
Overload Management as a Fundamental
Service Design Primitive

Matt Welsh and David Culler
Computer Science Division

University of California, Berkeley
{mdw,culler }@cs.berkeley.edu

1 Introduction
In this paper we argue that overload prevention is a fundamental re-
quirement for distributed systems and services connected to the Inter-
net. Unfortunately, few systems have adequately addressed the man-
agement of extreme load, relying mainly on overprovisioning of re-
sources (e.g., replication). However, given the enormous user popu-
lation on the Internet, overprovisioning is infeasible as the peak load
that a service experiences may be orders of magnitude greater than the
average. The events of September 11, 2001 provided a poignant re-
minder of the inability of Internet services to scale: virtually every In-
ternet news site was completely unavailable for several hours due to
unprecedented demand [9]. The increasing prevalence of sophisticated
denial-of-service attacks, launched simultaneously from thousands of
unrelated machines, further underscores this problem.

Moreover, as our notion of Internet-based services expands to em-
brace a range of novel distributed systems, including global storage ser-
vices [8, 14], peer-to-peer systems [4, 12], and sensor networks [3, 6],
throwing more resources at the problem does not help: individual nodes
in these large computing frameworks are not necessarily backed by
massive data centers which can grow to meet capacity.

Despite the importance of load management, few systems directly
address this problem, treating it as an issue of capacity planning rather
than preparing in advance for (inevitable) overload. To a large extent,
this is due to inadequate interfaces for resource management. Most
operating systems adhere to the principle ofresource virtualizationto
simplify application development. Unfortunately, this approach makes
it difficult for applications to be aware of, or adapt to, real resource
limitations [18]. For example, the UNIXmalloc interface simply re-
turns NULL when memory cannot be allocated; an application has no
way to know whether a futuremallocoperation will fail, so adapting to
memory pressure is nearly impossible.

The programming models used for Internet services generally fail
to express resource constraints in a meaningful way. CORBA [5],
RPC [15], Java RMI [16], and now .NET [13] all expose a programming
model in which distributed components communicate mainly through
remote procedure call, simplifying the harnessing of remote resources
through a familiar programming abstraction. Unfortunately this ab-
straction makes no attempt at exposing resource limits or overload con-
ditions to the participating applications. For example, Java RMI calls
can throw a generic exception due to any type of failure, but there is
typically little that an RMI application can do when this occurs: should
the application fail, retry the operation, or invoke an alternate interface?

This problem is compounded when Internet services are constructed
through composition of many distributed systems, as is the case with
the emergent field of “Web services.” Consider a Web service con-
sisting of several independent components communicating through a
common protocol such as SOAP. When one component becomes a re-
source bottleneck, the only overload management technique generally

used is for the service to refuse additional TCP connections. While ef-
fectively shielding that service from load, other participants experience
very long connection delays (in part due to TCP’s exponential SYN re-
transmit backoff behavior), causing the bottleneck to propagate through
the entire distributed application.

This paper outlines a framework for building Internet services that
are inherently robust to load, using two simple techniques: dynamic
resource management and fine-grained admission control. While these
techniques have been explored elsewhere in the context of specific ap-
plications, we find that few Internet service programming models make
them explicit. Our approach is based on a software architecture called
thestaged event-driven architecture(or SEDA), which decomposes an
Internet service into a network of event-driven stages connected with
explicit event queues. Load management in SEDA is accomplished by
introducing a feedback loop which observes the behavior and perfor-
mance of each stage, and applies resource control and admission control
to effectively manage overload.

2 The Need for Dynamic Overload Management
The classic approach to resource management in Internet services is
static resource containment, in whicha priori resource limits are im-
posed on an application or service to avoid overcommitment. Various
kinds of resource limits are used: bounding the number of processes or
threads within a server is common technique, as is limiting the number
of client socket connections to the service. Both of these approaches
have the fundamental problem that it is generally not possible to know
what the ideal resource limits should be. Setting the limit too low under-
utilizes resources, while setting the limit too high can lead to oversat-
uration and serious performance degradation under overload. Refusing
to accept additional TCP connections under heavy load is inadvisable
as it causes clients to retransmit the initial SYN packet with exponential
backoff, leading to very long response times [19]. This approach is also
too coarse-grained in the sense that even a single client can consume all
of the resources in the system: imposing process or connection limits
does not solve the more general resource management issue.

Another style of static resource containment is that typified by a
variety of real-time and multimedia systems. In this approach, resource
limits are typically expressed as proportions or shares, as in “processP
getsX percent of the CPU”. In this model, the operating system must be
careful to account for and control the resource usage of each process.
Applications are given a static resource guarantee upon entering the
system, and are forcibly terminated if resource limits are exceeded.

This approach has been explored in depth by systems such as
Scout [11], Nemesis [10], Resource Containers [2], and Cluster Re-
serves [1]. This technique works well for real-time and multimedia
applications, which have relatively static resource demands that can be
expressed as straightforward, fixed limits. For this class of applications,
guaranteeing resource availability is more important than ensuring high



concurrency for a large number of varied requests in the system.
We argue that the right approach to overload management in Inter-

net services is feedback-driven control, in which the system actively
observes its behavior and performance, and applies dynamic control
to manage resources. Several systems have explored the use of dy-
namic overload management in Internet services. Voigtet al. [17] and
Jamjoom [7] present approaches enablingservice differentiationin busy
Internet servers: the basic idea is to adjust the priority or admission con-
trol parameters for each class of requests to yield higher performance
for more important requests. In [17], the kernel adjusts process pri-
orities to meet per-class response time targets. When the system is
overloaded, processes are blocked and eventually new connections are
refused. In [7], per-class admission control is performed by traffic shap-
ing the incoming SYN queue for new connections. The latter technique
is limited to classification by client IP address, while the former rapidly
accepts incoming TCP connections permitting classification by HTTP
header information.

These mechanisms are approaching the kind of overload manage-
ment techniques we would like to see in Internet services, yet they are
inflexible in that the application itself is not designed to manage over-
load. Rather, overload management is a provided as an OS function
with generic load shedding techniques (e.g., blocking processes or re-
jecting connections) rather than application-specific service degrada-
tion. Also, these mechanisms are “wrapped around” existing applica-
tions rather than pushing overload control into the application design,
where we argue it belongs.

3 SEDA: Making Overload Management
Explicit

We have been experimenting with a new software design, thestaged
event-driven architecture(or SEDA), which is designed to provide ade-
quate primitives for managing load in busy Internet services. In SEDA,
applications are structured as a graph of event-drivenstagesconnected
with explicit event queues[19]. While conceptually simple, this model
has a number of desirable properties for overload management:

• Exposing the request stream:Event queues make the request
stream within the service explicit, allowing the application (and
the underlying runtime) to observe and control the performance of
the system, e.g., through reordering or filtering of requests.

• Focused, application-specific admission control:By applying
fine-grained admission control to each stage, the system can avoid
bottlenecks in a focused manner. For example, a stage that con-
sumes many resources can be conditioned to load by throttling the
rate at which events are admitted to just that stage, rather than re-
fusing all new requests in a generic fashion. The application can
provide its own admission control algorithms that are tailored for
the particular service.

• Performance isolation: Requiring stages to communicate
through explicit event-passing allows each stage to be insulated
from others in the system for purposes of code modularity and
performance isolation.

In SEDA, each stage is subject to both resource control and admis-
sion control. Resource controllers attempt to keep each stage within its
ideal operating regime by dynamically tuning parameters of the stage’s
operation, such as the number of threads executing within the stage.
This approach frees the application programmer from manually setting
“knobs” that can have a serious impact on performance. More details
on dynamic resource control in SEDA are given in [19].

...

packet
parse

connection
accept

read
packet

folders
list

show
message

message
delete/refile

send
response

database
access

admission control

(some stages not shown)

Figure 1: Structure of the Arashi SEDA-based email service:The service
consists of a network of stages connected with explicit event queues, coupled
with adaptive admission control to prevent overload. For simplicity, some event
paths and stages have been elided from this figure.

Each stage has an associated admission controller that guards ac-
cess to the event queue for that stage. The admission controller is in-
voked upon each enqueue operation on a stage and may either accept
or reject the given request. Numerous admission control strategies are
possible, such as simple thresholding, rate limiting, or class-based pri-
oritization. Additionally, the application may specify its own admission
control policy if it has special knowledge that can drive the load condi-
tioning decision.

When the admission controller rejects a request, the corresponding
enqueue operation fails, indicating to the originating stage that there is a
bottleneck in the system. Applications are therefore responsible for re-
acting to these “overload signals” in some way. The simplest response
is to block until the downstream stage can accept the request, which
leads to backpressure within the graph of stages. Another response is to
drop the request, possibly sending an error message to the client. More
generally, SEDA applications candegrade servicein response to over-
load, such as delivering lower-quality content or choosing to consume
fewer resources per request. The key is that the architecture is explicit
about signaling overload conditions to the application and allows the
application to participate in load management decisions.

Here we describe our experiences with admission control techniques
in SEDA to manage overload. The basic approach we take is for the
system administrator to specify an external performance target (such
as throughput or response time requirement), and to apply per-stage
admission control to attempt to meet that target.

3.1 Performance metrics
A variety of performance metrics have been studied in the context of
overload management, including throughput and response time targets,
differentiated service (e.g., the fraction of users in each class which
meet a given performance target), and so forth. We focus here on90th
percentile response timeas a realistic and intuitive measure of client-
perceived system performance. This metric has the benefit that it is
easy to reason about and captures administrators’ (and users’) intuition
of Internet service performance. This is as opposed to mean or maxi-
mum response time (which fail to represent the “shape” of a response
time curve), or throughput (which depends greatly on the user’s connec-
tion to the service and has little relationship with user-perceived perfor-
mance).

3.2 Overload controller design
The design of the per-stage overload controller in SEDA is shown in
Figure 2. The controller consists of several components. Amonitor
measures response times for each request passing through a stage. The
measured 90th percentile response time over some interval is passed
to thecontroller which adjusts theadmission control parametersbased
on the administrator-supplied response-timetarget. Several admission
control mechanisms are available; here we present results using token-
bucket traffic shaping. In this scenario the controller adjusts the rate at



Controller

λ

Target
RT

Stage

Distribution

Thread Pool

Response
Time Monitor

Token
Bucket Rate

Figure 2:Response time controller design:The controller observes a history
of response times through the stage, and adjusts the rate at which the stage ac-
cepts new requests to meet an administrator-specified 90th-percentile response
time target.

which the token bucket generates new tokens, effectively bounding the
rate at which the stage accepts new requests.

The basic overload control algorithm makes use of additive-
increase/multiplicative-decrease tuning of the token bucket rate based
on the current observation of the 90th percentile response time. The
overload controller is implemented as a function invoked by the stage’s
event-processing thread after some number of requests has been pro-
cessed. This implies that the overload controller will not run when the
token bucket rate is low; the algorithm therefore “times out” and per-
forms a recalculation of the 90th percentile response time after a cer-
tain interval. When the 90th percentile response time estimate is above
a high-water mark (e.g., 10% above the administrator-specified target),
the token bucket rate is reduced by a multiplicative factor (e.g., dividing
the admission rate by 2). When the estimate is below a low-water mark,
the token bucket rate is increased by a small additive factor. Due to
space limitations we have elided certain details of the implementation.

3.3 Evaluation
We evaluate our controller design through a complex, Web-based email
application calledArashi. Arashi is akin to Hotmail or Yahoo! Mail,
allowing users to access email through a Web browser interface with
various functions: managing email folders, deleting and refiling mes-
sages, searching for messages, and so forth. Arashi is built as a SEDA
application consisting of 16 stages, each stage handling some aspect of
request processing such as HTTP parsing, disk I/O, or dynamic page
generation. Email is stored in a MySQL database which runs on the
same machine as the Arashi SEDA service; in this way, Arashi’s ad-
mission control mechanisms effectively condition load on the database.
Simulated clients generate load against the Arashi service using a realis-
tic request distribution based on traces from the Berkeley departmental
IMAP server.

Response-time-driven overload control is applied to each of the six
stages which perform dynamic page processing. These stages are the
bottleneck in the system as they perform database access and HTML
page generation; the other stages are relatively lightweight. Each stage
corresponds to one type of user request (login, listing folders, listing
messages, showing a message, deleting/refiling messages and folders,
and searching message headers). When the admission controller rejects
a request, the HTTP processing stage sends an error message to the
client indicating that the service is busy. The client records the error
and waits for 5 seconds before attempting to login to the service again.

Figure 3 shows the performance of the overload controller under a
massive load spike on the Arashi e-mail service. A base load of 10
users is rapidly accessing the service when a “flash crowd” of 1000
additional users arrive. Without overload control, client-measured re-
sponse times grow to be very large. The overload controller maintains
a 90th percentile response time target of 1 second, rejecting about 70-
80% of requests during the spike. Without overload control, there is an

0

20

40

60

80

100

120

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike Load spike ends

No overload control
With overload control
Reject rate

Figure 3: Overload control under a massive load spike:This figure shows
the 90th percentile response time experienced by clients using the Arashi e-mail
service under a massive load spike (from 10 users to 1000 users). Without over-
load control, response times grow without bound; with overload control (using
a 90th percentile response time target of 1 second), there is a small increase
during load but response times quickly stabilize. The lower portion of the figure
shows the fraction of requests rejected by the overload controller.

enormous increase in response times during the load spike.
This is in contrast to the common approach of limiting the number

of client TCP connections to the service: this approach does not ac-
tively monitor response times (a small number of clients could cause
a large response time spike), nor does it give users any indication of
overload. In fact, refusing TCP connections has a negative impact on
user-perceived response time, as the client’s TCP stack transparently
retries connection requests with exponential backoff.

Instead of sending error messages to clients, the overload control
mechanism could have responded in other ways, such as by degrading
the service quality (e.g., limiting the number of e-mail messages dis-
played per page, or removing inlined images), or redirecting requests to
other nodes in a server farm. Likewise, variants on the response time
admission control metric could be used, such as class-based prioritiza-
tion. For example, the client IP address could be used to assign a class
to each request, allowing the system to deliver different levels of ser-
vice to each class. While space limitations prevent us from providing
further details, this example is strongly representative of the benefits
of the SEDA architecture: exposing overload to applications, automati-
cally shedding excess load, and incorporating overload management as
a primitive in the service construction framework.

4 Conclusions
We argue that it is critically important to address the problem of over-
load from a systems services design perspective, rather than throughad
hocapproaches lashed onto existing systems. We claim that feedback
and dynamic control are the right ways to approach overload manage-
ment, rather than static resource partitioning or simplistic mechanisms
such as prioritization. The SEDA architecture makes it possible to build
software which is inherently resilient to load, by exposing per-stage
adaptive admission control directly to the programming model. Our
initial results with this design, as well as considerable scalability and
robustness measurements presented elsewhere [19], support the claim
that the SEDA approach is an effective way to build robust Internet ser-
vices.

References
[1] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: A mechanism

for resource management in cluster-based network servers. InProceedings



of the ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Santa Clara, CA, June 2000.

[2] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility
for resource management in server systems. InProc. Third Symposium
on Operating Systems Design and Implementation (OSDI ’99), February
1999.

[3] A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sensor net-
works topologies. InProceedings of the Twenty First International Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2002), New York, NY, June 2002.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. InIn Proceedings of the 18th Symposium on
Operating Systems Princples (SOSP-18), Chateau Lake Louise, Canada,
October 2001.

[5] O. M. Group. The common object request broker: Architecture and speci-
fication, revision 2.3, June 1999.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for network sensors. InProceedings of ASPLOS
2000, Cambridge, MA, November 2000.

[7] H. Jamjoom and J. Reumann. Qguard: Protecting internet servers from
overload. Technical Report CSE-TR-427-00, University of Michigan De-
partment of Computer Science and Engineering, 2000.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. OceanStore: An architecture for global-scale persistent storage.
In Proceeedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
2000), November 2000.

[9] W. LeFebvre. CNN.com: Facing a world crisis. Invited talk at LISA’01,
December 2001.

[10] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fair-
bairns, and E. Hyden. The design and implementation of an operating
system to support distributed multimedia applications.IEEE Journal on
Selected Areas in Communications, 14:1280–1297, September 1996.

[11] D. Mosberger and L. Peterson. Making paths explicit in the Scout operat-
ing system. InProc. OSDI ’96, October 1996.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. InProceedings of ACM SIGCOMM 2001,
San Diego, CA, August 2001.

[13] J. Richter.Applied Microsoft .NET Framework Programming. Microsoft
Press, 2002.

[14] A. Rowstron and P. Druschel. Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility. InIn Proceedings of
the 18th Symposium on Operating Systems Princples (SOSP-18), Chateau
Lake Louise, Canada, October 2001.

[15] Sun Microsystems. RPC: Remote Procedure Call Protocol Specification
Version 2. Internet Network Working Group RFC1057, June 1988.

[16] Sun Microsystems, Inc. Java Remote Method Invocation.http://
java.sun.com/products/jdk/rmi/ .

[17] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms for
service differentiation in overloaded web servers. InProceedings of the
2001 USENIX Annual Technical Conference, Boston, MA, June 2001.

[18] M. Welsh and D. Culler. Virtualization considered harmful: OS design di-
rections for well-conditioned services. InProceedings of the Eighth Work-
shop on Hot Topics in Operating Systems (HotOS-VIII).

[19] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-
conditioned, scalable internet services. InIn Proceedings of the 18th Sym-
posium on Operating Systems Princples (SOSP-18), Chateau Lake Louise,
Canada, October 2001.


