rowwise can perform better despite worse inherent c-to-c

ratio

•Result depends on n and p

  
 

 

  
  

Good spacial locality on
nonlocal accesses at
row-oriented boudary

Poor spacial locality on
nonlocal accesses at
column-oriented
boundary
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Example Performance Impact

• Equation solver on SGI Origin2000
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Working Sets Change with P

8-fold reduction
in miss rate from
4 to 8 proc
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Where the Time Goes: LU-a
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Summary of Tradeoffs

• Different goals often have conflicting demands
– Load Balance

» fine-grain tasks
» random or dynamic assignment

– Communication
» usually coarse grain tasks
» decompose to obtain locality:  not random/dynamic

– Extra Work
» coarse grain tasks
» simple assignment

– Communication Cost:
» big transfers: amortize overhead and latency
» small transfers: reduce contention


