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Abstract

Coarse grained threading, such as in the SPMD model of parallel programming, has been shown to be an effective
and well-understood programming model for performance-oriented languages such as Titanium [2]. Some parallel
architectures, however, such as the Tera MTA, prefer light-weight threading in order to achieve high performance.
This paper describes a port of the Titanium compiler to the Tera MTA and the mapping of its SPMD constructs to a
more dynamic, threaded model.  The Titanium language was enhanced to allow the programmer to specify non-
SPMD-style loop-level parallelism.  To evaluate the platform and language interface, a few Titanium applications
were modified to take advantage of the language changes and were measured for performance.  They show that
thread overhead and synchronization may still be a limiting factor for scaling SPMD programs.  With automatically
detected loop-level parallelism, associating threads with a specific processor can greatly reduce the thread overhead
for some applications.  Finally, the data suggests that having only-coarse grained parallelism may not keep the Tera
processors busy so parallelizing compiler optimizations are a necessity.

1 Introduction

As parallel computing has become more widely used, the inherent difficulties of expressing computations have
given rise to a variety of parallel languages.  Some of these, such as HPF and Split-C [1], have taken traditional,
familiar languages and extended the semantics for parallelism.  By extending known language abstractions and
porting these compilers to new platforms, much of the initial investment of the parallel programmer, in both the
learning curve and code bases, can be preserved.  Although some program modifications are often needed, the
details of synchronization and communication constructs are largely abstracted away by the languages.

This paper describes the port of the Titanium [2] reference compiler to the Tera MTA [3].  The parallel
constructs of the language were mapped to the Tera’s native mechanisms for parallelism.  In order to understand the
mapping and the interaction between the Tera and Titanium, several Titanium applications were evaluated on the
architecture.  The results provide an insight into the resources required by the applications and the Tera’s ability to
provide them.

1.1 The Tera MTA

The Tera Multi-Threaded Architecture provides hardware support specifically targeted at the multi-threaded
programming style.  The architecture supports multiple logical register files and thread states active simultaneously
on a single CPU.  The Tera MTA currently specifies 128 streams in a processing unit.  Each stream owns a register
file and thread state and is the basic unit of scheduling.  These streams share the CPU’s other resources, such as the
ALU, FPU, and other parts of the processor pipeline.  Because only one stream is active at a time, to maintain a fine
grain of concurrency, streams are context switched on every processor cycle.  Streams, in effect, provide hardware
support for multiple lightweight threads.

Unlike current trends in memory subsystems, the Tera’s memory architecture is flat.  No data memory
caches exist on the processor.  Instead, multiple memory banks are connected to the processor by an interconnection
network.  On a memory access, the address is hashed, which is an attempt to randomize its actual placement in the
memory banks. The network then retrieves the desired memory contents within the order of one to two hundred
cycles.  The MMU is non-blocking, allowing multiple memory requests to be outstanding on a single processor.
This memory architecture design is an effort by the Tera designers to free programmers from having to deal with a
multi-level memory hierarchy, which can greatly complicate their algorithms.  In fact, the almost-uniform memory
access latencies nullify the effect of many data placement optimizations by the programmer or compiler.



Along with the flat memory architecture, each memory word contains, among other information, a full-
empty bit.  These bits provide a fast method of synchronization and communication among threads.  When the bit is
not in the proper state, accessing the memory location causes the stream to block until the state changes.  The Tera
native compilers [4] utilize them to provide higher-level synchronization primitives as well as threading constructs.

Streams and the memory architecture provide a unique cost model for programming for the Tera MTA.
Instead of programming for data placement, which reduces data latencies, the programmer invests some of the
parallelism in the code to hide data latencies.  This investment is profitable only if the code has sufficient parallelism
to both invest and keep the processors busy during execution.  The programmer, however, benefits from reduced
program complexity, which improves code maintenance costs, debugging, and readability.  In order to help find this
parallelism, the Tera native C, C++, and Fortran compilers feature strong support for automatically detecting parallel
opportunities in sequential code.  They also provide explicit synchronization variables and a threading model based
on futures.  In the former, a sync keyword along with several specialized functions, provide the means to build
complex high level constructs.  In the latter, the programmer can easily specify a semantic fork/join style of thread
control.

1.2 Titanium

Titanium [2] is a Java-based, Single Program Multiple Data (SPMD) language that contains explicit communication
and synchronization constructs for parallel programming. These language constructs consist of barriers, broadcasts,
exchanges, and the Java synchronized qualifier.  The Java class libraries, which provide services such as I/O, strings,
and containers, are used from the standard distributed Java implementation from Sun.  The compiler generates C
code, which is then fed into a machine’s native compiler, to generate an executable.  At startup, a Titanium
executable creates a fixed number of Titanium processes, each of which executes the same code, but with logically
separate address spaces.  The reference compiler supports NOW clusters [5], SMPs, and MPPs.  In the NOW case,
logical Titanium processes map onto separate individual processes running on each machine of the cluster.  With
SMPs, Titanium uses the operating system’s native thread support (such as the Posix pthread library) in a single
address space, typically using one thread per Titanium process.  Multiple address spaces are then simulated for
specific variables when necessary.  Finally, on MPPs, the natural parallel constructs of the machine or runtime
libraries are used.

Porting Titanium to a new architecture requires implementing the small, well-defined section of the
Titanium runtime library that contains native synchronization and multiprogramming routines.  These functions
provide the mapping from the Titanium SPMD constructs and abstractions to the machine.  On threaded platforms,
such as SMPs, for example, memory accesses are optimized for the shared memory address space, and the usual
overhead of supporting remote memory accesses on distributed memory platforms is fully avoided.  This flexibility
allows the compiler to easily take advantage of the unique benefits of each platform.

1.3 Applications

To evaluate the appropriateness of the Titanium SPMD model to the Tera multithreaded architecture, a few
Titanium applications were tested.  They were designed and optimized for either the shared memory or for the
distributed memory model.

1.3.1 Parallel 3D Adaptive Mesh Refinement

The 3D AMR application [6] solves Poisson’s equation within a discrete problem domain, a patch.  Multiple
domains spread across multiple Titanium processors over a 3D space provide a high level of parallelism, with
communication only necessary where domains abut.  AMR is similar to the multigrid algorithm for adaptively
refined grids, with additional support to allow fine grid levels to not completely cover coarser levels.  The Titanium
AMR is implemented to scale on both shared and distributed memory machines, using ghost cells when necessary.
A red-black ordering is kept when computing the values within a patch, which consists of multiple double-precision
floating-point values.  Patches are distributed in groups among all of the Titanium processes involved in the
computation, as specified by the input.  Parallelism within each patch in a group or within the patch data items is
only implicit within the program’s loops.  Additional details on the algorithm can be found in [6].



1.3.2 EM3D

The second application tested is a Titanium version of the EM3D kernel.  It was written in a naïve fashion for shared
memory machines and uses Titanium’s foreach looping structure to traverse the nodes and edges in a linear
manner.  No special care is taken in data placement.  The initial input is a randomized set.

1.3.3 FFT

FFT is a Titanium version of the FFT in the Stanford SPLASH-2 [14] benchmarks for shared memory systems.  It is
a complex 1D version that minimizes inter-processor communication.  The loops in this code, as with EM3D, were
not parallelized.

1.4 Paper Organization

The rest of this paper is organized into several sections.  Section 2 shows the mapping chosen between Titanium
SPMD parallel constructs and the Tera’s.  Section 3 describes the same for synchronization.  In section 4, the results
of the application evaluations are presented.  Finally, some related and future work is discussed.

2 Parallelization

Implementing the Titanium runtime backend for the Tera requires writing two types of routines.  The first involves
forming a mapping between the Titanium parallel constructs and those provided by the Tera architecture.  The Tera
supports two types of parallelism - explicit threads, and implicit loop-level, both of which are exploited.

3.1 Explicit

Explicit parallelism is parallelism specified explicitly by the program.  On the Tera, futures and future variables
provide this feature to the programmer.  This works similarly to fork/join parallelism.  A future statement specifies a
fork point in the program.  This statement is tied to a future variable.  The full-empty bit on this variable is asserted
when the future thread completes.  So, simply reading the future variable specifies a join point.  Titanium SPMD
processes are implemented as Tera threads in this manner.  As in an SMP machine implementation, the use of
threads implies that all of the Titanium processes share a single address space.

In order to allow the number of Titanium processes to scale to large numbers, the spawning function
implements a tree structure.  Actually a flat binary tree, each Titanium process, a Tera future, spawns two children at
startup before starting its normal execution.  Each thread can also optionally be bound to a specific Tera processor or
be allowed to migrate throughout the system.

3.2 Implicit

In the Tera system, implicit parallelism is not necessarily specified directly by the programmer, but is discovered by
a parallel compiler.  The form most often found is loop-level parallelism, where multiple iterations of a loop are
independent and, so, can be executed in parallel.  The Tera compiler chain aggressively detects loop-level
parallelism and includes a series of directives for the programmer to help the compiler in this respect.

In addition to Java looping structures, Titanium supports a foreach loop that iterates over a multi-
dimensional space of points.  Roughly equivalent to multiple nested for loops, they are unordered but semantically
operate serially.  Strength reduction and loop-invariant code motion reduce overhead in the body of the loop.
Because Titanium produces C code, however, aliasing, worsened by the loop optimizations, sufficiently confuses the
Tera compiler and its ability to optimize loops [7].  Instead of relying on alias analysis, which, in pointer (and
reference) based languages, has been shown to be either hard or inaccurate [8, 9, 10], a new foreachp construct
was added to the language.  Similar to the foreach loop, this new construct does not specify, but instead hints,
that no loop carried dependencies exist, and the loop can be executed in parallel.



3 Synchronization

In addition to the parallel constructs, implementing the runtime backend for the Tera involves mapping Titanium’s
synchronization constructs to the Tera architecture.  The Tera C compiler allows program variables of word length
or smaller to be declared as synchronization variables, which means that their state is changed to empty on a read
and to full on a write. Reads of empty variables will block, while writes of full variables may block, depending on
whether the variable is a sync variable (for blocking writes) or a future variable (for non-blocking writes). The
compiler also contains intrinsic functions that can explicitly manipulate the full/empty states of program variables,
as well as perform blocking or non-blocking reads and writes to those variables.  We used these low-level, fine-
grained synchronization constructs to build locks and block-and-broadcast-release mechanisms, on top of which we
built the higher-level, coarse-grained constructs present in the Titanium language.

Locks were implemented in a natural manner, by mapping the lock’s state directly onto the full-empty state
of a word in memory. To acquire a lock, the thread reads from this word, which clears its state to empty, causing
subsequent reads to block. When the thread releases the lock, it writes to the word, changing the state back to full.
Only one thread is allowed to perform a synchronized read on a word at a time, so only one of the waiting threads is
allowed to acquire the lock. We did not need to implement a spin-wait for performance, because the Tera hardware
has a built-in mechanism that spin-waits a thread for a certain interval.  Block-and-broadcast-release was
implemented using two alternating synchronization variables. A thread wishing to block reads from one variable,
and the thread which releases the others toggles a switch so that further blocking threads reads from the other
variable. This prevents a release from allowing future blocks to pass through unchallenged.

When these constructs had been implemented, the two higher-level Titanium synchronization constructs,
barriers and monitors, were simple to implement. Two types of barriers were reviewed.  The first was implemented
by using our block-and-release mechanism and an atomic counter, supported in hardware with an atomic fetch-and-
increment operation (INT_FETCH_ADD). This is termed the counter barrier.  The second, a tree barrier, uses a flat
binary tree structure with parents waiting for their children to finish, then blocking waiting for the root node to
finish.  Both use a dual state approach and a toggle to simplify cleanup of the barrier mechanisms.  Monitors were
implemented using locks to protect the desired critical sections.

4 SPMD Programs

The Tera machine, on which the test programs were evaluated, is a four-processor configuration, running at
260MHz with 4GB of main memory, running MTX OS v0.4.52.  The AMR Titanium executables are built with the
Tera C compiler’s (tcc v0.4) whole program optimization to ensure better automatic loop parallelization by the
optimizer.  The other programs used separate compilation, which should be sufficient because they were not loop-
parallelized.  Implicit parallelism optimizations, -par and –par1 in the Tera compilers, were activated where
noted.  The former uses a crew, a more heavyweight but more flexible thread mechanism, to perform loop
parallelism across multiple CPUs, while the latter relies on frays, which have fewer overheads but are limited to
living on a single processor.  Titanium’s runtime garbage collection system was turned off for these tests.

The AMR program was modified to parallelize loops using the new foreachp construct.  All loops that
dealt with traversing the points within a patch were marked parallel for the Tera C compiler to optimize.  Loop
parallelism among patches was not specified, allowing for Titanium’s SPMD parallelism. Four different input sets
were presented to AMR in the testing.  They varied the patch size present on each processor from a 16x16x16 patch
to a 64x64x64 one.  Most of the Titanium runtime itself was not parallelized, including the Java class libraries.  The
array copy function, however, was optimized to execute in parallel.

4.1 Tree or Counter Barriers

In many shared memory machines, tree based barrier code reduces consistency communication among the
processors, especially under high contention.  This provides a better degree of scalability at the cost of using a vector
of synchronization variables on the order of the number of processes.  On the other hand, they are more complicated
than counter based barriers and may introduce some unnecessary overhead.
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Figure 1. Counter and Tree barrier timings under EM3D.  A flat line would indicate
linear speedup.

Both types of barriers were implemented and evaluated on the Tera.  The results (Fig. 1) show that the
timings are relatively close on EM3D.  EM3D executes a fixed number (determined at runtime) of stages with
barriers in between each stage and no other synchronization.  This should make it a stable benchmark to test the
scaling of barriers.  The tree timings are consistently better than the timings for the counter variable, though only by
a small degree.  The differences, however, are within the noise of the machine from run to run, although most of
these values were repeatable.  Additional scaling numbers for higher processes are not available due to bugs in the
Tera runtime.  So, the data suggests that the tree barrier may still be more efficient on the Tera but only by a small,
possibly a fixed constant amount.

4.2 Processor Affinity

Normally in SPMD Programs, an SPMD process is closely tied to a specific processor.  This allows the programmer
to reason about the CPU resources available and to program with those assumptions.  On the Tera, however, each
SPMD process corresponds to a Tera thread.  A question arises whether these threads should be bound to a specific
processor or not.  Figure 2 shows the results of this experiment.
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Figure 2.  Effects of binding a Tera thread to a specific processor.
The Linear line shows linear scaling.  This is AMR executing with
32x32x32 sized patches.  There are a total of 9 patches that are
assigned to the processors in a round-robin fashion.



AMR performs better if each Titanium process is tied to a specific processor (i.e. the thread has processor
affinity).  This can be attributed to a few factors.  First, each Titanium AMR process has enough loop level
parallelism to keep a single, entire Tera processor busy, and the patches are balanced.  As a result, there are no
benefits to a more dynamic scheduling and load balancing.  The balanced parallelism can be seen in the trace
information for single process runs of the program.  Also, when a thread is tied to a processor, loop-level parallelism
can be implemented with frays instead of crews to synchronize those mini-threads, resulting in a large reduction in
overhead.  The much larger number of total streams issued by the crew case reflects this, again, in the trace
information.

The Tera two- and four-process speedup is significantly less than the two- and four-process configuration
reported in [6].  One possible source is the serial code in both AMR and the Java class library, which Titanium
programs use extensively.  Because of the Tera’s poor serial performance (as observed in [12]), this code takes up a
larger portion of the runtime, causing it to dominate more quickly, lowering the overall speedup.

4.3 Scalability

A key issue for AMR, scalability allows for larger problems to be solved as the hardware itself becomes more
powerful.  Figs. 3 and 4 show the peak rates attained for issuing threads and MFLOPS.
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Figure 4.  Peak MFLOPS achieved in AMR.  A 1 on the Y-axis is the MFLOPS
rating for a single processor.

Both of these graphs for all cases begin to level off at the larger patch sizes.  As the patch size increases,
the amount of loop-level parallelism also increases, so although the number of Titanium processes is fixed, the total
amount of parallelism increases.  The bound SPMD processes (Affinity) seem to saturate more quickly in both cases.
Assuming that the saturation was caused by machine bottlenecks (the limited memory network or a shortage of
streams in parallelized loops—both of which were reported by earlier works), this mechanism would most benefit
from advances in the hardware, as well as intermediate problem sizes.  Note that the issue rate peaks at about 2.7,
which, on the four processor system, results in a utilization of only 67.5%, much lower than those measured by [11].
Several factors may have contributed to this, including not parallelizing the Java portion of the Titanium runtime
library and the greater use of pointers and references that arise from an object oriented language.

Figs. 5 and 6 show the average thread issue rate and the average floating point performance when averaged
over the entire run of the program.
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Figure 5.  Average thread issues per second across the entire run of AMR.
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Figure 6.  Average MFLOPS across the entire run of AMR.

Although the previous graphs showed that the execution time for the slower crew based threading was much longer,
these graphs show that the CPUs were, on average, doing a similar amount of work per unit time.  An explanation
for this may be the high overhead of creating and maintaining crew threading.

4.4 Numbers of Threads



In addition to problem size scalability, the number of SPMD Processes that can be supported was also measured.
This looks into the opposing effects of synchronization overhead against the greater number of processor resources
and scheduling freedoms revealed with more coarse-grained parallelism.
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Figure 7. Thread speedup on the EM3D application.  This was
measured without affinity.

We ran the EM3D application on a single CPU with varying numbers of threads, to test the scalability of the system
(Fig. 7). The results are as expected; our data shows speedup to around 32 threads, at which point the CPU becomes
saturated and no more parallelism is exploited.
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The FFT test shows how FFT, which was not parallelized, scales with the number of SPMD processes.  The
32-processor case shows a dip for the no affinity measurements.  A possible explanation for this may be poor
scheduling on the part of the runtime system, causing a bottleneck to form.  The affinity cases (2 and 4 CPU) may be
forcing the runtime to spread the threads out enough to avoid the bottleneck.  Higher processor numbers may help to
reveal the cause.

5 Related Work

Two of the more recent studies on the Tera have looked at standardized benchmarks and parallel kernels on the
system.  Snavely, Carter, et al. [11] reviewed the NAS kernel benchmarks on a two processor Tera system.  They
reported problems that limited parallel efficiency stemming from insufficient memory bandwidth due to a faulty
memory network.  Also, load imbalances within the streams may also have been a contributing factor.  Brunett et al.
[12] evaluated the C3I Parallel Benchmark Suite, comparing the Tera against a few other systems, such as the HP



Exemplar.  They noticed slow sequential performance, many times slower than on competing systems, but more
competitive parallel performance, which often outpaced the other machines.  They also showed modest scaling
speedups when running on both of the Tera’s processors.

Another Tera study was done by Bokhari et al. [13] on unstructured adaptive meshes.  Running on a
255MHz two-processor machine, they reported a peak rate of 210Mflop/s on a processor.  Running a Fortran version
of the EUL3D unstructured grid solver, they showed good scaling going from one processor to two as well as good
stream efficiency.

6 Future Work

Currently, a few more Titanium applications are in line to be evaluated.  They include matrix oriented kernels, parts
of the Stanford SPLASH benchmark suite, another multigrid algorithm, and a particle simulation.  These
applications should present the Tera with different workloads and system demands.

Additionally, in the future, other scalable architectures, such as the Cray T3E and the IBM SP-2, will be
evaluated and compared against the Tera.  It would be interesting to see how systems that more closely map onto the
SPMD computing model perform compare to a system that does not, such as the Tera.  Also, this would help derive
a model of the scalability behavior of the Tera, with a focus on its synchronization constructs and floating point
performance.  The Tera may also have a high sensitivity to the frequency of memory accesses, due to its lack of data
caching.  Measuring this sensitivity would help to determine if the memory subsystem is efficient enough.

Due to bugs in the runtime and compiler, some aspects of the Tera could not be adequately tested at this
point.  The runtime did not handle creating 128 or more Titanium processes, which, although may have high
synchronization overhead, may be useful in programs with low synchronization requirements.  Also, the EM3D
application, although it contains a lot of loop-level parallelism, was not optimized because of a bug in the C
compiler.

7 Conclusion

The SPMD programming model has been shown to be an effective tool in describing and thinking about various
parallel programs in an understandable and efficient way.  Even on a multithread-centric machine like the Tera,
perhaps thinking about programming in terms of SPMD can be effective for some programs when tuning for
performance.  Allowing threads to be tied to specific processors helps to reduce inefficiencies in highly parallel
constructs such as crews.  The coarse grained SPMD parallelism also helps to expose additional levels of coarse-
grained parallelism not detectable by the Tera compilers.  AMR benefited from both intra- and inter-patch level
parallelism that falls naturally from the mixing of the SPMD and thread based models.  Tera frays are a simple,
lightweight way of extending the SPMD model of programming, while keeping the control of the sharing of
resources with the programmer.  In addition, a high number of SPMD processes may still not be practical due to
synchronization overheads.  The EM3D case only scaled linearly up to 16 nodes and peaked at 32.  So, having only
SPMD style coarse-grained parallelism may not be enough to keep the Tera processors busy.  Parallelizing
optimizations from the C compiler are still necessary to mask the high memory latencies of the machine.  Finally,
there is a possibility that a tree barrier still performs better than a counter barrier on the Tera machine, though more
data need to be taken to confirm this result.
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