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Routing

« Recall: routing algorithm determines
— which of the possible paths are used as routes
— how the route is determined
— R:Nx N->C, which at each switch maps the destination node
ny to the next channel on the route
* Issues:
— Routing mechanism
» arithmetic
» source-based port select
» table driven
» general computation
— Properties of the routes
— Deadlock feee
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Routing Mechanism

« need to select output port for each input packet
— in afew cycles

« Simple arithmetic in regular topologies
— ex: Dx, Dy routing in a grid
» west (-x) Dx <0
» east (+x) Dx >0
» south (-y) Dx =0,Dy<0
» north (+y) Dx =0,Dy>0
» processor Dx=0,Dy=0
« Reduce relative address of each dimension in
order
— Dimension-order routing in k-ary d-cubes
— e-cube routing in n-cube
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Routing Mechanism (cont)
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* Source-based
— message header carries series of port selects
— used and stripped en route
— CRC? Packet Format?
— CS-2, Myrinet, MIT Artic
» Table-driven
— message header carried index for next port at next switch
» 0 = R[]
— table also gives index for following hop
» 0, =R[i]
— ATM, HPPI
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Properties of Routing Algorithms

« Deterministic

— route determined by (source, dest), not intermediate state (i.e.
traffic)

« Adaptive
— route influenced by traffic along the way
* Minimal
— only selects shortest paths
Deadlock free

— no traffic pattern can lead to a situation where no packets
mover forward
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Deadlock Freedom

* How can it arise?
— necessary conditions:
» shared resource
» incrementally allocated
» non-preemptible

— think of a channel as a shared
resource that is acquired incrementally

» source buffer then dest. buffer
» channels along a route
« How do you avoid it?
— constrain how channel resources are allocated
— ex: dimension order
« How do you prove that a routing algorithm is
deadlock free
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Proof Technique

resources are logically associated with channels
messages introduce dependences between
resources as they move forward

need to articulate the possible dependences that
can arise between channels

show that there are no cycles in Channel
Dependence Graph

— find a numbering of channel resources such that every legal
route follows a monotonic sequence

=>no traffic pattern can lead to deadlock

network need not be acyclic, on channel
dependence graph
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Example: k-ary 2D array

« Thm: x,y routing is deadlock free

¢ Numbering
— +x channel (i,y) -> (i+1,y) gets i
— similarly for -x with 0 as most positive edge
— +y channel (x,j) -> (x,j+1) gets N+j
— similary for -y channels
any routing sequence: x direction, turn, y
direction is increasing
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Channel Dependence Graph
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More examples:

« Why is the obvious routing on X deadlock free?
— butterfly?
— tree?
— fat tree?

Any assumptions about routing mechanism?
amount of buffering?

What about wormhole routing on a ring?
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Deadlock free wormhole networks?

Basic dimension order routing techniques don’t
work for k-ary d-cubes

— only for k-ary d-arrays (bi-directional)

Idea: add channels!

— provide multiple “virtual channels” to break the dependence
cycle

— good for BW too! %%—(%:D—» H>—
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— Do not need to add links, or xbar, only buffer resources
¢ This adds nodes the the CDG, remove edges?
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Breaking deadlock with virtual
channels
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Up*-Down* routing

Given any bidirectional network
Construct a spanning tree

Number of the nodes increasing from leaves to
roots

UP increase node numbers
Any Source -> Dest by UP*-DOWN* route

— up edges, single turn, down edges

Performance?
— Some numberings and routes much better than others
— interacts with topology in strange ways
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Turn Restrictions in X,Y

+Y

-Y

« XY routing forbids 4 of 8 turns and leaves no
room for adaptive routing

¢ Can you allow more turns and still be deadlock
free
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Minimal turn restrictions in 2D
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Example legal west-first routes
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¢ Can route around failures or congestion

« Can combine turn restrictions with virtual
channels
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Adaptive Routing

*e RECXNxS->C

Essential for fault tolerance
— at least multipath

Can improve utilization of the network

Simple deterministic algorithms easily run into
bad permutations
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fully/partially adaptive, minimal/non-minimal
can introduce complexity or anomolies

little adaptation goes a long way!
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Switch Design
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Output

How do you build a crossbar
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Input buffered swtich
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« Independent routing logic per input
~ FSM

« Scheduler logic arbitrates each output
— priority, FIFO, random

« Head-of-line blocking problem
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Output Buffered Switch

¢ How would you build a shared pool?

CS258 S99

Example: IBM SP vulcan switch

« Many gigabit ethernet switches use similar
design without the cut-through
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Output scheduling
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« nindependent arbitration problems?
— static priority, random, round-robin

« simplifications due to routing algorithm?
« general case is max bipartite matching
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Stacked Dimension Switches

« Dimension order on

3D cube? HostIn
Zin 22 Zout
« Cube connected . »
cycles?
Yin » Yout
Xin » Xout

Flow Control

« What do you do when push comes to shove?
— ethernet: collision detection and retry after delay
— FDDI, token ring: arbitration token
— TCP/WAN: buffer, drop, adjust rate
— any solution must adjust to output rate

¢ Link-level flow control
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Host Out
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Examples
¢ Short Links Ready/Ack
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Smoothing the flow

Incoring Pits
Flow-control Symbols<.
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¢ How much slack do you need to maximize
bandwidth?

CS258 S99

Link vs global flow control

* Hot Spots
* Global communication operations
« Natural parallel program dependences
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Example: T3D

ReadReq  Read Resp FRead Resp WilteReg  WiteReq  Wiile Resp  BLTRead Req
o cache cached - Proc proc 4
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3D bidirectional torus, dimension order (NIC selected),
virtual cut-through, packet sw.

16 bit x 150 MHz, short, wide, synch.
rotating priority per output

logically separate request/response
3independent, stacked switches

8 16-bit flits on each of 4 VC in each directions
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Example: SP

16-rodeRack

Multi-rack Configuration

EEEE; Eis

RPEPs Pis
o IrirarReck Hodt Ports.

8-port switch, 40 MB/s per link, 8-bit phit, 16-bit flit, single
40 MHz clock

packet sw, cut-through, no virtual channel, source-based
routing

variable packet <= 255 bytes, 31 byte fifo per input, 7 bytes
per output, 16 phit links

128 8-byte ‘chunks’ in central queue, LRU per output
run in shadow mode Cs258 599
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Summary

Routing Algorithms restrict the set of routes
within the topology

— simple mechanism selects turn at each hop

— arithmetic, selection, lookup
Deadlock-free if channel dependence graph is
acyclic

— limit turns to eliminate dependences

— add separate channel resources to break dependences

— combination of topology, algorithm, and switch design
Deterministic vs adaptive routing
Switch design issues

— input/output/pooled buffering, routing logic, selection logic
Flow control

Real networks are a ‘package’ of design choices

NOW Handout Page 6




