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Computer Science Division
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Today’s Plan

• Whirlwind tour of where we’ve been
• Some thought on where things are headed
• HKN evaluation

CS 258
Parallel Computer Architecture

CS 258, Spring 99
David E. Culler

Computer Science Division
U.C. Berkeley
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What will you get out of CS258?

• In-depth understanding of the design and
engineering of modern parallel computers

– technology forces
– fundamental architectural issues

» naming, replication, communication, synchronization
– basic design techniques

» cache coherence, protocols, networks, pipelining, …
– methods of evaluation
– underlying engineering trade-offs

• from moderate to very large scale
• across the hardware/software boundary
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Will it be worthwhile?

• Absolutely!
– even through few of you will become PP designers

• The fundamental issues and solutions translate
across a wide spectrum of systems.

– Crisp solutions in the context of parallel machines.

• Pioneered at the thin-end of the platform pyramid
on the most-demanding applications

– migrate downward with time

• Understand implications 
for software

SuperServers

Departmenatal Servers

Workstations

Personal Computers

Workstations
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What is Parallel Architecture?

• A parallel computer is a collection of processing
elements that cooperate  to solve large problems
fast

• Some broad issues:
– Resource Allocation:

» how large a collection?
» how powerful are the elements?
» how much memory?

– Data access, Communication and Synchronization
» how do the elements  cooperate and communicate?
» how are  data transmitted between processors?
» what are the abstractions and primitives for cooperation?

– Performance and Scalability
» how does it all translate into performance?
» how does it scale?



CS258 S99 2

NOW Handout Page 2

5/7/99 CS258 S99 7

Role of a computer architect:
To design and engineer the various levels of a computer system
to maximize performance and programmability within limits of
technology and cost.

Parallelism:
• Provides alternative to faster clock for performance
• Applies at all levels of system design
• Is a fascinating perspective from which to view architecture
• Is increasingly central in information processing

Why Study Parallel Architecture?
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Speedup

• Speedup (p processors) =

• For a fixed problem size (input data set),
performance = 1/time

• Speedup fixed problem (p processors) =

Performance (p processors)

Performance (1 processor)

Time (1 processor)

Time (p processors)
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Architectural Trends

• Architecture translates technology’s gifts into
performance and capability

• Resolves the tradeoff between parallelism and
locality

– Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip
connect

– Tradeoffs may change with scale and technology advances

• Understanding microprocessor architectural
trends

=> Helps build intuition about design issues or parallel
machines

=> Shows fundamental role of parallelism even in “sequential”
computers
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Architectural Trends
• Greatest trend in VLSI generation is increase in

parallelism
– Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit

» slows after 32 bit
» adoption of 64-bit now under way, 128-bit far (not

performance issue)
» great inflection point when 32-bit micro and cache fit on a

chip
– Mid 80s to mid 90s: instruction level parallelism

» pipelining and simple instruction sets, + compiler
advances (RISC)

» on-chip caches and functional units => superscalar
execution

» greater sophistication: out of order execution,
speculation, prediction

• to deal with control transfer and latency problems

– Next step: thread level parallelism
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Summary: Why Parallel Architecture?
• Increasingly attractive

– Economics, technology, architecture, application demand

• Increasingly central and mainstream
• Parallelism exploited at many levels

– Instruction-level parallelism
– Multiprocessor servers
– Large-scale multiprocessors (“MPPs”)

• Focus of this class: multiprocessor level of
parallelism

• Same story from memory system perspective
– Increase bandwidth, reduce average latency with many local

memories

• Spectrum of parallel architectures make sense
– Different cost, performance and scalability
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Programming Model

• Conceptualization of the machine that
programmer uses in coding applications

– How parts cooperate and coordinate their activities
– Specifies communication and synchronization operations

• Multiprogramming
– no communication or synch. at program level

• Shared address space
– like bulletin board

• Message passing
– like letters or phone calls, explicit point to point

• Data parallel:
– more regimented, global actions on data
– Implemented with shared address space or message passing
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Toward Architectural Convergence

• Evolution and role of software have blurred boundary
– Send/recv supported on SAS machines via buffers
– Can construct global address space on MP    (GA -> P | LA)
– Page-based (or finer-grained) shared virtual memory

• Hardware organization converging too
– Tighter NI integration even for MP (low-latency, high-bandwidth)
– Hardware SAS passes messages

• Even clusters of workstations/SMPs are parallel
systems

– Emergence of fast system area networks (SAN)

• Programming models distinct, but organizations
converging

– Nodes connected by general network and communication assists
– Implementations also converging, at least in high-end machines
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Mem

° ° °

Network

P

$

Communication
assist (CA)

Convergence: Generic Parallel Architecture

• Node: processor(s), memory system, plus
communication assist

– Network interface and communication controller

• Scalable network
• Convergence allows lots of innovation, within

framework
– Integration of assist with node, what operations, how

efficiently...
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Architecture

• Two facets of Computer Architecture:
– Defines Critical Abstractions

» especially at HW/SW boundary
» set of operations and data types these operate on

– Organizational structure that realizes these abstraction

• Parallel Computer Arch. = 
Comp. Arch + Communication Arch.

• Comm. Architecture has same two facets
– communication abstraction
– primitives at user/system and hw/sw boundary
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Communication Architecture

User/System Interface + Organization

•User/System Interface:
– Comm. primitives exposed to user-level by hw and system-level sw

•Implementation:
– Organizational structures that implement the primitives: HW or OS
– How optimized are they? How integrated into processing node?
– Structure of network

•Goals:
– Performance
– Broad applicability
– Programmability
– Scalability
– Low Cost
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Modern Layered Framework

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary
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Communication Abstraction
• User level communication primitives provided

– Realizes the programming model
– Mapping exists between language primitives of programming

model and these primitives

• Supported directly by hw, or via OS, or via user
sw

• Lot of debate about what to support in sw and
gap between layers

• Today:
– Hw/sw interface tends to be flat, i.e. complexity roughly

uniform
– Compilers and software play important roles as bridges today
– Technology trends exert strong influence

• Result is convergence in organizational structure
– Relatively simple, general purpose communication primitives
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Understanding Parallel Architecture

• Traditional taxonomies not very useful
• Programming models not enough, nor hardware

structures
– Same one can be supported by radically different architectures

=> Architectural distinctions that affect software
– Compilers, libraries, programs

• Design of user/system and hardware/software interface
– Constrained from above by progr. models and below by technology

• Guiding principles provided by layers
– What primitives are provided at communication abstraction
– How programming models map to these
– How they are mapped to hardware
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Fundamental Design Issues

• At any layer, interface (contract) aspect and
performance aspects

– Naming:  How are logically shared data and/or processes
referenced?

– Operations: What operations are provided on these data
– Ordering:  How are accesses to data ordered and

coordinated?
– Replication: How are data replicated to reduce

communication?
– Communication Cost:  Latency, bandwidth, overhead,

occupancy
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4 Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g
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r
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r
a
t
i
o
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• Decomposition of computation in tasks
• Assignment of tasks to processes
• Orchestration of data access, comm, synch.
• Mapping processes to processors
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Performance Goal => Speedup

• Architect Goal
– observe how program uses

machine and improve the
design to enhance
performance

• Programmer Goal
– observe how the program

uses the machine and
improve the implementation
to enhance performance

• What do you observe?
• Who fixes what?
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Recap: Performance Trade-offs

• Programmer’s View of Performance

• Different goals often have conflicting demands
– Load Balance

» fine-grain tasks, random or dynamic assignment
– Communication

» coarse grain tasks, decompose to obtain locality
– Extra Work

» coarse grain tasks, simple assignment
– Communication Cost:

» big transfers: amortize overhead and latency
» small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup   <
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Working Set Perspective

– Hierarchy of working sets
– At first level cache (fully assoc, one-word block), inherent to algorithm

» working set curve for program
– Traffic from any type of miss can be local or nonlocal (communication)

•At a given level of the hierarchy (to the next further one)

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a 
tra

ffi
c

Other capacity-independent communication

Cold-start (compulsory) traffic

Replication capacity (cache size)

Inherent communication
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Relationship between Perspectives

Synch wait

Data-r emote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Pr ocessor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and 
synchr onization

Inher ent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structur e

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

5/7/99 CS258 S99 26

Natural Extensions of Memory System
P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem MemShared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale
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Snoopy Cache-Coherence Protocols

• Bus is a broadcast medium & Caches know what
they have

• Cache Controller “snoops” all transactions on
the shared bus

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Sequential Consistency

• Total order achieved by interleaving accesses from
different processes

– Maintains program order, and memory operations, from all
processes, appear to [issue, execute, complete] atomically w.r.t.
others

– as if there were no caches, and a single memory

•  “A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order
specified by its program.” [Lamport, 1979]

Processors 
issuing memory 
references as 
per program order

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference
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MSI Invalidate Protocol

• Read obtains block in
“shared”

– even if only cache copy

• Obtain exclusive
ownership before writing

– BusRdx causes others to
invalidate (demote)

– If M in another cache, will flush
– BusRdx even if hit in S

» promote to M (upgrade)

• What about replacement?
– S->I, M->I as before

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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Hardware Support for MESI

• All cache controllers snoop on BusRd
• Assert ‘shared’ if present (S? E? M?)
• Issuer chooses between S and E

– how does it know when all have voted?

I/O devices

Memory

u :5

P0 P1 P4

shared signal
 - wired-OR
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Dragon State Transition Diagram

E Sc

Sm M

PrWr/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S)PrRdMiss/BusRd(S)

PrWr/—

PrWrMiss/(BusRd(S); BusUpd) PrWrMiss/BusRd(S)

PrWr/BusUpd(S)

PrWr/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrWr/BusUpd(S)

PrWr/BusUpd(S)
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Workload-Driven Evaluation

• Evaluating real machines
• Evaluating an architectural idea or trade-offs
=> need good metrics of performance
=> need to pick good workloads
=> need to pay attention to scaling

– many factors involved

• Today: narrow architectural comparison
• Set in wider context
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Under What Constraints to Scale?
• Two types of constraints:

– User-oriented, e.g. particles, rows, transactions, I/Os per processor
– Resource-oriented, e.g. memory, time

• Which is more appropriate depends on application
domain

– User-oriented easier for user to think about and change
– Resource-oriented more general, and often more real

• Resource-oriented scaling models:
– Problem constrained (PC)
– Memory constrained (MC)
– Time constrained (TC)

• (TPC: transactions, users, terminals scale with
“computing power”)

• Growth under MC and TC may be hard to predict
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Execution-driven Simulation
• Memory hierarchy simulator returns simulated time

information to reference generator, which is used to
schedule simulated processes

P1

P2

P3

Pp

$1

$2

$3

$p

Mem 1

Mem2

Mem3

Memp

Refer ence generator Memory and inter connect simulator

·
·
·

·
·
·

N
e
t
w
o
r
k
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Summary

• FSM describes Cache Coherence Algorithm
– many underlying design choices
– prove coherence, consistency

• Evaluation must be based on sound
understandng of workloads

– drive the factors you want to study
– representative
– scaling factors

• Use of workload driven evaluation to resolve
architectural questions
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Components of a Synchronization Event

• Acquire method
– Acquire right to the synch

» enter critical section, go past event

• Waiting algorithm
– Wait for synch to become available when it isn’t
– busy-waiting, blocking, or hybrid

• Release method
– Enable other processors to acquire right to the synch

• Waiting algorithm is independent of type of
synchronization

– makes no sense to put in hardware
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Lock Performance on SGI Challenge

Loop: lock; 
delay(c); 
unlock; 
delay(d);
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Reality

• Protocol defines
logical FSM for each
block

• Cache controller FSM
– multiple states per miss

• Bus controller FSM
• Other $Ctrls Get bus
• Multiple Bus trnxs

– write-back

• Multi-Level Caches
• Split-Transaction

Busses

Σ Tag Data

Proc

$ Ctrl
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Preliminary Design Issues

• Design of cache controller and tags
– Both processor and bus need to look up

• How and when to present snoop results on bus
• Dealing with write-backs
• Overall set of actions for memory operation not

atomic
– Can introduce race conditions

• atomic operations

• New issues deadlock, livelock, starvation,
serialization, etc.
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Basic design

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data

Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller
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Multilevel Cache Hierarchies

• Independent snoop hardware for each level?
– processor pins for shared bus
– contention for processor cache access ?

• Snoop only at L2 and propagate relevant transactions
• Inclusion property

(1) contents L1 is a subset of L
(2) any block in modified state in L1 is in modified state in L2
1 => all transactions relavant to L1 are relavant to L2
2 => on BusRd L2 can wave off memory access and inform L1

P

L1

L2

P

L1

L2° ° °

P

L1

L2

snoop

snoop ???

Processor Chip
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Bus Design (continued)

• Each of request and response phase is 5 bus cycles
– Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround
– Request phase: arbitration, resolution, address, decode, ack
– Request-response transaction takes 3 or more of these

• Cache tags looked up in decode; extend ack cycle if not possible
– Determine who will respond, if any

– Actual response comes later, with re-arbitration

• Write-backs only request phase : arbitrate both data+addr buses
• Upgrades have only request part; ack’ed by bus on grant (commit)

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1
Read operation 2
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Bus Interface with Request Table

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator

Tag

Addr + cmd

To
control

TagTag

Data to/from $

Request
buffer

Request table

Ta
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7
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ss
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M
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queue

Addr + cmd bus

Data + tag bus

Snoop state
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merge
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Bus Interface with Request Table

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator
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To
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SGI Challenge Overview

• 36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) or
18 MIPS R8000 (peak 5.4 GFLOPS, 2 per board)

• 8-way interleaved memory (up to 16 GB)
• 4 I/O busses of 320 MB/s each
• 1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots, 329

signals
• 128 Bytes lines (1 + 4 cycles)
• Split-transaction with up to 8 outstanding reads

– all transactions take five cycles

(a) A four-processor board

V
M

E
-6

4

S
C

S
I-2

G
ra

p
hi

cs

H
P

P
I

I/O subsystem

Interleaved
memory:

16 GB maximum

Powerpath-2 bus (256 data,  40 address, 47.6 MHz)

R4400 CPUs
and caches

(b) Machine organization
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SUN Enterprise Overview

• Up to 30 UltraSPARC  processors (peak 9 GFLOPs)
• GigaplaneTM bus has peak bw 2.67 GB/s; upto 30GB

memory
• 16 bus slots, for processing or I/O boards

– 2 CPUs and 1GB memory per board
» memory distributed, unlike Challenge, but protocol treats as

centralized
– Each I/O board has 2 64-bit 25Mhz SBUSes

Gig aplane TM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interface / Switch
Bus Interface

CPU/Mem
Cards
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Multi-Level Caches with ST Bus

• Introduces deadlock and serialization
problems

Key new problem: many cycles to propagate through hierarchy
• Must let others propagate too for bandwidth, so queues between levels

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus

Response/
request
from L2 to L1

Response/
request
from L1 to L2
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Network Transaction Primitive

• one-way transfer of information from a source
output buffer to a dest. input buffer

– causes some action at the destination
– occurrence is not directly visible at source

• deposit data, state change, reply

Output buffer Input buffer

Source node Des tin at ion node

Com m unication ne tw ork

° ° °

Serialized data packet
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nCUBE/2 Machine Organization

• Entire machine synchronous at 40 MHz

Single-chip node

Basic module

Hypercube network
configuration

DRAM interface

D
M

A
ch

a n
n e

l s

Ro
ut

erMMU

I-Fetch
&

decode

64-bit integer
IEEE floating point

Operand
$

Execution unit

1024 Nodes
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CM-5 Machine Organization
Diagnostics network

Control network
Data network

Processing
partition

Processing
partition

Control
processors

I/O partition

PM PM

SPARC

MBUS

DRAM
ctrl

DRAM DRAM DRAM DRAM

DRAM
ctrl

Vector
unit DRAM

ctrl
DRAM

ctrl

Vector
unit

FPU Data
networks

Control
network

$
ctrl

$
SRAM

NI
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System Level Integration

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R

A
M

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

General interconnection
network formed from
8-port switches

NIC

5/7/99 CS258 S99 52

Levels of Network Transaction

• User Processor stores cmd / msg / data into shared output
queue

– must still check for output queue full (or make elastic)

• Communication assists make transaction happen
– checking, translation, scheduling, transport, interpretation

• Effect observed on destination address space and/or events
• Protocol divided between two layers

Network

° ° ° 

dest

Mem

P M P

NI

User System

Mem

PM P

NI
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User Level Handlers

• Hardware support to vector to address specified
in message

– message ports in registers

Us er /syste m 

PM em

D estD ata Add ress

PM em

° ° °
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Case Study: NOW

• General purpose processor embedded in NIC

L2 $

° ° °

Bus adapter
SBUS (25 MHz)Mem

UltraSparc

s DMA

Host DMA

SRAM

Myrinet 

X-bar

r DMA

Bus interface

Main
processor

Link
Interface

160-MB/s
bidirectional
links

Myricom
Lanai NIC
(37.5-MHz processor,
256-MB SRAM
3 DMA units)

Eight-port
wormhole
switches
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Scalable Synchronization Operations

• Messages: point-to-point synchronization
• Build all-to-all as trees
• Recall: sophisticated locks reduced contention

by spinning on separate locations
– caching brought them local
– test&test&set, ticket-lock, array lock

» O(p) space

• Problem: with array lock location determined by
arrival order => not likely to be local

• Solution: queue-lock
– build distributed linked-list, each spins on local node
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Scalable, High Perf. Interconnection
Network
• At Core of Parallel Computer Arch.
• Requirements and trade-offs at many levels

– Elegant mathematical structure
– Deep relationships to algorithm structure
– Managing many traffic flows
– Electrical / Optical link properties

• Little consensus
– interactions across levels
– Performance metrics?
– Cost metrics?
– Workload?

=> need holistic 
understanding

M P

CA

M P

CA

network
interface

Scalable
Interconnection
Network
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Link Design/Engineering Space

• Cable of one or more wires/fibers with
connectors at the ends attached to switches or
interfaces

Short:
 - single logical
value at a time

Long:
 - stream of logical
values at a time

Narrow:
 - control, data and timing
multiplexed on wire

Wide:
 - control, data and timing
on separate wires

Synchronous:
- source & dest on same
clock

Asynchronous:
- source encodes clock in
signal
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Summary

Topology Degree Diameter Ave Dist Bisection D (D ave) @ P=1024

1D Array 2 N-1 N / 3 1 huge

1D Ring 2 N/2 N/4 2

2D Mesh 4 2 (N1/2 - 1) 2/3 N1/2 N1/2 63 (21)

2D Torus 4 N1/2 1/2 N1/2 2N1/2 32 (16)

k-ary n-cube 2n nk/2 nk/4 nk/4 15 (7.5)  @n=3

Hypercube n =log N n n/2 N/2 10 (5)
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Latency with Equal Pin Count

• Baseline d=2, has w = 32   (128 wires per node)
• fix 2dw pins => w(d) = 64/d
• distance up with d, but channel time down
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Summary (Routing)

• Routing Algorithms restrict the set of routes
within the topology

– simple mechanism selects turn at each hop
– arithmetic, selection, lookup

• Deadlock-free if channel dependence graph is
acyclic

– limit turns to eliminate dependences
– add separate channel resources to break dependences
– combination of topology, algorithm, and switch design

• Deterministic vs adaptive routing
• Switch design issues

– input/output/pooled buffering, routing logic, selection logic

• Flow control
• Real networks are a ‘package’ of design choices
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Basic Operation of Directory

•  k processors.
•  With each cache-block in memory: k

presence-bits, 1 dirty-bit
•  With each cache-block in cache:    1

valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON   then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ... 5/7/99 CS258 S99 62

Example Two-level Hierarchies

P

C

Snooping 

B1

B2

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Adapter
Snooping
Adapter

P

C
B1

Bus (or Ring)

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Network

Assist Assist

Network2

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping
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Sharing Patterns Summary

• Generally, few sharers at a write, scales slowly with P
– Code and read-only objects (e.g, scene data in Raytrace)

» no problems as rarely written
– Migratory objects (e.g., cost array cells in LocusRoute)

» even as # of PEs scale, only 1-2 invalidations
– Mostly-read objects (e.g., root of tree in Barnes)

» invalidations are large but infrequent, so little impact on
performance

– Frequently read/written objects (e.g., task queues)
» invalidations usually remain small, though frequent

– Synchronization objects
» low-contention locks result in small invalidations
» high-contention locks need special support (SW trees, queueing

locks)

• Implies directories very useful in containing traffic
– if organized properly, traffic and latency shouldn’t scale too badly

• Suggests techniques to reduce storage overhead
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Origin2000 System Overview

• Single 16”-by-11” PCB
• Directory state in same or separate DRAMs, accessed in parallel
• Upto 512 nodes (1024 processors)
• With 195MHz R10K processor, peak 390MFLOPS or 780 MIPS per

proc
• Peak SysAD bus bw is 780MB/s, so also Hub-Mem
• Hub to router chip and to Xbow is 1.56 GB/s (both are off-board)

L2 cache

P

(1-4 MB)
L2 cache

P

(1-4 MB)

Hub

Main 
Memory
(1-4 GB)

Direc-
tory

L2 cache

P

(1-4 MB)
L2 cache

P

(1-4 MB)

Hub

Main 
Memory
(1-4 GB)

Direc-
tory

Interconnection Network

SysAD busSysAD bus
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Summary

• In directory protocol there is substantial
implementation complexity below the logical
state diagram

– directory vs cache states
– transient states
– race conditions
– conditional actions
– speculation

• Real systems reflect interplay of design issues at
several levels

• Origin philosophy:
– memory-less: node reacts to incoming events using only

local state
– an operation does not hold shared resources while

requesting others
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NUMA-Q System Overview

• Use of high-volume SMPs as building blocks
• Quad bus is 532MB/s split-transation in-order responses

– limited facility for out-of-order responses for off-node accesses
• Cross-node interconnect is 1GB/s unidirectional ring
• Larger SCI systems built out of multiple rings connected bybridges

IQ-Link

PCI
I/O

PCI
I/O Memory

P6 P6 P6 P6

QuadQuad

QuadQuad

QuadQuad

I/O device

I/O device

I/O device

Mgmt. and Diag-
nostic Controller
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The Composibility Question

• Distributed address space => issue is NI
• CC Shared address space => composing

protocols

“Sweet Spot”
Node

Scalable (Intelligent) Interconnect

adapter

“Sweet Spot”
Node

adapter

“Sweet Spot”
Node

adapter

...
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Memory Consistency Model

• for a SAS specifies constraints on the order in
which memory operations (to the same or
different locations) can appear to execute with
respect to one another,

• enabling programmers to reason about the
behavior and correctness of their programs.

• fewer possible reorderings => more intuitive
• more possible reorderings => allows for more

performance optimization
– ‘fast but wrong’ ?
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Preserved Orderings

read/write
° ° °

read/write

Synch(R)

read/write
° ° °

read/write

Synch(W)

read/write
° ° °

read/write

Weak Ordering

read/write
° ° °

read/write

Acquire

read/write
° ° °

read/write

Release

read/write
° ° °

read/write

Release Consistency

1

2

3

1

2

3
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Some Questions you might ask

• Can all unnecessary communication be
eliminated?

– capacity-related communication?
– false-sharing?

• How much hardware support can be eliminated?
• Can weak consistency models be exploited to

reduce communication?

• Can we simplify hardware coherence
mechanisms while avoiding capacity-related
communication?
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Overcoming Capacity Limitations

• Seen big remote caches
– 32 MB on NUMA-Q

• What about using region of local mem as remote
cache?

– basic operation is to access mem. and check tag state
– dispatch to specific protocol action

$

P

Mdir
Rmt $ CA

$

P

Mdir

Rmt $

CA
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SAS w/o hardware support?

• Treat memory as fully-
associative cache for global
shared virtual address
space

• Unit of coherence: page
• Basic components

– Access control?
– Tag and state check?
– Protocol processing?
– Communication?

• Problems?

M

$

P

Shared Virtual Address Space

M

$

P

M

$

P

Same virtual address represented at different physical addresses on each processor!
 - what needs to be invalidated?
Inclusion??



CS258 S99 13

NOW Handout Page 13

5/7/99 CS258 S99 73

Exploiting Weak Consistency

• So far in HW approaches
– changes when invalidations must be processed
– avoid stalling processor while invalidations processed
– still propagate invalidations ASAP

• Can invalidations be avoided?

P0 P1

... W(x)
... R(y)

... W(x)

... R(y)

barrier barrier

... W(x)

... R(y)

x and y on same page!SC

P0 P1

... W(x)
... R(y)

... W(x)

... R(y)

barrier barrier

... W(x)

... R(y)

RC

propagate inv. at synch points! 5/7/99 CS258 S99 74

Middle Ground: Simple-COMA, Stache

• automatic migration at page level
controlled in software

• fine grain access control in hardware
• page fault:

– allocate page in local memory, but leave all
blocks invalid

• page hit, cache miss:
– access tag in parallel with memory access

» can be separate memory
– physical address valid (not uniform)
– on protocol transactions, reverse translate to

shared virtual address

• No HW tag comparison. (just state)
• No local/remote check!

$

P
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Communication pipeline
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Approached to Latency Tolerance

• block data transfer
– make individual transfers larger

• precommunication
– generate comm before point where it is actually needed

• proceeding past an outstanding communication
event

– continue with independent work in same thread while event
outstanding

• multithreading - finding independent work
– switch processor to another thread
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New Results and What’s Ahead
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Report from FCRC 99

• Theorists thinking about quantum computing
• Prog. linguists talking about cache optimizations

– not cleaning up consistency

• Proc Architects are betting on speculation
– branches, addresses, values, ...

• Performance Analysts squeezing bottlenecks
• Parallel Arch. dealing with scaling

– speculation on coherence actions
– optimistic multicast coherence

– fundamentally limited by software/programmability

• John Hennessey - SAM and PostPC
• Jim Gray’s Turing Award Lecture
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Parallel Programming Effort (Singh)

• Optimizations for Portable Performance (SVM)
help scalability on DSMs

• In both cases, it takes parallel algorithm
development

Basic
PP

Pad
Allign

Data
Structure
Reorg

New
Algorithm

Wishful Thinking

Reality

Speeup
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Looking Forward

• The only constant is “constant change”
• Where will the next “1000x” come from?

– it is likely to be driven by the narrow top of the platform
pyramid serving the most demanding applications

– it will be constructed out of the technology and building
blocks of the very large volume

– it will be driven by billions of people utilizing ‘infrastructure
services’
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Prognosis

• Continuing on current trends, reach a petaop/s in
2010

– clock rate is tiny fraction, density dominates
– translating area into performance is PARALLEL ARCH

• Better communication interface
– 10 GB/s links are on the drawing board
– NGIO/FutureIO will standardize port into memory controller

• Gap to DRAM will grow, and grow, and grow...
– processors will become more latency tolerant
– many instructions per thread with OO exec
– many threads’

• Bandwidth is key
• Proc diminishing fraction of chip

– and unfathomably complex
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Continuing Out

• Proc and Memory will integrate on chip
– everything beyond embedded devices will be MP
– PIN = Communication

• Systems will be a federation of components on a
network

– every component has a processor inside
» disk, display, microphone, ...

– every system is a parallel machine

– how do we make them so that they just work?
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Fundamental Limits?

• Speed of light
– Latency dominated by occupancy
– occupancy dominated by overhead

» its all in the connectors
– communication performance fundamentally limited by design

methodology
» make the local case fast at the expense of the infrequent

remote case
– this may change when we a fundamentally managing

information flows, rather than managing state
» we’re seeing this change at many levels
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The Sages

• John Hennessey
– only so much ILP, processors getting way too complex
– soon every chip will be multiprocessor, we got to figure out

how to make parallel software easier
– focus on scalability, availability, management
– post-PC era is emerging

» changes all the rules
» ubiquitous connectivity
» scalability, availability and management

• it has to work

• Jim Gray
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What Turing Said

“I believe that in about fifty years' time it will be possible, to
programme computers, with a storage capacity of about 109, to
make them play the imitation game so well that an average
interrogator will not have more than 70 per cent chance of making
the right identification after five minutes of questioning. The
original question, "Can machines think?" I believe to be too
meaningless to deserve discussion. Nevertheless I believe that at
the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak of
machines thinking without expecting to be contradicted.”

Alan M.Turing,   1950
“Computing machinery and intelligence.” Mind, Vol. LIX. 433-460

[Gray 5/99]
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Vannevar Bush (1890-1974)
”As We May Think” The Atlantic Monthly, July 1945
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

• Memex
All human knowledge
 in Memex
 “a billion books”

hyper-linked together
• Record everything you see

– camera glasses
– “a machine which types when talked to”

• Navigate by
 text search

following links
 associations.

• Direct electrical path to
human nervous system?

[Gray 5/99]
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Memex is Here! (or near)

• The Internet is growing fast.
• Most scientific literature is online somewhere.

– it doubles every 10 years!

• Most literature is online (but copyrighted).
• Most Library of Congress visitors: web.
• A problem Bush anticipated:

Finding answers is hard.

[Gray 5/99]
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Personal Memex

• Remember what is seen and heard
and quickly return any item on request.

Your husband died,
but here is his black box.

Human input data        /hr /lifetime

read text 100 KB     25 GB

Hear speech @ 10KBps    40  MB 10 TB

See            TV@ .5 MB/s     2 GB         8 PB

[Gray 5/99]
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The Time We’re In !

Time

Integration

Innovation

Log R

Mainframe

Minicomputer

Personal Computer
Workstation
Server
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