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Multi-Level Caches with ST Bus

• Introduces deadlock and serialization
problems

Key new problem: many cycles to propagate through hierarchy
• Must let others propagate too for bandwidth, so queues between levels
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Deadlock Considerations
• Fetch deadlock:

– Must buffer incoming requests/responses while request outstanding

– One outstanding request per processor => need space to hold p
requests plus one reply (latter is essential)

– If smaller (or if multiple o/s requests), may need to NACK

– Then need priority mechanism in bus arbiter to ensure progress

• Buffer deadlock:
– L1 to L2 queue filled with read requests, waiting for response from L2

– L2 to L1 queue filled with bus requests waiting for response from L1

– Latter condition only when cache closer than lowest level is write back

– Could provide enough buffering, or general solutions discussed later

• If # o/s bus transactions smaller than total o/s cache
misses, response from cache must get bus before new
requests from it allowed

– Queues may need to support bypassing 2/28/99 CS258 S99 4

Sequential Consistency

• Separation of commitment from completion even
greater now

– More performance-critical that commitment replace
completion

• Fortunately techniques for single-level cache
and ST bus extend

– Just use them at each level
– i.e. either don’t allow certain reorderings of transactions at

any level
– Or don’t let outgoing operation proceed past level before

incoming invalidations/updates at that level are applied
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Multiple Outstanding Processor
Requests

• So far assumed only one: not true of modern processors
• Danger: operations from same processor can complete

out of order
– e.g. write buffer: until serialized by bus, should not be visible to others
– Uniprocessors use write buffer to insert multiple writes in succession

» multiprocessors usually can’t do this while ensuring consistent
serialization

» exception: writes are to same block, and no intervening ops in
program order

• Key question: who should wait to issue next op till
previous completes

– Key to high performance: processor needn’t do it (so can overlap)

– Queues/buffers/controllers can ensure writes not visible to external world
and reads don’t complete (even if back) until allowed (more later)

• Other requirement: caches must be lockup free to be
effective

– Merge operations to a block, so rest of system sees only one o/s to block
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Case Studies of Bus-based Machines

• SGI Challenge, with Powerpath bus
• SUN Enterprise, with Gigaplane bus

– Take very different positions on the design issues discussed
above

• Overview
• For each system:

– Bus design
– Processor and Memory System
– Input/Output system
– Microbenchmark memory access results

• Application performance and scaling (SGI
Challenge)
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Bus Design Issues

• Multiplexed versus non-multiplexed (separate
addr and data lines)

• Wide versus narrow data busses

• Bus clock rate
– Affected by signaling technology, length, number of slots...

• Split transaction versus atomic

• Flow control strategy
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SGI Powerpath-2 Bus
• Non-multiplexed, 256-data/40-address, 47.6 MHz, 8 o/s

requests
• Wide => more interface chips so higher latency, but more

bw at slower clock
• Large block size also calls for wider bus
• Uses Illinois MESI protocol (cache-to-cache sharing)
• More detail in chapter
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Bus Timing
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Processor and Memory Systems

• 4 MIPS R4400 processors per board share A and
D chips

• A chip has address bus interface, request table,
control logic

• CC chip per processor has duplicate set of tags
• Processor requests go from CC chip to A chip to

bus
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Memory Access Latency

• 250ns access time from address on bus to
data on bus

• But overall latency seen by processor is
1000ns!

– 300 ns for request to get from processor to bus
» down through cache hierarchy, CC chip and A chip

– 400ns later, data gets to D chips
» 3 bus cycles to address phase of request transaction,

12 to access main memory, 5 to deliver data across
bus to D chips

– 300ns more for data to get to processor chip
» up through D chips, CC chip, and 64-bit wide

interface to processor chip, load data into primary
cache, restart pipeline
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Challenge I/O Subsystem

• Multiple I/O cards on system bus, each has 320MB/s
HIO bus

– Personality ASICs connect these to devices (standard and graphics)

• Proprietary HIO bus
– 64-bit multiplexed address/data, same clock as system bus
– Split read transactions, up to 4 per device
– Pipelined, but centralized arbitration, with several transaction lengths
– Address translation via mapping RAM in system bus interface

• Why the decouplings? (Why not connect directly to
system bus?)

HIO bus (320 MB/s)

System address bus

System data bus (1.2 GB/s)
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Challenge Memory System
Performance
• Read microbenchmark with various strides and

array sizes

Ping-pong flag-spinning microbenchmark: round-trip time 6.2 µs.
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Sun Gigaplane Bus
• Non-multiplexed, split-transaction, 256-data/41-

address, 83.5 MHz
– Plus 32 ECC lines, 7 tag, 18 arbitration, etc.  Total 388.

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each board

– Designed for multiple outstanding transactions per processor

• Emphasis on reducing latency, unlike Challenge
– Speculative arbitration if address bus not scheduled from prev. cycle

– Else regular 1-cycle arbitration, and 7-bit tag assigned in next cycle

• Snoop result associated with request phase (5 cycles
later)

• Main memory can stake claim to data bus 3 cycles into
this, and start memory access speculatively

– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol (owned state for cache-to-cache
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Gigaplane Bus Timing
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Enterprise Processor and Memory
System

• 2 procs per board, external L2 caches, 2 mem banks with
x-bar

• Data lines buffered through UDB to drive internal 1.3
GB/s UPA bus

• Wide path to memory so full 64-byte line in 1 mem cycle
(2 bus cyc)

• Addr controller adapts proc and bus protocols, does
cache coherence

– its tags keep a subset of states needed by bus (e.g. no M/E distinction)
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Enterprise I/O System

• I/O board has same bus interface ASICs as
processor boards

• But internal bus half as wide, and no memory
path

• Only cache block sized transactions, like
processing boards

– Uniformity simplifies design
– ASICs implement single-block cache, follows coherence

protocol

• Two independent 64-bit, 25 MHz Sbuses
– One for two dedicated FiberChannel modules connected to

disk
– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arbitrary

peripherals

• Performance and cost of I/O scale with no. of I/O
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Memory Access Latency
• 300ns read miss latency
• 11 cycle min bus protocol at 83.5 Mhz is 130ns of

this time
• Rest is path through caches and the DRAM

access
• TLB misses add 340 ns
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Application Speedups (Challenge)

– Problem in Ocean with small problem: communication and barrier cost

– Problem in Radix: contention on bus due to very high traffic
» also leads to high imbalances and barrier wait time
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Application Scaling under Other
Models
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