
1

An Evaluation of the DEC Memory Channel
Case Studies in Reflective Memory and Cooperative Scheduling

Andrew Geweke and Frederick Wong
University of California, Berkeley

{geweke,fredwong}@cs.berkeley.edu

21 May 1999

Abstract
With the rise of clusters as a vehicle for very-high-
performance computing, an increasing emphasis is
being placed upon the communication interface
between each processor and the underlying
network. And while many studies have explored
the design of both traditional send/receive
network interfaces and shared-memory designs, a
third alternative — reflective memory — offers a
significantly different design space and provides its
own, separate benefits and challenges.

In this paper, we investigate Memory Channel, a
high-speed reflective-memory network, by
implementing MPI above Memory Channel. Our
results show that Memory Channel is a powerful
substrate for message-passing programs, but that
significant obstacles remain to building truly large-
scale message-passing software above this network.
Finally, we investigate time-sharing of a Memory
Channel-based cluster and demonstrate the need
for event support at the hardware layer.

1 Introduction
With the advent of fast communication interfaces
for commodity workstations [1], powerful
massively parallel processors (MPPs) can be
quickly and cheaply constructed from commodity
hardware. Such networks as Myrinet [4], Gigabit
Ethernet, and others adapt easily to the standard
PCI peripheral bus and provide low-latency, very-
high-bandwidth access to the entire cluster from a

single processor, creating a system-area network
(SAN). This combination has proved to be
extremely powerful, allowing clusters to supplant
traditional supercomputers in many areas.

The semantics presented by these network
interfaces vary significantly. Most popular
commercial network interfaces, to date, provide
one of two models to the processor: shared-memory
or send-receive. By imitating a shared-memory
multiprocessor (SMP), shared-memory network
interfaces provide a well-known programming
model with implicit communication to software.
Send-receive network interfaces, on the other
hand, provide a well-known programming model
with explicit communication: in many ways, they
imitate much-higher-performance versions of
typical Ethernet and/or Token Ring LANs.

A third sort of communication interface, however,
provides a separate but equally interesting design
point. Reflective-memory[16,17] interfaces are a sort
of hybrid between explicit send-receive interfaces
and implicit shared-memory models. Like a
shared-memory interface, communication is
performed using the processor’s native load and
store instructions; like a send-receive interface,
however, there is no single global view of “one
large memory”.

We have constructed a traditional message-passing
library, MPI[13], on top of Compaq’s Memory
Channnel[15] reflective-memory network interface.
Doing so provides a wealth of information about
the usability and performance of reflective-
memory interfaces under message-passing
workloads.

2

This paper is organized as follows. Section 2
describes the underlying Memory Channel
interface and its characteristics. Section 3 covers
our multi-protocol implementation of MPI over
shared memory and Memory Channel, and the
micro-benchmarks performance. We then compare
this data to the performance of MPI over true
shared memory and the raw Memory Channel
interface. Section 4 explores the implementation
issues under a time-sharing workload. Section 5
then considers some of the factors affecting
performance under shared and non-shared
workloads, and some of the challenges poised by
constructing a message-passing interface over a
reflective-memory substrate. Finally, section 6
draws some conclusions and suggests possible
improvements to hardware and software designs
for large-scale reflective-memory designs.

2 Background
The first half of this section describes reflective
memory in general and the Memory Channel
hardware and software used; the second half then
continues on to describe the MPICH software
used to implement MPI.

2.1 Reflective Memory and Memory
Channel

Reflective memory is a powerful communication
abstraction, but one that also differs significantly
from most currently widely-used models.

Reflective memory provides a process a write-only
memory “window” onto another process’s address
space. Once the “window” has been set up, all
processor writes into that “window” go not to
memory, but instead directly into the address space
of the destination process. This propagation of
writes into another process is the basis of
reflective-memory communication.

Reflective memory differs from shared memory in
two important ways: first, the “window” is write-
only, and attempts to read from it produce
unpredictable results or a processor trap; second,

the “window” is one-way: the second process must
set up an entirely separate “window” of its own
back into the first process if it wishes to return
communication.

These distinctions are quite fundamental to
reflective memory and are what makes the design
space of reflective-memory communication
interesting.

Memory Channel is an implementation of
reflective memory; it consists of a switched
system-area network, composed of a PCI network-
interface adapter card, 32-bit-wide parallel copper
cables, and (optionally) switches.

The raw hardware has an end-to-end latency
claimed to be under five microseconds; indeed, we
measured an end-to-end latency of approximately
2.7 microseconds for a four-byte message (the
smallest possible). Bandwidth is claimed to be
between 35 MByte/s and 70 MByte/s; our
experiments produced a maximum bandwidth of
approximately 62.5 MByte/s. The hardware has
built-in error detection (though not correction);
however, as the error rate is extremely low, we
could not test the claimed rate of approximately
three errors per year of continuous operation.

Our testbed consisted of a pair of Compaq
AlphaServer 2100s, each of which contains two
533MHz DECchip Alpha 21164s, 256 MBytes of
RAM, and a single Memory Channel PCI interface
card. We connected the two machines directly
(back-to-back) with a single Memory Channel
cable.

The Memory Channel software introduces the
concept of “Memory Channel address space”. The
hardware does not maintain any addressable state
itself; instead, this “address space” is an
abstraction (in reality simply a layer of indirection)
provided to simplify Memory Channel
programming.

“Address space” is allocated and named using the
imc_asalloc() function; this function either
creates a new segment of “address space” of the
specified length and tags it with the given name, or

3

returns a handle to existing “address space” with
the specified name if such space exists. Once a
handle is obtained, the imc_asattach()
function maps the “address space” into the real
address space of the calling process. The process
must specify at this time whether the address space
is mapped for transmission or receipt of data.

Using this concept of “address space”, two
processes can communicate: if they both obtain
handles to the same “Memory Channel address
space”, and one process maps the region for
transmission, and the other for receipt, then writes
are automatically propagated from one process to
the other across the Memory Channel bus. Indeed,
multiple readers and writers can exist for the same
address space, and writes are propagated properly.

The Memory Channel software will also allow a
“loopback” mode, where memory mapped for
transmit is also mapped back into the same
process’s address space for receipt at the same
address. This causes writes to the memory to be
visible to the calling process; however, because the
writes must still be propagated out to the Memory
Channel hardware first, there is a delay equal to the
hardware latency before writes are “visible”.

Also provided are a set of spinlock functions for
Memory Channel. However, an uncontested
acquisition of a spinlock requires approximately
120 microseconds, or about 40 times the latency of
a four-byte message. As such, we avoided use of
locks in our software.

Memory Channel software is also provided to
manage the memory administratively, provide
traditional user/group/other read/write
permissions on “address space”, and detect errors.
We did not require any of these services and do
not describe them further here.

Finally, Memory Channel software provides for
coherent allocation of “address space”. Basically,
when a region of “address space” is allocated and
coherent allocation is requested, every node on the
Memory Channel network immediately maps that
area into a special daemon process’s address space
for reception, thus ensuring receipt of all writes to

that region. When another process then requests
that area, the memory is simply mapped directly
into the requesting process’s address space; this
ensures that, upon allocation, the requesting
process has the same view of the contents of that
memory as all other nodes. This process provides
a straightforward solution to an otherwise-difficult
problem.

2.2 MPI and MPICH
MPICH [11] is a free implementation of the MPI
standard that is efficient and flexible enough to be
the basis for our work. The MPI standard is rich
with functionality, and attempting to implement it
all directly would have extended our work greatly.
However, MPICH introduces the Abstract Device
Interface (ADI), a set of six basic communication
functions that, when implemented, allow MPICH
to use a new communication device. MPICH ships
with quite a number of devices, including one for
standard shared memory.

We have implemented the ADI functions for a
Memory Channel communications substrate,
allowing all MPI calls to be used on a Memory
Channel-based network. We have also modified
the MPICH shared-memory ADI to allow multi-
protocol MPI when using SMPs:

3 Message Passing using
Shared and Reflective
Memory

3.1 Implementation
Because of the unique requirements of reflective
memory, our implementation of the MPICH ADI
imitates neither a typical ADI for a send-receive
network interface nor the standard MPICH
shared-memory ADI.

A bove the Memory Channel ADI, we have
implemented a multiprotocol layer. This layer is
essentially a “switch” that routes incoming
MPICH requests to the Memory Channel ADI if
communication is to take place between two

4

separate nodes, and to the shared-memory ADI
(provided with MPICH) if communication is to
take place within a node (between separate
processors). Using this method, we can use the
increased performance of shared memory when
communicating within a physical node, and the
Memory Channel interconnect when
communicating across nodes.

Every Memory Channel node maintains two
regions of Memory Channel address space for
every other node: one for transmitting to the
remote node, and one for receiving from that
node. The transmit region on node m for
transmissions to node n and the receive region on
node n for transmissions from node m use the
same name; thus, they are connected via the
Memory Channel software and can communicate.
Each region contains three segments:

• The control block, a three-word segment of
memory that contains critical data for the
region as a whole — specifically, the descriptor-
queue tail and an area that stores the tokens
used to handshake sender and receiver for
flow control;

• The descriptor queue, an approximately eight-
kilobyte (one-page) area of memory that
stores descriptions of messages (or message
fragments) to be sent and received;

• The buffer, a large (megabyte-sized) area of
memory that stores the actual data of all
messages sent.

The descriptor-queue tail is simply the index of
the last free buffer in the descriptor queue. The
waiting count and drain count will be described
later. Further, each node maintains the following
data in standard memory for each remote node:

• A local copy of the current descriptor-queue
tail for the region that transmits to the remote
node;

• The offset of the first unused byte in the
buffer segment of the region that transmits to
the remote node;

• An unexpected queue that stores descriptors and
data of received messages skipped over due to
tag/context mismatches;

• An expected queue that stores descriptors of
receives requested by the process, but not yet
fulfilled by incoming messages.

The process to send a message from node s to
node r is thus the following:

• Node s stores the data in the message directly
into the buffer on the remote node, updating
its own offset of the first unused byte in that
buffer;

• Node s uses its local copy of the descriptor-
queue tail to store a descriptor into the next
free descriptor in the queue;

• Node s increments the descriptor-queue tail
on the remote node and updates its own local
copy.

And the process for node r to receive a message
from node s is the following:

• Examine the first descriptor in the receive
region from node s;

• If it matches the desired receipt parameters
(in this case, tag and MPI context), copy the
buffer into the user-data area specified in the
receive call.

• Otherwise, examine the expected queue. If
the descriptor in the receive descriptor queue
matches an entry in the expected queue, the
receive is completed by copying the buffer
into the user-data area specified in the
expected queue.

• If no match is found in the expected queue,
copy the descriptor into the unexpected
queue, and examine the next descriptor in the
queue.

• If the end of the descriptor queue is reached
without a match, r places the receive
descriptor into the expected queue or spin-
waits for a new message to arrive, depending

5

on whether the “post receive” or “complete
receive” (used with blocking receives and the
nonblocking completion calls) has been called.

There is one final case to consider: if the sender
floods the receiver with messages, the descriptor
queue (if the messages are small) or the buffer (if
the messages are large) will become full. At this
point, we drain the buffer as follows:

• The sender indicates to the receiver its desire
to have the receiver drain the buffer by
writing a special token to the receiver;

• The sender waits for
the receiver to drain
its buffer; however,
while doing this, it
also drains its own
buffers to avoid
deadlock;

• The receiver drains
the buffer;

• The receiver
acknowledges the
buffer drain by
sending a token to
the sender (in the
area normally used to
send messages to the

sender).

While more-sophisticated (and perhaps higher-
performing) buffer-management schemes are
certainly possible, we did not want to add the
accompanying complexity to our implementation.
For example, one can avoid additional memory
copies by removing messages directly from the
middle of the data buffer; however, this causes
internal fragmentation in the buffer and
necessitates a much more complex buffer-
management scheme.

One-way Latency

1

10

100

1000

1 10 100 1000 10000

Message Size

MC MPI-MC MPI-Shmem

186 usec

317 usec

5.5 usec

2.9 usec

One-way Bandwidth

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000

Message Size
MPI-MC MPI-Shmem MC

27.68

62.53

6

3.2 Microbenchmarks
Two microbenchmarks — one-way latency and
streaming bandwidth — were run against each of
raw Memory Channel, our implementation of MPI
over Memory Channel, and MPI over true shared
memory.

The one-way latency for each system is determined
by causing a source node, s, to send a message of
determined length to a receiving node r. Upon
receipt of the entire message, r immediately issues
an identical message in return to s. When the entire
message has been received at r, we record the
ending time; one-half of this total round-trip time
is then determined to be the one-way latency.

The streaming bandwidth for each system is
determined by simply calculating the effective
bandwidth (the reciprocal of the latency) achieved
in the round-trip-time test.

Memory Channel Performance. Raw Memory
Channel hardware has performance very much in
line with the claimed hardware specifications. We
were able to achieve a one-way latency of
approximately 2.9 microseconds consistently when
using a four-byte packet. Latencies increased to a
maximum of approximately 131 microseconds for
an eight-kilobyte (8192-byte) packet.

Bandwidth was measured on a very typical S-
shaped increasing curve, starting out at negligible
for four-byte messages and increasing rapidly to a
maximum of approximately 62.5 MBytes/s at a
packet size of eight kilobytes (8192 bytes). Of
interest here is that the half-power point — the
packet size for which bandwidth first exceeds one-
half its maximum achievable value — is a relatively
low 256 bytes; this is due to the low latencies
incurred and is useful because it indicates that high
communication efficiencies are achievable even
with fine-grained communication.

MPICH-Shared Memory Performance. The
performance of MPI over true shared memory is
included with our benchmarks to provide a
comparison point for Memory Channel and our
MPI over Memory Channel. While not entirely

comparable — reflective memory simply does not
provide the same semantics as shared memory —
this does provide a sense of the performance
achievable with MPI without using any sort of
traditional interconnect.

One-way latencies of MPI over shared memory
achieve a minimum of approximately 6.5
microseconds for a four-byte packet. This latency
is relatively high when contrasted with the raw
Memory Channel performance, and is due to
overheads imposed by MPI. Specifically, a
minimum MPI header is typically twenty-eight
bytes long; when sending a message of only four
bytes, the header comprises 87.5% of the entire
transmitted message size. Latencies approach 109
microseconds for an eight-kilobyte (8192-byte)
message size.

MPI over shared memory achieves a maximum
bandwidth of approximately 71.5 MBytes/s at a
packet size of eight kilobytes. The half-power
point here is somewhere between 512 and 1024
bytes; the higher overheads imposed by MPI mean
that larger messages must be sent before high
efficiency is achieved.

MPICH-Memory Channel Performance. Our
implementation of MPI over Memory Channel
achieves a minimum latency of about 5.5
microseconds, a surprising improvement over even
the MPI-Shmem implementation provided with
MPICH. At a message size of eight kilobytes, the
latency has increased to about 317 microseconds
— showing the overhead introduced by our
implementation of MPI.

MPI-Memory Channel achieves a maximum
bandwidth of about 27.7 MBytes/s with a 512-
byte message size; the curve then interestingly dips
a bit as the bandwidth decreases to approximately
25 MBytes/s at higher message sizes. The half-
power point here is achieved with 128-byte
messages, just as with the raw Memory Channel
interface.

7

3.3 Summary
Memory Channel hardware and software itself
performs extremely well. The low latencies of 2.9
microseconds for a single-word write (attributable
entirely to hardware, as no software is involved)
are faster than most, if not all, traditional send-
receive interfaces. Bandwidth scales rapidly and
well; the maximum achieved of approximately 63
MBytes/s is typical of a device limited by PCI bus
bandwidth: although the raw data-transfer rate of
the PCI bus is approximately 125 MBytes/s, the
overhead imposed by bus arbitration and other
devices decreases the achievable maximum transfer
rate substantially.

MPICH’s shared memory implementation
provides us a guideline for the possible
achievements of an MPI layer. Its latency of 6.5
microseconds is quite low; however, its latency is
nevertheless higher than that of our MPI-Memory
Channel implementation. We believe this to be due
to the more sophisticated but more scalable
algorithms used by MPICH’s shared-memory
device interface (as compared to our own Memory
Channel interface). Bandwidth of the shared-
memory implementation is clearly limited by MPI
overheads; because at least two copies take place
upon each message transmission (to and from the
shared-memory region), bandwidth cannot achieve
the maximum possible.

Our implementation of MPI over Memory
Channel scales extremely well at the low end,
achieving latencies approximately equal to (or
lower than) those of MPI over shared memory.
Again, we believe this is due to our simplistic
buffering scheme, which reduces the amount of
overhead in the sender. This scheme’s scalability,
however, is poor, as latencies increase substantially
with higher message sizes and bandwidth peaks at
about half that of raw Memory Channel.

4 Multiprogramming MPI
Over Memory Channel

As clusters become an increasingly popular
solution for high-performance computing needs,
the need to share them increases dramatically.
While traditionally such problems have been
solved by allocating small pieces of a
supercomputer to individual users, a time-shared
approach — similar to that used on a uniprocessor
machine with multiple users — offers many
attractive benefits. Users get direct, immediate
feedback for simple commands; users need not
predict and reserve portions of the cluster weeks
in advance (which nearly always leads to over-
reservation by each user); and, if done efficiently,
throughput is decreased only by a very small
amount.

Unlike many supercomputers, however, clusters
often schedule each processor entirely
independently of the others (as each processor is
running its own commodity, uniprocessor OS).
With many common message-passing applications,
this results in extremely poor performance unless
some sort of global co-scheduling is implemented
[2].

Implicit co-scheduling [3] uses the already-available
data of message arrivals to synchronize scheduling
of a job across a set of nodes “automatically”,
providing a simple, efficient, fast global co-
scheduling algorithm without sending periodic
“clock signals” across the interconnect. This
method can provide enormous increases in
efficiency under many circumstances [3].

Unfortunately, implicit co-scheduling relies upon
the ability of the network interface to provide
feedback about messages and data sent or
received. This is provided, in the form of
interrupts or handlers, on most traditional send-
receive network interfaces; however, with a
reflective-memory model, all writes are equal as far
as the network interface is concerned, and
information about messaging events is not directly
available: such information is contained only in the

8

user-level MPI library — which does not run
unless the program is scheduled!

We considered carefully three separate potential
mechanisms for implementing some sort of
coscheduling under MPI for Memory Channel.
Each seemed to show promise in the beginning,
but eventually proved itself either unworkable or
simply extremely difficult to implement — and
with promise of little performance benefit.
Following are the three methods we considered,
and the conclusions we can draw from this
experience.

4.1 Co-scheduling Mechanisms
Lowering Priority. One option we considered
was to simply reduce the priority programmatically
of a parallel process that was to begin busy-waiting
for an incoming message. Theoretically, all parallel
processes that received messages would raise their
priorities, thus becoming active on all nodes,
exchange messages, ensuring they remained active,
and all tend to reduce priority at once as they all
block for messages.

We discarded this method, however, as if a
sequential job is introduced into the mix, it will
tend to either always run or never run, depending
on whether its priority is higher than or lower than
(respectively) that of the parallel program.

Priority-Modification Daemon. Another
considered option was to create a “daemon”
process that would watch for inbound messages,
and raise/lower the priorities of the affected
parallel programs as in the first mechanism above.
However, the daemon suffers from the same
priority problems with respect to sequential jobs,
and so this option was also discarded.

Semaphore Daemon. The basic thrust of this
mechanism is to create a daemon process that
watches for inbound messages for all MPI
processes; when an inbound message is received, it
unlocks (and then immediately re-locks) a
semaphore that it maintains lock on constantly.
When an MPI process needs to wait for an
inbound message, it attempts to lock this

semaphore (and then immediately unlock it), thus
blocking in the kernel until the daemon unlocks
the semaphore.

This method shows the most promise of any, but
was eventually scrapped due to two major issues.

First, we consider the case where one parallel
program is blocked for an inbound message, but
another program (parallel or sequential) is
continuing processing. If the daemon process’s
priority is lower than that of the other job, it will
effectively never be scheduled, preventing it from
noticing incoming messages and thus waking up
the sleeping parallel program. If its priority is
higher than that of the other job, the daemon
process will run constantly, soaking up CPU cycles
and preventing the other processes from running.

Second, this method requires deep integration
between the daemon and the MPI runtime
libraries. Our experience attempting to implement
this method, which consumed a great deal of time
and energy without producing a truly bug-free
implementation, suggests that it may simply be
approaching the limit of the complexity we can
manage in this unfamiliar arena of reflective
memory and a relatively complex MPI device
implementation.

4.2 Sumamry
We can only conclude that attempting to introduce
co-scheduling behavior into a Memory Channel-
based system is inefficient at best and
unmanageable at worst. Fundamentally, this is due
to the fact that the communication assist provides
no feedback with which it can signal the system
processor(s). Without such a feedback-based
mechanism, the computer’s main CPU must be
used to poll the network for inbound messages;
this polling distorts — and, typically, destroys —
the very scheduling mechanism that it is intended
to implement.

By contrast, the familiar Active Messages network
interface over Myrinet uses the network interface’s
processor to deliver events directly to the

9

operating system, permitting this sort of
scheduling.

5 Observations

5.1 Benchmarks and Quantitative
Data

Memory Channel, as a hardware solution, is a very-
high-performance interconnect. Measured
latencies and bandwidths are competitive with the
field of cluster interconnects as a whole and tend
to be better than those interconnects based on
traditional send-receive models.

Further, our demonstration of a MPICH device
interface for Memory Channel indicates that, while
difficult, it is entirely possible to construct a usable
messaging interface over Memory Channel. While
performance with large message sizes tended to be
quite poor by comparison with the raw Memory
Channel hardware interface, these figures could be
increased substantially with additional
implementation engineering and careful
optimization. However, it is worth remarking that
such optimization comes with an increasing
difficulty in engineering due to the reflective-
memory model.

5.2 Implementation Difficulties and
Qualitative Observations

A great deal of experience has been gained from
the implementation of MPI over a Memory
Channel substrate. Here, we attempt to identify the
weaknesses and advantages of the reflective-
memory model in general, and Memory Channel
specifically as we have experienced them.

Advantages of the reflective-memory model and
Memory Channel are:

• Extremely low latency. Because no explicit send
operation need be initiated, we achieve an
interesting point where small messages are
cheap — whereas usually they are quite
expensive. This may permit much finer-
grained programming and allows many more

detailed interactions in our MPI
implementation.

• Simple semantics. While the model of write-only
memory is difficult to use in practice, it is
conceptually simple — indeed, it is arguably
simpler than a model such as Active Messages
[9] (which nonetheless may prove to be a
superior general-purpose cluster
interconnection protocol).

Weaknesses of the reflective-memory model and
Memory Channel include:

• Very slow locks. Because the provided Memory
Channel spinlocks are extremely slow —
approximately 40 times slower than a simple
write — any use of them in common
operations will have an enormous impact on
performance. A natural design point for
reflective memory would ordinarily be locked
data structures, similar to those built in
standard shared memory; however, due to the
lack of locks, these structures cannot be used.

• Memory consumption. Because we cannot use
locks, we are forced to use individual, point-
to-point data structures. Unfortunately, this
does not scale well, especially under Memory
Channel: each node must allocate a region of
Memory Channel memory for every other node;
given a reasonable buffer size of 1 MByte, this
limits scalability. Memory Channel has a limit
on total memory used of 512 MBytes; at 1
Mbyte per point-to-point connection, this
produces a limit of a 22-node network. Also,
as all receive buffer areas must of necessity be
pinned into physical RAM on destination
nodes, this also limits the amount of buffer
space available to each node. Both these
factors conspire to put serious doubt upon
Memory Channel’s scalability.

• Pinned memory. Memory Channel also requires
that memory mapped for receipt of data must
be pinned on the host; this limits the amount
of memory that can be mapped within a
node, without regard to the total amount

10

mapped in the cluster. For example, in our
simple two-node cluster, Memory Channel
refused to allocate a total amount of memory
greater than 20 MBytes total (the sum of both
nodes’ allocations). This also can provide
serious hindrance to message-passing and
other traditional parallel-programming
techniques that might otherwise be used with
Memory Channel.

• Lack of events. Perhaps the most serious
problem associated with the use of Memory
Channel in a shared environment is its total
lack of support for events. Because it is
impossible to act upon inbound message
events without destroying the efficiency of
the main operating system’s task of running
multiple parallel or sequential tasks, we cannot
hope to effectively share a Memory Channel-
based cluster among multiple parallel tasks.
We believe this will become an increasingly
important problem in the future.

6 Conclusions
 and Future Work

Memory Channel is a high-performing
implementation of reflective memory that can be
successfully used as a cluster interconnect for
message-passing systems. The low latencies
provided by Memory Channel can be leveraged for
more complex, and thus more robust or highly-
performing, communications protocols; further,
the low latencies promote fine-grained parallel
programming (as they do not penalize programs
for sending short messages).

However, several obstacles remain in the path of
Memory Channel’s possible adoption as a widely-
used interconnect. First, the reflective-memory
semantics that it provides, while simple in the
abstract, create undue headaches for the
programmer — very few existing protocols or data
structures are designed for “write-only” memory.
As a case in point, while MPI has three different
possible communications protocols — the “eager”

protocol, which pushes data directly to the receiver
upon a send; the “rendezvous” protocol, which
matches sends and receives in the network; and the
“get” protocol, which waits for a receive before
moving data across the interconnect — we were
only able to use the “eager” protocol, because we
can only write, not read, a remote memory.
Second, the limitation of total Memory Channel
address space to 512 MBytes is a significant
limitation for building large clusters, as is the
requirement for pinned memory on each host (and
its limitations). Finally, the lack of any sort of
feedback from the communications interface to
the main processor about messaging events is a
significant hindrance to coscheduling, which is a
virtual prerequisite for time-sharing of large
parallel systems [2].

In the future, we would like to examine DEC’s
MPI implementation over Memory Channel;
published results indicate an achieved bandwidth
of over 60 MBytes/s.

7 References
[1] T. E. Anderson, D. E. Culler, D. A. Patterson,

and the NOW Team. A Case for NOW
(Networks of Workstations). IEEE Micro,
February, 1995.

[2] Remzi H. Arpaci, Andrea C. Dusseau, Amin
M. Vahdat, Lok T. Liu, Thomas E. Anderson,
David A. Patterson. The Interaction of
Parallel and Sequential Workloads on a
Network of Workstations. In Proceedings of
ACM SIG-
METRICS’95/PERFORMANCE’95 Joint
International Conference on Measurement and
Modeling of Computer Systems, page 267-278,
May 1995.

[3] Andrea C. Arpaci-Dusseau, David E. Culler,
Alan Mainwaring. Scheduling with Implicit
Information in Distributed Systems.
Sigmetrics'98 Conference on the Measurement and
Modeling of Computer Systems.

11

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W. K.
Su. Myrinet - A Gigabet-per-Second Local-
Area Network. IEEE Micro, 15(1):29-38,
February 1995.

[5] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc,
and E. Markatos. Multiprogramming on
Multirocessors. In Proceedings of the Third
IEEE Symposium on Parallel and Distributed
Processing, pages 590-597, Dec. 1991.

[6] J. Dongarra, and T. Dunnigan. Message
Passing Performance of Various Computers.
University of Tennessee Technical Report CS-95-
299, May 1995.

[7] Andrea C. Dusseau, Remzi H. Arpaci, and
David E. Culler. Effective Distributed
Scheduling of Parallel Workloads. In
Proceedings of 1996 ACM Sigmetrics International
conference on Measurement and Modeling of
Computer Systems, 1996.

[8] Andrea C. Dusseau, Remzi H. Arpaci, David
E. Culler. Re-examining Scheduling and
Communication in Parallel Programs.University
of California, Berkeley, Computer Science Technical
Report: UCB//CSD-95-881, 1995.

[9] T. von Eicken, D. Culler, S. Goldstein, and K.
Schauser, ``Active Messages: a Mechanism for
Integrated Communication and
Computation'', In Proceedings of the 19th
International Symposium on Computer Architecture,
May 1992, Gold Coast, Qld., Australia,
pp.256-266.

[10] D. G. Feitelson and L. Rudolph. Gang
Scheduling Performance Benefits for Fine-
Grained Synchronization. Journal of Parallel and
Distributed Computing, 16(4):306- 318, Dec.
1992.

[11] W. Gropp and E. Lusk and N. Doss and A.
Skjellum. A high-performance, portable
implementation of the (MPI) message passing
interface standard. Parallel Computing
22(6):789-828, September 1996.

[12] A. Gupta, A. Tucker, and S. Urushibara. The
Impact of Operating System Scheduling
Policies and Synchronization Methods on the
Performance of Parallel Applications. In
Proceedings of the 1991 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pages 120-131, May 1991.

[13] Message Passing Interface Forum. The MPI
Message Passing Interface Standard. Technical
Report, University of Tennessee, Knoxville, April
1994.

[14] J. K. Ousterhout. Scheduling Techniques for
Concurrent Systems. In Third International
Conference on Distributed Computing Systems,
pages 22-30, May 1982.

[15] R. Gillett, “MEMORY CHANNEL Network
for PCI: An Optimized Cluster Interconnect,”
IEEE Micro (February 1996):12-18.

[16] M. Blumrich et al., “Virtual Memory Mapped
Network Interface for the SHRIMP
Multicomputer,” Proceedings of the Twenty-
first Annual International Symposium on
Computer Architecture (April 1994): 142-153.

[17] M. Blumrich et al., “Two Virtual Memory
Mapped Network Interface Designs,”
Proceedings of the Hot Interconnects II
Symposium, Palo Alto, Calif. (August, 1994):
134-142.

