Networks: Routing and Design

CS 258, Spring 99
David E. Culler
Computer Science Division
U.C. Berkeley

Outline

* Routing

« Switch Design
« Flow Control
« Case Studies

CS258 S99

Routing

« Recall: routing algorithm determines
— which of the possible paths are used as routes
— how the route is determined
— R:Nx N->C, which at each switch maps the destination node
ny to the next channel on the route
* Issues:
— Routing mechanism
» arithmetic
» source-based port select
» table driven
» general computation
— Properties of the routes
— Deadlock feee

CS258 S99

Routing Mechanism

« need to select output port for each input packet
— in afew cycles

« Simple arithmetic in regular topologies
— ex: Dx, Dy routing in a grid
» west (-x) Dx <0
» east (+x) Dx >0
» south (-y) Dx =0,Dy<0
» north (+y) Dx =0,Dy>0
» processor Dx=0,Dy=0
« Reduce relative address of each dimension in
order
— Dimension-order routing in k-ary d-cubes
— e-cube routing in n-cube

CS258 S99

Routing Mechanism (cont)

\ B

* Source-based
— message header carries series of port selects
— used and stripped en route
— CRC? Packet Format?
— CS-2, Myrinet, MIT Artic
» Table-driven
— message header carried index for next port at next switch
» 0 = R[]
— table also gives index for following hop
» 0, =R[i]
— ATM, HPPI

CS258 S99

CS258 S99

Properties of Routing Algorithms

« Deterministic

— route determined by (source, dest), not intermediate state (i.e.
traffic)

« Adaptive
— route influenced by traffic along the way
* Minimal
— only selects shortest paths
Deadlock free

— no traffic pattern can lead to a situation where no packets
mover forward

CS258 S99

NOW Handout Page 1

Deadlock Freedom

* How can it arise?
— necessary conditions:
» shared resource
» incrementally allocated
» non-preemptible

— think of a channel as a shared
resource that is acquired incrementally

» source buffer then dest. buffer
» channels along a route
« How do you avoid it?
— constrain how channel resources are allocated
— ex: dimension order
« How do you prove that a routing algorithm is
deadlock free

CS258 S99

Proof Technique

resources are logically associated with channels
messages introduce dependences between
resources as they move forward

need to articulate the possible dependences that
can arise between channels

show that there are no cycles in Channel
Dependence Graph

— find a numbering of channel resources such that every legal
route follows a monotonic sequence

=>no traffic pattern can lead to deadlock

network need not be acyclic, on channel
dependence graph
CS258 S99

Example: k-ary 2D array

« Thm: x,y routing is deadlock free

¢ Numbering
— +x channel (i,y) -> (i+1,y) gets i
— similarly for -x with 0 as most positive edge
— +y channel (x,j) -> (x,j+1) gets N+j
— similary for -y channels
any routing sequence: x direction, turn, y
direction is increasing

CS258 S99

Channel Dependence Graph

CS258 S99

More examples:

« Why is the obvious routing on X deadlock free?
— butterfly?
— tree?
— fat tree?

Any assumptions about routing mechanism?
amount of buffering?

What about wormhole routing on a ring?

CS258 S99

Deadlock free wormhole networks?

Basic dimension order routing techniques don’t
work for k-ary d-cubes

— only for k-ary d-arrays (bi-directional)

Idea: add channels!

— provide multiple “virtual channels” to break the dependence
cycle

— good for BW too! %%—(%:D—» H>—
>(ED

% — .-

-

— Do not need to add links, or xbar, only buffer resources
¢ This adds nodes the the CDG, remove edges?
CS258 S99

Oupu.
Pons

NOW Handout Page 2

Breaking deadlock with virtual
channels

2 ===y | E=E==ml
H ' %”7 7<—J3—w %:
1 1] I i
il AN il)
— ==FH
| L
|
b (| Packet switches
I:{"i:i ' i:ﬂ:“ N fromlo to hi channel
o= Oocp
0 mo g L
iy o B un
oA N . |1
T==pg" Te=p

CS258 S99

Up*-Down* routing

Given any bidirectional network
Construct a spanning tree

Number of the nodes increasing from leaves to
roots

UP increase node numbers
Any Source -> Dest by UP*-DOWN* route

— up edges, single turn, down edges

Performance?
— Some numberings and routes much better than others
— interacts with topology in strange ways

CS258 S99

Turn Restrictions in X,Y

+Y

-Y

« XY routing forbids 4 of 8 turns and leaves no
room for adaptive routing

¢ Can you allow more turns and still be deadlock
free

CS258 S99

Minimal turn restrictions in 2D

*y

v

T Westfirst

Mr= rd
Lttt | L, tt |

negative first

north-last

CS258 S99

Example legal west-first routes

—m

O
oo
S
oo

e
-_—

ki
fagpt
cooool

i

]
]

Oo0aoooao
Oooo

§F

¢ Can route around failures or congestion

« Can combine turn restrictions with virtual
channels

CS258 S99

Adaptive Routing

*e RECXNxS->C

Essential for fault tolerance
— at least multipath

Can improve utilization of the network

Simple deterministic algorithms easily run into
bad permutations

iu—ﬁ—n
Oo0Ooano u] a
OoOoao o o

Oo0Ooano u] a
fully/partially adaptive, minimal/non-minimal
can introduce complexity or anomolies

little adaptation goes a long way!
CS258 S99

CS258 S99

NOW Handout Page 3

Switch Design

Receiver [P

OUDU ¢ oriter
ot Bffer Buffer
Ports

Cross-bar

Control
Routing, Scheduling

CS258 S99

i

Output

How do you build a crossbar

CS258 S99

Iu Il IZ Iz
%‘:‘_’ i D D I
HH o R 1 I N
el e,
= ENEENE
(e
]
S RAM
phese —saddr
Din Dout
lo—] o,
‘1_> d
1y —>)
ly—pd O,

Input buffered swtich

Outpue
Ports

Ty

Scheduiing

« Independent routing logic per input
~ FSM

« Scheduler logic arbitrates each output
— priority, FIFO, random

« Head-of-line blocking problem
CS258 S99

Output Buffered Switch

¢ How would you build a shared pool?

CS258 S99

Example: IBM SP vulcan switch

« Many gigabit ethernet switches use similar
design without the cut-through

CS258 S99

CS258 S99

Output scheduling

[1]
0

o []
Y

Buffers

|

10
1

R34 O

« nindependent arbitration problems?
— static priority, random, round-robin

« simplifications due to routing algorithm?
« general case is max bipartite matching

CS258 S99

Output
Ports

NOW Handout Page 4

Stacked Dimension Switches

« Dimension order on

3D cube? HostIn
Zin 22 Zout
« Cube connected . »
cycles?
Yin » Yout
Xin » Xout

Flow Control

« What do you do when push comes to shove?
— ethernet: collision detection and retry after delay
— FDDI, token ring: arbitration token
— TCP/WAN: buffer, drop, adjust rate
— any solution must adjust to output rate

¢ Link-level flow control

N

I
N H H Ready 1 D'/
A \ Data ! H—(‘
CS258 S99

Host Out
CS258 S99
Examples
¢ Short Links Ready/Ack
[FTET FIE
e B
8 §
F] g
3 i
[s]
— Data
¢ long links
— several flits on the wire
°0—006—©
[reoee o]

CS258 S99

Smoothing the flow

Incoring Pits
Flow-control Symbols<.
\ Ful

Sop - |- — — —| - High
Mark

e

Go-Im === Mak

Y k
Otgoing Phits

¢ How much slack do you need to maximize
bandwidth?

CS258 S99

Link vs global flow control

* Hot Spots
* Global communication operations
« Natural parallel program dependences

CS258 S99

CS258 S99

Example: T3D

ReadReq Read Resp FRead Resp WilteReg WiteReq Wiile Resp BLTRead Req
o cache cached - Proc proc 4

cache BLTL BLT4

prefetch fetchaine

fetchaine

5

[]
e e
o

- Sore

s

]
[sePe]

[T

TPE
e
K

3D bidirectional torus, dimension order (NIC selected),
virtual cut-through, packet sw.

16 bit x 150 MHz, short, wide, synch.
rotating priority per output

logically separate request/response
3independent, stacked switches

8 16-bit flits on each of 4 VC in each directions
CS258 S99

NOW Handout Page 5

Example: SP

16-rodeRack

Multi-rack Configuration

EEEE; Eis

RPEPs Pis
o IrirarReck Hodt Ports.

8-port switch, 40 MB/s per link, 8-bit phit, 16-bit flit, single
40 MHz clock

packet sw, cut-through, no virtual channel, source-based
routing

variable packet <= 255 bytes, 31 byte fifo per input, 7 bytes
per output, 16 phit links

128 8-byte ‘chunks’ in central queue, LRU per output
run in shadow mode Cs258 599

CS258 S99

Summary

Routing Algorithms restrict the set of routes
within the topology

— simple mechanism selects turn at each hop

— arithmetic, selection, lookup
Deadlock-free if channel dependence graph is
acyclic

— limit turns to eliminate dependences

— add separate channel resources to break dependences

— combination of topology, algorithm, and switch design
Deterministic vs adaptive routing
Switch design issues

— input/output/pooled buffering, routing logic, selection logic
Flow control

Real networks are a ‘package’ of design choices

NOW Handout Page 6

