//Dear Dr. Culler:

I’ve edited your article according to our style for clarity and readability. Please read this carefully, answer all questions enclosed inside // fences, and return your comments to me via fax, FedEx, or UPS next-day delivery by January 2. You will see the article once more after that with your comments included and any redrawn figures and equations.

Note that some sentences have been reworded into active voice, requiring us to guess or to ask you what the correct subject is. If we’ve guessed incorrectly, let me know; we do not want to change your technical meaning at any time.

Thanks, Janet//

Network interfaces

Assessing Network Interfaces

//au: Shorter title ok? We have a new format for 1996 that requires a 4 word title.//

David E. Culler

Lok Tin Liu

Richard P. Martin

Chad O. Yoshikawa

University of California, Berkeley

//au: I’ve edited your abstract to fit into the space available; please ok it. Your original abstract and keywords go into the IEEE Computer Society On-Line Service database on the Internet under the magazine’s title.//

//abstract//

Assessing the performance of emerging high-speed networks is difficult because of the interaction between software and hardware. Our communication microbenchmark is a valuable tool for evaluating design changes in a communications system.

Recently, we have seen dramatic advances in scalable, low-latency interconnection networks for parallel machines and workstation clusters. With such “hot interconnects,” the network interface, rather than the switches and links, primarily limits the performance of user-to-user communication. Although the network interface has hardware and software parts, we use NI to refer to the hardware component alone. //au: Correct?// A diverse set of hardware designs have emerged, differing on key issues such as where the NI connects to the processing node and the amount of processing power embedded in the NI (see Table 1).

Table 1. Two key axes in the network interface hardware design space.

�NI processing power����

Connection�

Controller�Embedded processor�General-purpose microprocessor��I/O bus�Sun SAHI ATM�Fore SBA�IBM SP-2���IBM SP-1�Myrinet���Graphics bus�HP Medusa����Memory bus�Cray T3D�Meiko CS-2�Intel Paragon��

We wanted to evaluate and compare these design alternatives. However, we had to assess the hardware in conjunction with the software that provides a specific set of communication operations to the user. In principle, it should be possible use any of the popular communication layers such as TCP/IP (Transmission Control Protocol/Internet Protocol), MPI (Message Passing Interface),1 or PVM (Parallel Virtual Machine)2 for this evaluation. Unfortunately, these layers impose large software overheads (several hundred to several thousand instructions per message) that obscure other factors.3

Researchers have performed substantial work in “lean” communication layers, especially Active Messages,4 which provide simple communication operations with overheads on the scale of tens of instructions per message. We //au: Subject ok?// can carefully optimize each Active Message layer for a particular hardware platform, although user communication operations remain the same.5-7 This presents the opportunity to systematically assess the combination of fast hardware and fast software in delivering communication performance to applications.

We prefer to characterize a range of network interface designs using a few simple performance parameters, rather than a litany of block diagrams and design-specific timings. Saavedra-Barrera’s memory system microbenchmarks8 inspired this approach. These microbenchmarks attempt to capture the salient features of a complex system through a focused set of small benchmarks analyzed in relation to a simple conceptual model.

//au: I moved the following sentence from the end of the paragraph because it highlighted the basis for your benchmark; ok?//

Our microbenchmark generates a graphical signature from which we extract communication performance parameters for the hardware-software tandem. We use the LogP9 conceptual model //au: Correct? Otherwise, what exactly is LogP?// for communication systems. (LogP stands for the parameters latency, overhead, gap, and processors, which we discuss later.) //au: Added explanation for those not familiar with your field.// Developed as a tool for reasoning about parallel algorithm performance, LogP provides a concise characterization of the processing overhead, latency, and bandwidth of communication operations. Specifically, we studied three important platforms that represent diverse points in the NI design space: the Intel Paragon,7 Meiko CS-2,10 and a cluster of Sparcstation-20s connected by Myrinet11 switches using LANai SBus cards. Our study //au: Subject ok?// viewed each machine as a gray box supporting Active Messages and conforming to the LogP framework. We devised a simple set of communication microbenchmarks and measured the performance on each platform. //au: Micro does not use ‘signposting paragraphs’--those that tell the reader what is coming--so I’ve deleted those sentences from this paragraph.//

LogP model

Its developers intended LogP as a realistic model for parallel algorithm design, in which designers could address critical performance issues without relying on a myriad of idiosyncratic machine details. Four parameters characterize the performance of a system; three describe the time to perform an individual point-to-point message event, and the last provides a crude description of computing capability: //au: Sentence reworded; ok?//

	•	Latency is an upper bound on the time to transmit a message from its source to destination.

	•	Overhead is the time period during which the processor engages in sending or receiving a message.

	•	Gap is the minimum time interval between consecutive message transmissions or consecutive message receptions at a processor.

	•	Processor count //au: Correct? I wouldn’t call the word processor by itself a characteristic.// is the number of processors.

In addition, the network has finite capacity. The system //au: Subject ok?// reaches this finite capacity if a processor sends messages faster than the destination processor can receive them. If a processor attempts to send a message that would exceed the network’s finite capacity, the processor stalls until it can send the message without exceeding network capacity. Figure 1 illustrates these parameters for a generic parallel system.

Figure 1. LogP parameters in a generic platform. //au: What do the dashed lines and crisscross arrows mean in this figure?//

The total time for a message to travel from the source processor to its destination is 2o + L. It is useful to distinguish the two components, because overhead o reflects the time it takes the main processor to process the communication event, whereas latency L reflects the time during which the processor does other useful work. Gap g measures the time that the slowest stage in the communication pipeline (the bottleneck) takes to handle the message. //au: Sentence reworded; ok?// The reciprocal of the gap gives the effective bandwidth in messages per unit time.

Thus, transferring n small messages in rapid succession from one processor to another requires time o + (n-1)g + L + o, where each processor expends n (o cycles, and the remaining time is available for other work. The same formula holds with multiple //au: Correct?// simultaneous transfers, as long as the destinations are distinct. However, if more than one processor sends to the same destination, the effective bandwidth of each sender reduces to 1/(k (g). In other words, the receiver bandwidth—one message every g time units—limits the aggregate bandwidth of the k senders.

The communication software generally determines the overhead parameter, which is strongly influenced by the cost of accessing the NI over the memory or I/O bus attached to the processor. //au: Sentence reworded; ok?// The time spent in the NI, the network link bandwidth, and the routing delays through the network influence latency. Processor overhead, the time spent by the NI in handling a message, and the network link bandwidth affect the gap. For a very large system or a network with poor scaling, the bottleneck can be the bisection bandwidth of the network. //au: What is a bisection bandwidth? Could we more simply say half the network bandwidth or is this a specific term?// However, in practice, the network interface is often the bottleneck for reasonably sized systems, and thus is the main focus of our study.

We made some small extensions to the LogP model. First, we distinguished between send overhead os and receive overhead or. Second, we recognized that for bulk-data transfer, L, o, and g depend on message size. By differentiating the overhead, gap, and latency parameters, the LogP model exposes the overlap between computation and communication.

Active Messages

The Active Messages communication layer provides a collection of simple and versatile communication primitives. Programmers //au: Subject ok?// generally use it in libraries and compilers to construct higher level communication operations, such as traditional message passing1 or global shared objects.12 We can think of Active Messages as very lightweight, asynchronous, remote procedure calls (RPCs), in which each operation is a request-reply pair. In LogP terms, an Active Messages request-reply operation includes two point-to-point messages, giving an end-to-end round-trip time of 2(os + L + or). A request message includes the address of a handler function at the destination node and a fixed number of data words that the processor //au: Subject ok?// passes as arguments to the handler.

The system handles Active Messages automatically, either as part of the node initiating its own communication, via an interrupt, or as part of waiting for responses. Otherwise, a node can also handle messages via an explicit poll. When the destination node receives the message, it invokes the specified handler, which performs a small amount of computation and issues a reply. Such a reply consists of an analogous reply-handler function and its arguments. Figure 2 illustrates this basic operation using a typical remote-read transaction.

Figure 2. Two basic primitives of Active Messages are small request and reply active messages. The shaded areas represent control taken as a result of processing an incoming request or response.

Active Messages are efficient to implement because the sender issues messages directly into the network. In addition, since the message explicitly identifies the code that consumes the data, the network processes such messages directly without additional buffering and parsing. The handler executes in the context of a prearranged remote process and supports a fixed set of primitive data types. Thus, the network does not require the argument marshaling and context switching of a traditional RPC. //au: Last four sentences reworded; ok?// The sender continues execution as soon as it issues the message; invocation of the reply handler provides notification of completion.

Researchers //au: Subject ok?// have implemented Active Messages on the nCube 2, //au: Ok? We have several books that list it this way, rather than n-Cube/2// CM-5,4 HP workstations with the Medusa FDDI (Fiber Distributed Data Interface) network,5 Sun workstations connected to an ATM network,6 Intel Paragon,7 Meiko CS-2, and Sun workstations with Myrinet. They optimized each Active Messages implementation for the particular hardware. The Generic Active Messages (GAM) specification defines a uniform, application programming interface across these platforms. Small messages provide four words of data to the handler and are reliable. (The request-reply protocol permits inexpensive schemes for deadlock avoidance, flow control, and error recovery.) In addition to small-message transfers, the specification //au: Subject ok?// supports bulk transfers as a memory-to-memory copy in either the request or reply direction; handler invocation signifies data transfer completion. In the bulk-transfer case we examine, the requester transfers bytes of data into the remote virtual memory before the request handler fires, and the reply handler indicates completion of the entire transaction.

Hardware platforms

The three platform implementations we evaluated follow the generic hardware model in Figure 1 and consist of a collection of essentially complete computers connected by a scalable communication network. Moreover, they all provide a communication processor and specialized DMA engines as part of the NI. However, they differ in key design aspects (summarized in Table 2), including the location of the NI to main processor connection, communication processor power, and the network link bandwidth.

//au: The following paragraph was moved here from the end of this section because we felt it was an import point that got lost where it was originally; ok?//

There are semitechnical forces, such as time to market, that influence the performance of these classes of machines. For example, the Meiko CS-2 used in this study became available only very recently (a few months before we wrote this article), while the newest Myrinet technology was not available in time for our study. Thus, our cross-machine comparisons do not reflect the latest technology.

Table 2. Comparison of the three platforms in this study.

Platform�Main processor�NI location�Communication processor�Network topology�Peak network bandwidth (Mbytes/s)��Intel Paragon�50-MHz i860XP�Memory bus�50-MHz i860XP�2D mesh�175��Meiko CS-2�66-MHz hyper Sparc�Memory bus�Elan (embedded processor)�4-ary fat tree�70��Myrinet�50-MHz�Super Sparc�I/O bus�LANai (embedded processor)�8-port crossbar�80��

The Paragon dedicates a general-purpose i860XP RISC processor to communications and uses an identical chip as a main processor. The two processors communicate via shared memory over a cache-coherent memory bus. In addition, the communication processor accesses the network link FIFO buffers across the memory bus. Two DMA engines connect to the memory bus and send burst data between memory and the network.

In the Meiko, the Elan network interface chip, which connects directly to the memory bus and network, contains the communication processor and DMA engine. The two processors communicate directly to the Elan via shared memory and uncached accesses. The communication processor has a dedicated connection to the network separate from the memory bus; however, it has only modest processing power and no general-purpose local memory or cache.

The Myrinet network interface is an I/O card that plugs into a standard SBus. It contains a 16-bit, CISC-based, LANai embedded processor, DMA engines, a modest local memory, and the Myrinet link interface. The processor uses the Myrinet local memory as a staging area for incoming and outgoing DMA operations. For example, a memory copy request will transfer data from the host memory to the Myrinet local memory and then to the network.

The Myrinet and Meiko offer comparable network link bandwidth at 80 and 70 Mbytes/s. The Myrinet network can be an arbitrary topology connected via crossbar switches with eight bidirectional ports, while the Meiko uses two 4-ary fat trees. The Paragon has the highest network bandwidth at 175 Mbytes/s, although its 2D mesh network is not as scalable as a fat tree. We use moderate-size configurations in our measurements since we focus on network interface performance, rather than the scaling of the network itself.

Small-message performance

We obtain the LogP parameters for our study platforms using a simple communication microbenchmark. The natural starting point is the round-trip time (RTT) associated with a single Active Message request-reply operation. Table 3 shows the minimum and maximum RTT between pairs of nodes for our platforms in configurations of up to 16 nodes. We see from this that the our Network of Workstations communication time is about 1.5 times that of the two massively parallel processing platforms. The RTT reflects the sum of the send overhead, latency, and receive overhead. As expected, it varies by a small amount with the distance traveled through the network. Other factors, such as the speed of the NI and communication overhead, dominate the communication time.

//au: I have rearranged the following table to fit Micro style.//

Table 3. Round-trip time for a single Active Message, RTT = 2(os + or + L). //au: Title reworded; ok?//

�RTT (ms)���Platform�Minimum�Maximum��Intel Paragon�19.9�20.1��Meiko CS-2�20.3�21.6��Myrinet�30.6�31.5��

To extract individual LogP parameters, our microbenchmark issues a sequence of request messages and measures the average time per issue, which we call message cost. We deduce the overhead and gap from the changes in the message cost as a function of the number of messages issued. We first illustrate the technique in the abstract and then apply it to our study machines.

Communication microbenchmark. As a first step toward our communication microbenchmark, consider what should be the time to issue a sequence of Active Message requests under LogP, as illustrated by the following pseudocode. We define the issue phase as the code between the start- and stop-timer statements. Note that the Active Message Issue Request function implicitly handles replies.

Start Timer

	Repeat M times

		Issue Request

Stop Timer

... handle remaining replies

For small M, the sender issues all requests without receiving any replies, as indicated by the top time line of Figure 3. Thus, the message cost should be simply os. (This occurs for M less than RTT/os.) For larger M, a fraction of the replies arrives during the issue phase, and the message cost increases (as the second time line in the figure indicates), since the processor spends or for each reply. Time g for successive messages to pass through the bandwidth bottleneck separates the replies. As M increases, the number of messages in the network increases. Eventually, the number of messages will reach the network’s capacity, and the sender //au: Subject ok?// must drain a reply before issuing each new request. When the request function attempts to inject a message into a full network, it stalls. Therefore, the message cost is simply gap g.

Figure 3. Request issue time line. //au: What does “... at RTT, then every g” mean in the label above the transition time line?//

Thus, the average message cost as a function of M should follow a curve similar to the bottom curve in Figure 4. It exhibits three regimes: send only for small M, steady state for large M, and a transition in between. The average time per message in the send-only regime reveals os. The transition regime begins at either RTT/os (when the first replies begin to return) or when the message traffic reaches the network capacity, whichever comes first. //au: Sentence reworded; ok?// The curve asymptotically reaches g in the steady-state regime. The RTT measurement gives us the sum os + L + or. If we obtain or, we can solve for L.

Figure 4. Expected microbenchmark signature.

We see from the steady-state time line of Figure 3 that os + or + Idle = g, where Idle is the time the sender spends waiting to drain a reply from the network. However, we cannot directly measure Idle or or, since the request function stalls waiting for a reply and then uses or time pulling the reply out of the network. Therefore, we attempt to find or in another way: We add a controlled amount of computation D between messages. As indicated in the bottom time line in Figure 3, for D > Idle, the sender becomes the bottleneck. Average message cost is os + or + D = g(, where g(is the new bottleneck, that is, the average time per issue in the steady-state-with-delay regime. Since we know D and can measure os and g(, we can calculate or.

Microbenchmark signature. The resulting pseudocode for our communication microbenchmark becomes

Start Timer

	Repeat M times

		Issue Request

			Compute for D time

	Stop Timer

... handle remaining replies

By executing this microbenchmark for a range of M and D, we construct a signature consisting of several message-issue curves, each corresponding to a different D, as illustrated by Figure 4. In the figure, any value of D less than Idle will have a steady-state message cost of g, while any value of D larger than Idle (D() will have a steady-state message cost of g(> g. From this graph, we directly read parameters g, os, and or, and then compute latency given the round-trip time.

Small-message empirical results. Since many of our measurements are in microseconds, undesirable events such as cache misses, context switching, and timer interrupts can lead to significant measurement errors. So, we repeated the microbenchmark for each point in the signature until we obtained a 5 percent accuracy and 95 percent confidence level. To minimize the cache effect of the statistics collection routines, we processed measurements in batches of 50 samples. Figure 5 gives the microbenchmark signatures for our three platforms. //au: I have renumbered original Figures 5, 6, and 7 as Figures 5b, 5c, and 5a; this agrees with the order set up at the beginning of this article.//

Figure 5. Meiko microbenchmark signatures for the Intel Paragon (a), Meiko CS-2 (b), and Myrinet (c).

The empirical signatures of our platforms closely model the abstract signature of Figure 4. Each graph exhibits the three operation regimes: send only, transition, and steady state. Given these signatures, we extract the LogP parameters. For the Paragon signature in Figure 5a, by averaging the first few points corresponding to small M and a D of 0, we find that os = 1.4 ms. Next, by taking the asymptotic value of the D = 0 curve, we find that g = 7.6 ms. To compute or, we arbitrarily pick a D that increases the gap, for example, D = 16. Subtracting D + os from g(= 19.6 gives us or = 2.2 ms. Finally, subtracting the overhead from the one-way time (RTT/2), gives us L = 7.5 ms. Similar analysis finds the LogP characterization for the Meiko and Myrinet; Table 4 summarizes these parameters for all three platforms. //au: I have taken these values out of text and added them as a table.//

Table 4. LogP parameters.

Platform�os (ms)�or (ms)�g�L��Intel Paragon�1.4�2.2�7.6�7.5��Meiko CS-2�1.7�1.6�13.6�7.5��Myrinet�2.0�2.6�12.4�11.1��

The asymptotic value of the D = 0 curve occurs at very large values of M for both the Meiko and Myrinet platforms. For clarity, we show only the message cost up to M = 128. Figure 6 //au: original Figure 8// presents a summary of the LogP parameters for our platforms, along with two variations that we discuss later. The bars on the left show the one-way time divided into overhead and latency, while the ones on the right show the gap. The Myrinet time is roughly 50 percent larger than the other platforms, although their message bandwidths are comparable.

Figure 6. LogP summary of the three platforms, including two variations.

The larger overhead on the Myrinet reflects the first of the key design choices noted in Table 2. The Meiko and Paragon NIs connect to the cache-coherent memory bus, so the processors need only store the message into the cache before continuing. The Myrinet NI is on the I/O bus, and the processor must move the message into the NI with uncached stores, resulting in larger overhead. The latency and gap reflect the second key design issue: NI processing power. The Paragon has the lowest latency, 6.3 ms, followed by the Meiko and Myrinet, with latencies of 7.5 and 11.1 ms. This indicates the advantage of the microprocessor used in the Paragon over the custom, embedded processors in the Meiko and Myrinet designs.

The Paragon also has the lowest gap, 7.6 ms, compared with 12.4 ms for the Myrinet 13.6 ms for the Meiko. The difference between the Meiko and Myrinet is interesting. Even though the Meiko communication processor resides on the memory bus, it has no caches. It thus must load messages using uncached reads from the main processor’s cache, affecting the rate at which it sends messages. On the Myrinet, the main processor has already deposited the messages into NI memory, where the communication processor can access them quickly. Furthermore, since a substantial part of the latency is NI processing (rather than the actual network transfer), trade-offs exist between the overhead and latency components. For example, performing the routing lookups on the main processor increases overhead, but reduces the Myrinet latency. Although this change might reduce overall communication costs (since the main processor is faster), bus transfers and other factors could mitigate the advantage. Our microbenchmark quantifies such trade-offs.

Evaluating design trade-offs. Our microbenchmark is a valuable tool for evaluating design changes in communication hardware and software. In many cases, the performance impact is unexpected and subtle, as illustrated by two slightly older variants of our main platforms. We expect overhead to track processor speed but don’t expect speed to affect L and g. We ran the microbenchmark on an older Meiko with 50-MHz SuperSparc processors using the same Active Messages implementation. Surprisingly, os and or increase slightly while L and g increase by about 30 percent, as illustrated by the Meiko 50 bars in Figure 6. Part of the reason is that this machine has a slower memory bus (40 versus 45 MHz), and the NI processor runs at the memory bus speed. This does not seem to account for the entire difference, but the microbenchmark serves its purpose in revealing the anomaly.

We generally expect program performance to improve with the addition of a large, second-level cache, however, this may not be the case for communication. The Myrinet 10 bars in Figure 6 summarize the performance of an alternative Myrinet platform using Sparcstation-10s with the same 50-MHz SuperSparc and second-level cache. We see a dramatic increase in overhead: os = 3.6 ms and or = 4.0 ms. Processor loads and stores to the NI incur an extra delay through the second-level cache controller before reaching the I/O bus. We believe the I/O bus is slower as well, accounting for the increase in g, since the NI processor is clocked at the I/O bus speed.

Validation of communication scaling. The measurements conducted thus far calibrate the communication performance of a single pair of network nodes. In a scalable network, as assumed in the LogP model, we should observe the same performance for communication between multiple pairs, as long as messages //au: Subject ok?// do not contend for individual nodes. To verify that our platforms behave in this manner, we repeated the microbenchmark using all the nodes: half of the nodes as requesters and the other half as repliers. We see no significant difference in the signatures; the LogP parameters are the same to two significant digits.

The LogP model asserts that we should see the same performance if a single node issues requests to many other nodes. Modifying the microbenchmark in this fashion, we see that the gap actually decreases by about 30 percent, and we get roughly 1.4 times the message bandwidth on both the Myrinet and Paragon. This suggests that handling the request turnaround //au: Correct?// reply is the bottleneck. By increasing the number of receivers, we mitigate the bottleneck.

On the Meiko, however, the receiver is not the bottleneck. In the presence of prolonged endpoint contention, the LogP model asserts that the bandwidth of the contended-for receiver will limit the aggregate bandwidth. Each sender should see the gap increase in proportion to the number of senders. This variation on the microbenchmark has K nodes making requests to a single node. Table 5 //au: original Table 4.// shows the observed increase in the gap in the K-to-1 microbenchmark relative to the 1-to-1 microbenchmark for varying numbers of requesters on our three platforms. The results closely fit our model expectations.

Table 5. Contended validation of g.

Values�Intel Paragon�Meiko CS-2�Myrinet��Number of nodes (K)�7�15�3��gK-to-1/g1-to-1�6�16.8�3��Bulk-transfer microbenchmark

We extended the methodology used for small messages to evaluate the communication performance of bulk transfers. Active Messages provides two bulk operations, store and get. A store operation copies a block of memory to a remote node and invokes a request handler on the remote node, which will send a small reply to the requester. Conversely, a get operation copies a block of memory from a remote node and invokes the reply handler on the originating node. The store and get operations function as memory copies across the network, and the handler invocation signals copy completion. The microbenchmark extension is straightforward—each request transfers n bytes of additional data.

We time the issue of a sequence of requests and insert a computation delay between the requests in the sequence. The natural generalization of the LogP model is to view the overhead and gap as functions of n, rather than as fixed constants. We must also extend the microbenchmark signature, since each curve becomes a surface with the addition of a transfer-length dimension.

Bulk-transfer time and bandwidth. The equivalent of the round-trip measurement for bulk transfers is the time to complete an n-byte store operation and receive the reply. Figure 7 //au: original Figure 9// shows time T(n) for this operation as a function of transfer size the corresponding transfer bandwidth delivered BW(n) = n/T(n). Many studies model large-message performance using start-up cost T0 and peak rate R(. We model the time for an n-byte transfer as T(n) = T0 + (n/R(). Commonly, we derive these values by fitting line T0 + nR(to a set of measurements, such as those in Figure 7. T0 is the intercept of the line, and 1/R(, the slope.

Figure 7. Bulk-transfer completion time (a) and resulting bandwidth (b).

Although this method accurately provides the peak bandwidth, T0’s meaning is unclear. First, nonlinearities and small errors in the data often yield a T0 value that has little to do with the time for a small message. For example, a least square fit of the Myrinet data in Figure 7 yields a negative T0. Even if the fit is reasonable, there is no indication whether T0 reflects processing overhead, communication latency, or some sort of protocol between the sender and receiver (such as the round-trip to acknowledge the transfer in the active message bulk-store operation). The generalization of LogP provides a framework for articulating these issues. A more serious shortcoming of the T0-R(model is that it does not reveal the level of processor activity during the transfer. For example, algorithm designers may wish to know how much computation they can overlap with communication. Much as we need to distinguish o and L in the small-message case, we need to determine o(n) for bulk transfers, as distinguished from T(n).

Bulk-transfer overhead. To measure the overhead of a bulk transfer, we use a methodology similar to that of the small-message case. The sender //au: Subject ok?// issues a sequence of m bulk transfers with computation time D between each. We obtain the signature for each transfer size n. Figure 8 //au: original Figure 10// shows the Myrinet signature for an 8-byte transfer size. It exhibits the same three regimes as for the small-message case. However, g is 18 ms compared with 12.4 ms for the small-message case. We conclude that some part of the system sends bulk messages slower than small messages, even when the additional data transfer is small. Indeed, we attribute this extra overhead to the cost that the communication processor incurs during the DMA transfer from host memory. For small messages, the computational //au: Correct? Or main processor?// processor stores the data directly into NI memory and avoids the DMA transfer.

Figure 8. Myrinet 8-byte bulk-transfer signature.

Figure 9 //au: original Figure 11// shows the Myrinet signature for a 2-Kbyte transfer. We can no longer identify the three regimes, and the curves for small D’s do not converge. In this case, we conclude that overhead limits the bulk operation, and the g term is not visible. To compute os(n), we take the series of os from the m-D signatures for increasing values of n. Figure 10 //au: original Figure 12// shows the result for each platform for up to 4-Kbyte messages. The Paragon and Meiko platforms have send overheads that are a constant function of transfer size. These machines allow a program to fully overlap computation with communication.

Figure 9. Myrinet 2 Kbyte bulk-transfer signature.

Figure 10. Comparison of bulk-transfer send overhead versus transfer size.

Figure 10 shows that the Myrinet overhead increases linearly with transfer size. Thus, less overlap is possible on that platform than the other two. Because of I/O-addressing limitations and the high cost of locking pages in memory, the processor copies data into pinned, I/O-addressable regions rather than locking user pages and then mapping them into I/O space. The microbenchmark signature clearly shows this cost, thus reflecting how the Myrinet platform’s lack of integration affects performance. However, o(n) is smaller than T(n), showing that we can overlap a portion computation and communications. For example, for a 4-Kbyte transfer, o(n) is 143 ms, and T(n) is 298 ms.

//Conclusion//

//au: Rather than summarize, Micro likes to conclude by putting your work into perspective; so I’ve eliminated the summary here. If possible, we prefer that you comment on future projects or areas of study that would relate to or extend these results. Please add something of this nature.//

Microbenchmarks are a valuable tool for assessing design trade-offs in communication hardware and software. While the specifics of our microbenchmark depend on Active Messages, the methodology applies to any communication layer. For example, Figure 11 //au: original Figure 13// shows the microbenchmark signature for an asynchronous RPC layer on Sparcstation-10s running Solaris 2.4 connected by Ethernet. (We see that the high software overhead of RPC is the performance bottleneck, since the first value of D increases the gap. Thus, the gap equals os + or.) Our empirical methodology carries over directly to RPC, because it is a request-reply operation.

Figure 11. Asynchronous RPC signature.

Traditional message-passing and stream communication models require a somewhat different microbenchmark formulation. However, we believe that any standard communication interface should include a performance calibration suite such as the one we have presented.

Acknowledgments

The US Advanced Research Projects Agency (contract number F-30602-95-C-0014), the National Science Foundation (grant number //au: Correct?// CDA-9401156), and the California Micro program supported this project. An NSF Presidential Faculty Fellowship supports David Culler’s research. We also thank Sun Microcomputer, Intel, Lawrence Livermore Labs, and the University of California, Santa Barbara, for providing equipment and support.

References

//au: I have renumbered the references in order of their appearance in text.//

	1.	Message-Passing Interface Forum, MPI: A Message Passing Interface Standard, June 1995. //au: Publisher’s name and city?//

	2.	A. Beguelin et al., “A User’s Guide to PVM: Parallel Virtual Machine,” tech. report ORNL/TM-11826, Oak Ridge National Laboratory, Oak Ridge, Tenn., July 1991.

	3.	D.D. Clark et al., “An Analysis of TCP Processing Overhead,” IEEE Trans. Comm., June 1989, pp. 23-29. //au: This was from the Transactions, correct?

	4.	T. von Eicken et al., “Active Messages: A Mechanism for Integrated Communication and Computation,” Proc. 19th Int’l Symp. Computer Architecture, IEEE Computer Society Press, Los Alamitos, Calif., 1992, pp. 256-266.

	5.	R. Martin, “HPAM: An Active Message Layer for a Network of HP Workstations,” Proc. Hot Interconnect II, 1994. //au: References must be available to readers. Since these are not formally published, would you be willing to supply copies at request?//

	6.	T. von Eicken et al., “Low-Latency Communication Over ATM Networks Using Active Messages,” IEEE Micro, Vol. 15, No. 1, Feb. 1995, pp. 46-53.

	7.	L.T. Liu and D.E. Culler, “An Evaluation of the Intel Paragon on Active Message Communication,” Proc. Intel Supercomputer User’s Group Conf., 1995; http://www.cs.berkeley.edu/~ltliu/papers/isug95/isug_1.html.

	8.	R.H. Saavedra-Barrera, “CPU Performance Evaluation and Execution Time Prediction Using Narrow Spectrum Benchmarking,” PhD thesis, Univ. of Calif., Berkeley, Computer Science Division, Feb. 1992.

	9.	D.E. Culler et al., “LogP: Towards a Realistic Model of Parallel Computation,” Proc. Fourth ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, Assn. for Computing Machinery, New York, 1993. //au: Pages?//

	10.	M. Homewood and M. McLaren, “Meiko CS-2 Interconnect Elan-Elite Design,” Proc. Hot Interconnects, 1993. //au: Same question as for reference 5.//

	11.	N. Boden et al., “Myrinet: A Gigabit-per-Second Local Area Network,” IEEE Micro, Vol. 15, No. 1, Feb. 1995, pp. 29-36.

	12.	D.E. Culler et al., “Parallel Programming in Split-C,” Proc. Supercomputing 93, IEEE CS Press, 1993, pp. 262-273.

David E. Culler teaches computer architecture and parallel processing at the University of California, Berkeley. His research addresses parallel computer architecture, parallel programming languages, and high-performance communication structures. He has worked extensively on resource management in dataflow systems, compilation of lenient parallel languages using a Threaded Abstract Machine, fast communication on modern parallel machines using Active Messages, and Split-C.

Culler received his PhD from MIT. He was a NSF Presidential Young Investigator and received the Presidential Faculty Fellowship. He is a member of the IEEE, ACM, and Sigma Xi. //au: Correct affliations? I took this from last year’s article. Have you joined the Computer Society since then?//

Lok Tin Liu is a PhD student at the University of California, Berkeley, and a member of the Network of Workstations (NOW) project. He is responsible for the development of Active Messages on the Intel Paragon and also works on performance analysis and fast implementations of MPI. //au: What degrees do you hold? Field and institution? Are you a member of the IEEE, the Computer Society, or other professional organizations?//

Richard P. Martin is also a PhD student at the University of California, Berkeley. His interests include fast communication layers, network interface design, and parallel computing. Martin received his bachelor’s degree in computer science from Rutgers University. //au: Masters degree? Are you a member of the IEEE, the Computer Society, or other professional organizations?//

Chad O. Yoshikawa is a PhD student at the University of California, Berkeley, and a member of the Network of Workstations (NOW) project. His interests include parallel computing, fast communications, and operating systems. Yoshikawa received his BS in computer engineering from Carnegie Mellon University. //au: Masters degree? Are you a member of the IEEE, the Computer Society, or other professional organizations?//

Direct questions concerning this article to David Culler, Computer Science Division, University of California, Berkeley, Berkeley, CA 94720-1776; culler@cs.berkeley.edu.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Service Card.

Low 162	Medium 163	High 164

//au: Please ok the following blurb; it will appear on the issue’s contents page under the article title and your byline.//

Making meaningful performance comparisons for a hardware-software tandem

Culler page � PAGE �17�	� DATE \l �12/19/95�

