

Outline

- Routing
- Switch Design
- Flow Control
- Case Studies

Routing

- Recall: routing algorithm determines
- which of the possible paths are used as routes
- how the route is determined
- R: $\mathrm{N} \times \mathrm{N}$-> C, which at each switch maps the destination node n_{d} to the next channel on the route
- Issues:
- Routing mechanism
" arithmetic
" source-based port select
" table driven
\Rightarrow general computation
- Properties of the routes
- Deadlock feee

Routing Mechanism

- need to select output port for each input packet - in a few cycles
- Simple arithmetic in regular topologies
- ex: $\Delta x, \Delta y$ routing in a grid
" west (-x) $\quad \Delta x<0$
" east (+x) $\quad \Delta x>0$
" south (-y) $\quad \Delta x=0, \Delta y<0$
" north (+y) $\quad \Delta x=0, \Delta y>0$
" processor $\quad \Delta x=0, \Delta y=0$
- Reduce relative address of each dimension in order
- Dimension-order routing in \mathbf{k}-ary d-cubes
- e-cube routing in n-cube

3/31/99
CS258 S99

Routing Mechanism (cont)

\section*{| \mathbf{P}_{3} | \mathbf{P}_{2} | \mathbf{P}_{1} | \mathbf{P}_{0} |
| :--- | :--- | :--- | :--- |}

- Source-based
- message header carries series of port selects
- used and stripped en route
- CRC? Packet Format?
- CS-2, Myrinet, MIT Artic
- Table-driven
- message header carried index for next port at next switch $" 0=R[i]$
- table also gives index for following hop
" \mathbf{o}, l ' $=\mathrm{R}[\mathrm{i}]$
- ATM, HPPI

Properties of Routing Algorithms

- Deterministic
- route determined by (source, dest), not intermediate state (i.e. traffic)
- Adaptive
- route influenced by traffic along the way
- Minimal
- only selects shortest paths
- Deadlock free
- no traffic pattern can lead to a situation where no packets mover forward

Proof Technique

- resources are logically associated with channels
- messages introduce dependences between resources as they move forward
- need to articulate the possible dependences that can arise between channels
- show that there are no cycles in Channel Dependence Graph
- find a numbering of channel resources such that every legal route follows a monotonic sequence
- => no traffic pattern can lead to deadlock
- network need not be acyclic, on channel dependence graph

Example: k-ary 2D array

- Thm: $\mathbf{x , y}$ routing is deadlock free
- Numbering
$-+x$ channel $(i, y)->(i+1, y)$ gets i
- similarly for $-x$ with 0 as most positive edge
$-+y$ channel $(x, j) \rightarrow(x, j+1)$ gets $N+j$
- similary for -y channels
- any routing sequence: x direction, turn, y direction is increasing

Channel Dependence Graph

More examples:

- Why is the obvious routing on X deadlock free? - butterfly?
- tree?
- fat tree?
- Any assumptions about routing mechanism? amount of buffering?
- What about wormhole routing on a ring?

3/3199
CS258 599

Deadlock free wormhole networks?

- Basic dimension order routing techniques don't work for k-ary d-cubes
- only for k-ary d-arrays (bi-directional)
- Idea: add channels!
- provide multiple "virtual channels" to break the dependence cycle
- good for BW too!

- Do not need to add links, or xbar, only buffer resources
- This adds nodes the the CDG, remove edges?

Up＊－Down＊routing

－Given any bidirectional network
－Construct a spanning tree
－Number of the nodes increasing from leaves to roots
－UP increase node numbers
－Any Source－＞Dest by UP＊－DOWN＊route －up edges，single turn，down edges
－Performance？
－Some numberings and routes much better than others －interacts with topology in strange ways

3／31／99

Turn Restrictions in X，Y

－XY routing forbids 4 of 8 turns and leaves no room for adaptive routing
－Can you allow more turns and still be deadlock free

3／31／99
CS258 999

Minimal turn restrictions in 2D
＋y

3／31／99
CS258 S99

Example legal west－first routes

$$
\begin{aligned}
& \text { ㅁㅁㅁ뭄 ㅁ } \\
& \text { 他 }
\end{aligned}
$$

－Can route around failures or congestion
－Can combine turn restrictions with virtual channels

Adaptive Routing

－R：C x N x Σ－＞C
－Essential for fault tolerance －at least multipath
－Can improve utilization of the network
－Simple deterministic algorithms easily run into bad permutations

$\square-\square \square \square$	प 9 ¢ पロ
ロ ロ ロ ロ ロ	口 ¢ ロ－ロ
口 ロ ロ ロ ̈́口	¢ ロ ロ ロ
$\square \square \square \square$ b	ローローロ ロ

－fully／partially adaptive，minimal／non－minimal
－can introduce complexity or anomolies
－little adaptation goes a long way！ CS258 S99

Input buffered swtich

- Independent routing logic per input - FSM
- Scheduler logic arbitrates each output - priority, FIFO, random
- Head-of-line blocking problem

Output Buffered Switch

- How would you build a shared pool?

CS258 S99
3/31/99
CS258 599

Output scheduling

- \mathbf{n} independent arbitration problems?
- static priority, random, round-robin
- simplifications due to routing algorithm?
- general case is max bipartite matching

Flow Control

- What do you do when push comes to shove?
- ethernet: collision detection and retry after delay
- FDDI, token ring: arbitration token
- TCP/WAN: buffer, drop, adjust rate
- any solution must adjust to output rate
- Link-level flow control

3/3199

Smoothing the flow

How much slack do you need to maximize bandwidth?

Example: T3D

- 3D bidirectional torus, dimension order (NIC selected), virtual cut-through, packet sw.
- 16 bit x 150 MHz , short, wide, synch.
- rotating priority per output
- logically separate request/response
- 3 independent, stacked switches
- 8 16-bit flits on each of 4 VC in each directions

3/3199 CS258 S99

Summary

- Routing Algorithms restrict the set of routes within the topology
- simple mechanism selects turn at each hop
- arithmetic, selection, lookup
- Deadlock-free if channel dependence graph is acyclic
- limit turns to eliminate dependences
- add separate channel resources to break dependences - combination of topology, algorithm, and switch design
- Deterministic vs adaptive routing
- Switch design issues
- input/output/pooled buffering, routing logic, selection logic
- Flow control
- Real networks are a ‘package’ of design choices

