Cross-Origin JavaScript Capability Leaks:
Detection, Exploitation, and Defense

Adam Barth Joel Weinberger Dawn Song
UC Berkeley UC Berkeley UC Berkeley
abarth@eecs.berkeley.edu jww @cs.berkeley.edu dawnsong @cs.berkeley.edu

Abstract

We identify a class of Web browser implementation
vulnerabilities, cross-origin JavaScript capability leaks,
which occur when the browser leaks a JavaScript pointer
from one security origin to another. We devise an algo-
rithm for detecting these vulnerabilities by monitoring
the “points-to” relation of the JavaScript heap. Our algo-
rithm finds a number of new vulnerabilities in the open-
source WebKit browser engine used by Safari. We pro-
pose an approach to mitigate this class of vulnerabilities
by adding access control checks to browser JavaScript
engines. These access control checks are backwards-
compatible because they do not alter semantics of the
Web platform. Through an application of the inline
cache, we implement these checks with an overhead of
1-2% on industry-standard benchmarks.

1 Introduction

In this paper, we identify a class of Web browser im-
plementation vulnerabilities, which we refer to as cross-
origin JavaScript capabilities leaks, and develop sys-
tematic techniques for detecting, exploiting, and defend-
ing against these vulnerabilities. An attacker who ex-
ploits a cross-origin JavaScript capability leak can in-
ject a malicious script into an honest Web site’s secu-
rity origin. These attacks are more severe than cross-
site scripting (XSS) attacks because they affect all Web
sites, including those free of XSS vulnerabilities. Once
an attacker can run script in an arbitrary security origin,
the attacker can, for example, issue transactions on the
user’s bank account, regardless of any SSL encryption,
cross-site scripting filter, or Web application firewall.

We observe that these cross-origin JavaScript capa-
bility leaks are caused by an architectural flaw shared
by most modern Web browsers: the Document Object
Model (DOM) and the JavaScript engine enforce the
same-origin policy using two different security models.
The DOM uses an access control model, whereas the
JavaScript engine uses object-capabilities.

e Access Control. The DOM enforces the same-
origin policy using a reference monitor that pre-
vents one Web site from accessing resources allo-
cated to another Web site. For example, whenever

a script attempts to access the cookie database, the
DOM checks whether the script’s security origin
has sufficient privileges to access the cookies.

e Object-Capabilities. The JavaScript engine en-
forces the same-origin policy using an object-
capability discipline that prevents one Web site
from obtaining JavaScript pointers to sensitive ob-
jects that belong to a foreign security origin. With-
out JavaScript pointers to sensitive objects in for-
eign security origins, malicious scripts are unable
to interfere with those objects.

Most modern Web browsers, including Internet Ex-
plorer, Firefox, Safari, Google Chrome, and Opera, use
this design. However, the design’s mismatch in en-
forcement paradigms leads to vulnerabilities whenever
the browser leaks a JavaScript pointer from one secu-
rity origin to another. Once a malicious script gets a
JavaScript pointer to an honest JavaScript object, the at-
tacker can leverage the object-capability security model
of the JavaScript engine to escalate its DOM privileges.
With escalated DOM privileges, the attacker can com-
pletely compromise the honest security origin by inject-
ing a malicious script into the honest security origin.

To study this class of vulnerabilities, we devise an al-
gorithm for detecting individual cross-origin JavaScript
capability leaks. Using this algorithm, we uncover new
instances of cross-origin JavaScript capability leaks in
the WebKit browser engine used by Safari. We then il-
lustrate how an attack can abuse these leaked JavaScript
pointers by constructing proof-of-concept exploits. We
propose defending against cross-origin JavaScript capa-
bility leaks by harmonizing the security models used by
the DOM and the JavaScript engine.

e Leak Detection. We design an algorithm for au-
tomatically detecting cross-origin JavaScript ca-
pability leaks by monitoring the “points-to” rela-
tion among JavaScript objects in the heap. From
this relation, we define the security origin of each
JavaScript object by tracing its “prototype chain.”
We then search the graph for edges that connect ob-
jects in one security origin with objects in another
security origin. These suspicious edges likely rep-
resent cross-origin JavaScript capability leaks.

e Vulnerabilities and Exploitation. We implement
our leak detection algorithm and find two new high-
severity cross-origin JavaScript capability leaks in
WebKit. Although these vulnerabilities are imple-
mentation errors in WebKit, the presence of the
bugs illustrates the fragility of the general architec-
ture. (Other browsers have historically had similar
vulnerabilities [17, 18, 19].) We detail these vulner-
abilities and construct proof-of-concept exploits to
demonstrate how an attacker can leverage a leaked
JavaScript pointer to inject a malicious script into
an honest security origin.

e Defense. We propose that browser vendors proac-
tively defend against cross-origin JavaScript capa-
bility leaks by implementing access control checks
throughout the JavaScript engine instead of reac-
tively plugging each leak. Adding access control
checks to the JavaScript engine addresses the root
cause of these vulnerabilities (the mismatch be-
tween the security models used by the DOM and
by the JavaScript engine) and provides defense-in-
depth in the sense that both an object-capability
and an access control failure are required to create
an exploitable vulnerability. This defense is per-
fectly backwards-compatible because these access
checks do not alter the semantics of the Web plat-
form. Our implementation of these access control
checks in WebKit incurs an overhead of only 1-2%
on industry-standard benchmarks.

Contributions. We make the following contributions:

e We identify a class of Web browser implementa-
tion vulnerabilities: cross-origin JavaScript capa-
bility leaks. These vulnerabilities arise when the
browser leaks a JavaScript pointer from one secu-
rity origin to another security origin.

e We introduce an algorithm for detecting cross-
origin JavaScript capability leaks by monitoring the
“points-to” relation of the JavaScript heap. Our al-
gorithm uses a graph-based definition of the secu-
rity origin of a JavaScript object.

e We reveal cross-origin JavaScript capability leaks
and demonstrate techniques for exploiting these
vulnerabilities. These exploits rely on the mis-
match between the DOM’s access control security
model and the JavaScript engine’s object-capability
security model.

e We propose that browsers defend against cross-
origin JavaScript capability leaks by implement-
ing access control checks in the JavaScript engine.
This defense is perfectly backwards-compatible
and achieves a low overhead of 1-2%.

Organization. This paper is organized as follows.
Section 2 identifies cross-origin JavaScript capability

leaks as a class of vulnerabilities. Section 3 presents our
algorithm for detecting cross-origin JavaScript capabil-
ity leaks. Section 4 details the individual vulnerabili-
ties we uncover with our algorithm and outlines tech-
niques for exploiting these vulnerabilities. Section 5
proposes defending against cross-origin JavaScript ca-
pability leaks by adding access control checks to the
JavaScript engine. Section 6 relates our work to the lit-
erature. Section 7 concludes.

2 JavaScript Capability Leaks

In this section, we describe our interpretation of
JavaScript pointers as object-capabilities and identify
cross-origin JavaScript capability leaks as a class of im-
plementation vulnerabilities in browsers. We then sketch
how these vulnerabilities are exploited and the conse-
quences of a successful exploit.

2.1 Object-Capabilities

In modern Web browsers, the JavaScript engine en-
forces the browser’s same-origin policy using an object-
capability discipline: a script can obtain pointers only
to JavaScript objects created by documents in its se-
curity origin. A script can obtain JavaScript point-
ers to JavaScript objects either by accessing prop-
erties of JavaScript object to which the script al-
ready has a JavaScript pointer or by conjuring cer-
tain built-in objects such as the global object and
Object.prototype [14]. As in other object-
capability systems, the ability to influence an object is
tied to the ability to designate the object. In browsers,
a script can manipulate a JavaScript object only if the
script has a pointer to the object. Without a pointer to
an object in a foreign security origin, a malicious script
cannot influence honest JavaScript objects and cannot
interfere with honest security origins.

One exception to this object-capability discipline is
the JavaScript global object. According to the HTML 5
specification [10], the global object (also known as the
window object) is visible to foreign security origins.
There are a number of APIs for obtaining pointers to
global objects from foreign security origins. For exam-
ple, the contentWindow property of an <iframe>
element is the global object of the document contained
in the frame. Unlike most JavaScript objects, the global
object is also a DOM object (called window) and is
equipped with a reference monitor that prevents scripts
in foreign security origins from getting or setting arbi-
trary properties of the object. This reference monitor
does not forbid all accesses because some are desirable.
For example, the postMessage method [10] is ex-
posed across origins to facilitate mashups [1]. These
exposed properties complicate the enforcement of the
same-origin policy, which can lead to vulnerabilities.

2.2 Capability Leaks

Browsers occasionally contain bugs that leak JavaScript
pointers from one security origin to another. These
vulnerabilities are easy for developers to introduce
into browsers because the DOM contains pointers to
JavaScript objects in multiple security origins and de-
velopers can easily select the wrong pointer to disclose
to a script. We identify these vulnerabilities as a class,
which we call cross-origin JavaScript capabilities leaks,
because they follow a common pattern. Identifying this
class lets us analyze the concepts common to these vul-
nerabilities in all browsers.

The JavaScript language makes pointer leaks particu-
larly devastating for security because JavaScript objects
inherit many of their properties from a prototype ob-
ject. When a script accesses a property of an object, the
JavaScript engine uses the following algorithm to look
up the property:

o If the object has the property, return its value.

e Otherwise, look up the property on the ob-
ject’s prototype (designated by the current object’s
__proto___ property).

These prototype objects, in turn, inherit many of
their properties from their prototypes in a chain that
leads back to the Object .prototype object, whose
__proto___ property is null. All the objects associ-
ated with a given document have a prototype chain that
leads back to that document’s Object .prototype
object. Given a JavaScript pointer to an object, a script
can traverse this prototype chain by accessing the ob-
ject’s __proto___ property. In particular, if an at-
tacker obtains a pointer to an honest object, the at-
tacker can obtain a pointer to the honest document’s
Object .prototype object and can influence the be-
havior of all the other JavaScript objects associated with
the honest document.

2.3 Laundries

Once the attacker has obtained a pointer to the
Object .prototype of an honest document, the at-
tacker has several avenues for compromising the hon-
est security origin. One approach is to abuse pow-
erful functions reachable from Object .prototype,
which we refer to as laundries because they let the at-
tacker “wash away” his or her agency (analogous to
laundering money). These functions often call one or
more DOM APIs, letting the attacker call these APIs in-
directly. Because these functions are defined by the hon-
est document, the DOM’s reference monitor allows the
access [10]. However, if the attacker calls these func-
tions with unexpected arguments, the functions might
become confused deputies [9] and inadvertently perform
the attacker’s misdeeds.

Most Web sites contains innumerable laundries. We
illustrate how an attacker can abuse a laundry by ex-
amining a representative laundry from the Prototype
JavaScript library [22]: invoke. The invoke method
is used to call a method, specified by name, on each
object contained in an array. The attacker can use this
function to trick the honest page into calling a univer-
sal DOM method, such as setTimeout. Suppose
the attacker has a JavaScript pointer to an array named
honest_array from an honest document that uses
the Prototype library (for how this might occur, see Sec-
tion 4.3) and that honest_window is the honest docu-
ment’s global object. The attacker can inject a malicious
script into the honest security origin as follows:

honest_array.push (honest_window) ;
honest_array.invoke ("setTimeout",
", malicious script ...", 0);

The attacker first adds the honest_window object
to the array and then asks the honest principal to call
the setTimeout method of the honest_window.
When the JavaScript engine attempts to call the
setTimeout DOM API, the DOM permits the call be-
cause the honest invoke method (acting as a confused
deputy) issued the call. The DOM then runs the mali-
cious script supplied by the attacker in the honest secu-
rity origin.

2.4 Consequences

Once the attacker is able to run a malicious script in the
honest security origin, all the browser’s cross-origin se-
curity protections evaporate. The situation is as if every
Web site contained a cross-site scripting vulnerability:
the attacker can steal the user’s authentication cookie or
password, learn confidential information present on the
Web site (e.g., read email messages on a webmail site),
and issue transactions on behalf of the user (e.g., trans-
fer money out of the user’s bank account). Because these
cross-origin JavaScript capability leaks are browser vul-
nerabilities, there is little a Web site can do to defend
itself against these attacks.

3 JavaScript Capability Leak Detection

In this section, we describe the design and implementa-
tion of an algorithm for detecting cross-origin JavaScript
capability leaks. Although the algorithm has a modest
overhead, our instrumented browser performs compara-
bly to Safari 3.1, letting us analyze complex Web appli-
cations.

3.1 Design

Assigning Security Origins. To detect cross-origin
JavaScript capability leaks, we monitor the heap graph,
the “points-to” relation between JavaScript objects in the

JavaScript heap (see Section 3.2 for details about the
“points-to” relation). We annotate each JavaScript ob-
ject in the heap graph with a security origin indicating
which security origin “owns” the object. We compute
the security origin of each object directly from the “is-
prototype-of” relation in the heap graph using the fol-
lowing algorithm:

1. Let obj be the JavaScript object in question.

2. If obj was created with a non-null prototype, as-
sign ob j the same origin as its prototype.

3. Otherwise, ob7j must be the object prototype for
some document d. In that case, assign obj the se-
curity origin of d (i.e., the scheme, host, and port of
that d’s URL).

This algorithm is unambiguous because, when created,
each JavaScript object has a unique prototype, identi-
fied by its __proto___ property. Although an object’s
__proto___ can change over time, we fix the security
origin of an object at creation-time.

Minimal Capabilities. This algorithm for assigning
security origins to objects is well-suited to analyzing
leaks of JavaScript pointers for two reasons. First,
the algorithm is defined largely without reference to
the DOM, letting us catch bugs in the DOM. Second,
the algorithm reflects an object-capability perspective
in that each JavaScript object is a strictly more pow-
erful object-capability than the Object .prototype
object that terminates its prototype chain. An attacker
with a JavaScript pointer to the object can follow the
object’s prototype chain by repeatedly dereferencing the
object’s __proto___ property and eventually obtain a
JavaScript pointer to the Object . prototype object.
In these terms, we view the Object .prototype ob-
ject as the “minimal object-capability” of an origin.

Suspicious Edges. After annotating the heap graph
with the security origin of each object, we detect a
leaked JavaScript pointer as an edge from an object in
one security origin to an object in another security ori-
gin. These suspicious edges represent failures of the
JavaScript engine to segregate JavaScript objects into
distinct security origins. Not all of these suspicious
edges are actually security vulnerabilities because the
HTML specification requires some JavaScript objects,
such as the global object, be visible to foreign security
origins. To prevent exploits, browsers equip these ob-
jects with a reference monitor that prevents foreign se-
curity origins from getting or setting arbitrary properties
of the object. In addition to the global object, a hand-
ful of other JavaScript objects required to be visible to
foreign security origins. These objects are annotated in
WebKit’s Interface Description Language (IDL) with the
attribute DoNotCheckDomainSecurity.

3.2 The “Points-To’’ Relation

In our heap graph, we include two kinds of points in
the “points-to” relation: explicit pointers that are stored
as properties of JavaScript objects and implicit pointers
that are stored internally by the JavaScript engine.

Explicit Pointers. A script can alter the properties of
an object using the get, set, and delete operations.

e get looks up the value of an object property.
e set alters the value of an object property.
e delete removes a property from an object.

To monitor the “points-to” relation between JavaScript
objects in the JavaScript heap, we instrument the set
operation. Whenever the JavaScript engine invokes the
set operation to store a JavaScript object in a prop-
erty of another JavaScript object, we add an edge be-
tween the two objects in our representation of the heap
graph. If the set operation overwrites an existing prop-
erty, we remove the obsolete edge from the graph. To
improve performance, we ignore JavaScript values be-
cause JavaScript values cannot hold JavaScript pointers
and therefore are leaves in the heap graph. We remove
JavaScript objects from the heap graph when the objects
are deleted by the JavaScript garbage collector.

Implicit Pointers. The above instrumentation does
not give us a complete picture of the “points-to” relation
in the JavaScript heap because the operational seman-
tics of the JavaScript language [14] rely on a number of
implicit JavaScript pointers, which are not represented
explicitly as properties of a JavaScript object. For exam-
ple, consider the following script:

var x =
function f£() {
var y =
function g () {
var z = ...
function h() { ... }

}

Function h can obtain the JavaScript pointers stored in
variables x, v, and z even though there are no JavaScript
pointers between h and these objects. The function h
can obtain these JavaScript pointers because the algo-
rithm for resolving variable names makes use of an im-
plicit “next” pointer that connects h’s scope object to
the scope objects of g, £, and the global scope. Instead
of being stored as properties of JavaScript objects, these
implicit pointers are stored as member variables of na-
tive objects in the JavaScript engine. To improve the
completeness of our heap graph, we include these im-
plicit JavaScript pointers explicitly as edges between the
JavaScript scope objects.

-

Figure 1: The heap graph of an empty document.

3.3 Implementation

We implemented our leak detection algorithm in a 1,393
line patch to WebKit’s Nitro JavaScript engine. Our al-
gorithm can construct heap graphs of complex Web ap-
plications, such as Gmail or the Apple Store. For exam-
ple, one heap graph of a Gmail inbox contains 54,140
nodes and 130,995 edges. These graphs are often vi-
sually complex and difficult to interpret manually. Fig-
ure 1 illustrates the nature of these graphs by depicting
the heap graph of an empty document. Although our in-
strumentation slows down the browser, the instrumented
browser is still faster than Safari 3.1, demonstrating that
our algorithm scales to complex Web applications.

4 Vulnerabilities and Exploitation

In this section, we use our leak detector to detect cross-
origin JavaScript capability leaks in WebKit. After
discovering two new vulnerabilities, we illuminate the
vulnerabilities by constructing proof-of-concept exploits
using three different techniques. In addition, we apply
our understanding of JavaScript pointers to breaking the
Subspace [11] mashup design.

4.1 Test Suite

To find example cross-origin JavaScript capability leaks,
we run our instrumented browser through a test suite.
Ideally, to reduce the number of false negatives, we
would use a test suite with high coverage. Because our
goal is to find example vulnerabilities, we use the We-
bKit project’s regression test suite. This test suite exer-
cises a variety of browser security features and tests for
the non-existence of past security vulnerabilities. Using
this test suite, our instrumentation found two new high-
severity cross-origin JavaScript capability leaks. Instead
of attempting to discover and patch all these leaks, we
recommend a more comprehensive defense, detailed in
Section 5.

WebKit’s regression test suite uses a JavaScript ob-
jectnamed layoutTestController to facilitate its
tests. For example, each tests notifies the testing harness
that the test is complete by calling the notifyDone
method of the layoutTestController. We mod-
ified this not i fyDone method to store the JavaScript
heap graph in the file system after each test completes.

Attacker Global Object

Object Prototype@0x 1292980

Figure 2: Selected nodes from a heap graph showing a
cross-origin JavaScript capability leak of the document
object, object@0x1a9e3c20, after a navigation.

The layoutTestController contains a number of
objects that are shared between all security origins. Our
instrumentation flags JavaScript pointers to these objects
as suspicious, and, in fact, these pointers are exploitable
in the test configuration of the browser. However, these
pointers are not present in the release configuration of
the browser because the layoutTestController
itself is present only during testing. We white listed
these objects as visible to multiple security origins.

4.2 Navigation and Document

Vulnerability. When the browser navigates a window
from one Web page to another, the browser replaces the
document originally displayed in the window with a new
document retrieved from the network. Our instrumen-
tation found that WebKit leaks a JavaScript pointer to
the new document object every time a window navi-
gates because the DOM updates the document prop-
erty of the old global object to point to the new doc-
ument occupying the frame. This leak is visible in
the heap graph (see Figure 2) as a dashed line from
Attacker Global Object@0x1a9e1420 to the
honest document object, object@0x1a9%9e3c20.

Exploit. Crafting an exploit for this vulnerability is
subtle. An attacker cannot simply hold a JavaScript
pointer to the old global object and access its
document property because all JavaScript pointers to
global objects are updated to the new global object when
a frame is navigated navigation [10]. However, the prop-
erties of the old global object are still visible to func-
tions defined by the old document via the scope chain
as global variables. In particular, an attacker can exploit
this vulnerability as follows:

1. Create an <iframe> to http://attacker.
com/iframe.html, which defines the following
function in a malicious document:

function exploit () {
var elmt = document.
createElement ("script");
elmt.src =
"http://attacker.com/atk.js";
document .body.appendChild(elmt) ;
}

Notice that the exploit function refers to
the document as a global variable, document,
and not as a property of the global object,
window.document.

2. Inthe parent frame, store a pointer to the exploit
function by running the following JavaScript:

window.f = frames[0].exploit;

3. Navigate the frame to http://example.com/.
4. Call the function: window. f ().

After the attacker navigates the child frame to http://
example.com/, the DOM changes the document
variable in the function exploit to point to the honest
document object instead of the attacker’s document ob-
ject. The exploit function can inject arbitrary script
into the honest document using a number of standard
DOM APIs. Once the attacker has injected script into
the honest document, the attacker can impersonate the
honest security origin to the browser.

4.3 Lazy Location and History

Vulnerability. For performance, WebKit instantiates
the window.location and window.histozry ob-
jects lazily the first time they are accessed. When instan-
tiating these objects, the browser constructs their proto-
type chains. In some situations, WebKit constructs an
incorrect prototype chain that connects these objects to
the Object .prototype of a foreign security origin,
creating a vulnerability if, for example, a document uses
the following script to “frame bust” [12] in order to avoid
clickjacking [7] attacks:

top.location.href =
"http://example.com/";

Attacker Global Object@0x 1¢1d0040 Victim Global Object@0x1c1d13e0

llocation location

object@0x1¢1d2720

Figure 3: Selected nodes from a heap graph showing
a cross-origin JavaScript capability leak of the location
prototype, object@0x1c1d2700, to the attacker af-
ter the victim attempts to frame bust.

This line of JavaScript changes the location of the top-
most frame, navigating that frame to a trusted Web site.
The browser permits cross-origin access to a frame’s
location object to allow navigation [1]. If this script
is the first script to access the location object of the
top frame, then WebKit will mistakenly connect the
top frame’s newly constructed location object to the
Object.prototype of the child frame (instead of
to the Object . prototype of the top frame) because
the child frame is currently in scope lexically.

Exploit. To exploit this cross-origin JavaScript capa-
bility leak, the attacker proceeds in two phases: (1)
the attacker obtains a JavaScript pointer to the hon-
est Object .prototype, and (2) the attacker abuses
the honest Object .prototype to inject a malicious
script into the honest security origin. To obtain a
JavaScript pointer to the honest Object .prototype,
the attacker create an <iframe> to an honest document
that frame busts and runs the following script in response
to the beforeunload event:

var location_prototype =
window.location.___proto__;

var honest_object_prototype =
location_prototype.__ _proto__;

Because the beforeunload event handler runs af-
ter the child frame has attempted to frame bust, the at-
tacker’s location object has been instantiated by the hon-
est document and is mistakenly attached to the honest
Object .prototype (see Figure 3). The attacker ob-
tains a pointer to the honest Ob ject .prototype by
traversing this prototype chain.

Once the attacker has obtained a JavaScript pointer
to the honest Object .prototype, there are a num-
ber of techniques the attacker can use to compromise the
honest security origin completely. We describe two rep-
resentative examples:

1. Many Web sites use JavaScript libraries to smooth
over incompatibilities between browsers and reuse

common code. One of the more popular JavaScript
libraries is the Prototype library [22], which is used
by CNN, Apple, Yelp, Digg, Twitter, and many oth-
ers. If the honest page uses the Prototype library,
the attacker can inject arbitrary script into the hon-
est page by abusing the powerful invoke function
defined by the Prototype library. For example, the
attacker can use the follow script:

var honest_function =
honest_object_prototype.
_ _defineGetter_ ;
var honest_array =
honest_function.
argumentNames () ;
honest_array.push (frames[0]);
honest_array.invoke ("setTimeout",

". malicious script ...");

In the Prototype library, arrays contain a method
named invoke that calls the method named
by its first argument on each element of its ar-
ray, passing the remaining arguments to the in-
voked method. To abuse this method, the at-
tacker first obtains a pointer to an honest ar-
ray object by calling the argumentNames
method of an honest function reachable from
the honest_object_prototype object. The
attacker then pushes the global object of the
child frame onto the array and calls the honest
document’s setTimeout method via invoke.
The honest global object has a reference mon-
itor that prevents the attacker from accessing
setTimeout directly, but the reference monitor
allows invoke to access setTimeout because
invoke is defined by the honest document.

. Even if the honest Web page does not use a complex
JavaScript library, the attacker can often find a snip-
pet of honest script to trick. For example, suppose
the attacker installs a “setter” function for the foo
property of the honest Object .prototype as
follows:

function evil (x) {
X.innerHTML =
'<img src="about:blank"’ +
" onerror="...
1)
honest_object_prototype.

_ defineSetter_ ('foo’, evil);

Now, if the honest script stores a DOM node in a
property of an object as follows:

var obj = new Object();
obj. foo honest_dom_node;

script ...">'";

The JavaScript engine will call the attacker’s setter
function instead of storing honest_dom_node
into the foo property of obj, causing the
variable x to contain a JavaScript pointer to
honest_dom_node. Once the attacker’s func-
tion is called with a pointer to the honest DOM
node, the attacker can inject malicious script into
the honest document using the innerHTML APL

4.4 Capability Leaks in Subspace

The Subspace mashup design [11] lets a trusted integra-
tor communicate with an untrusted gadget by passing a
JavaScript pointer from the integrator to the gadget:

A Subspace JavaScript object is created in
the top frame and passed to the mediator
frame... The mediator frame still has access to
the Subspace object it obtained from the top
frame, and passes this object to the untrusted
frame. [11]

Unfortunately, the Subspace design relies on leaking
a JavaScript pointer from a trusted security origin to
an untrusted security origin, creating a cross-origin
JavaScript capability leak. By leaking the communica-
tion object, Subspace also leaks a pointer to the trusted
Object .prototype via the prototype chain of the
communication object.

To verify this attack, we examined CrossSafe [25], a
public implementation of Subspace. We ran a Cross-
Safe tutorial in our instrumented browser and examined
the resulting heap graph. Our detector found a cross-
origin JavaScript capability leak: the channel object
is leaked from the integrator to the gadget. By repeat-
edly dereferencing the __proto___ property, the un-
trusted gadget can obtain a JavaScript pointer to the
trusted Object .prototype object. The untrusted
gadget can then inject a malicious script into the trusted
integrator using one of the techniques described in Sec-
tion 4.3.

5 Defense

In this section, we propose a principled defense for
cross-origin JavaScript capability leaks. Our defense ad-
dresses the root cause of these vulnerabilities and incurs
a minor performance overhead.

5.1 Approach

Currently, browser vendors defend against cross-origin
JavaScript capability leaks by patching each individual
leak after the leak is discovered. We recommend an-
other approach for defending against these vulnerabili-
ties: add access control checks throughout the JavaScript
engine. We recommend this principled approach over
ad-hoc leak plugging for two reasons:

e This approach addresses the core design issue un-
derlying cross-origin JavaScript capability leak vul-
nerabilities: the mismatch between the DOM’s ac-
cess control security model and the JavaScript en-
gine’s object-capability security model.

e This approach provides a second layer of defense:
if the browser is leak-free, all the access con-
trol checks will be redundant and pass, but if the
browser contains a leak, the access control checks
prevent the attacker from exploiting the leak.

In a correctly implemented browser, Web content will be
unable to determine whether the browser implements the
access control checks we recommend. The additional
access control checks enhance the mechanism used to
enforce the same-origin policy but do not alter the policy
itself, resulting in zero compatibility impact.

Another plausible approach to mitigating these vul-
nerabilities is to adopt an object-capability discipline
throughout the DOM. This approach mitigates the sever-
ity of cross-origin JavaScript capability leaks by limiting
the damage an attacker can wreak with the leaked capa-
bility. For example, if the browser leaks an honest his-
tory object to the attacker, the attacker would be able to
manipulate the history object, but would not be able to
alter the document object. Conceptually, either adding
access control checks to the JavaScript engine or adopt-
ing an object-capability discipline throughout the DOM
resolves the underlying architectural security issue, but
we recommend adopting the access control paradigm for
two main reasons:

e Adopting an object-capability discipline through-
out the DOM requires “taming” [15] the DOM API.
The current DOM API imbues every DOM node
with the full authority of the node’s security origin
because the API exposes a number of “universal”
methods, such as innerHTML that can be used
to run arbitrary script. Other researchers have de-
signed capability-based DOM APIs [4], but taming
the DOM API requires a number of non-backwards
compatible changes. A browser that makes these
changes will be unpopular because the browser will
be unable to display a large fraction of Web sites.

e The JavaScript language itself has a number of fea-
tures that make enforcing an object-capability dis-
cipline challenging. For example, every JavaScript
object has a prototype chain that eventually leads
back to the Object . prototype, making it dif-
ficult to create a weaker object-capability than
the Object.prototype. Unfortunately, the
Object .prototype itself represents a power-
ful object-capability with the ability to interfere
with the properties of every other object from the
same document (e.g., the exploit in Section 4.3.)

Although we recommend that browsers adopt the access
control paradigm for Web content, other projects, such
as Caja [16] and ADsafe [3], take the opposite approach
and elect to enforce an object-capability discipline on
the DOM. These projects succeed with this approach be-
cause the preceding considerations do not apply: these
projects target new code (freeing themselves from back-
wards compatibility constraints) that is written in a sub-
set of JavaScript (freeing themselves from problematic
language features). For further discussion, see Section 6.

5.2 Design

We propose adding access control checks to the
JavaScript engine by inserting a reference monitor into
each JavaScript object. The reference monitor interposes
on each get and set operation (described in Section 3)
and performs the following access control check:

1. Let the active origin be the origin of the document
that defined the currently executing script.

2. Let the target origin be the origin that “owns” the
JavaScript object being accessed, as computed by
the algorithm in Section 3.1.

3. Allow the access if the browser considers the active
origin and the target origin to be the same origin
(i.e., if their scheme, hosts, and ports match).

4. Otherwise, deny access.

If the access is denied, the JavaScript engine returns the
value undefined for get operations and simply ig-
nores set operations. In addition to adding these ac-
cess control checks, we record the security origin of each
JavaScript object when the object is created. Our imple-
mentation does not currently insert access control checks
for delete operations, but these checks could be added
at a minor performance cost. Some JavaScript objects,
such as the global object, are visible across origins. For
these objects, our reference monitor defers to the refer-
ence monitors that already protect these objects.

5.3 Inline Cache

The main disadvantage of performing an access control
check for every JavaScript property access is the run-
time overhead of performing the checks. Sophisticated
Web applications access JavaScript properties an enor-
mous number of times per second, and browser vendors
have heavily optimized these code paths. However, we
observe that the proposed access checks are largely re-
dundant and amenable to optimization because scripts
virtually always access objects from the same origin.
Cutting-edge JavaScript engines, including Sa-
fari 4’s Nitro JavaScript Engine, Google Chrome’s
V8 JavaScript engine, Firefox 3.5’s TraceMonkey
JavaScript engine, and Opera 11’s Carakan JavaScript
engine, optimize JavaScript property accesses using an

inline cache [24]. (Of the major browser vendors, only
Microsoft has yet to announce plans to implement this
optimization.) These JavaScript engines group together
JavaScript objects with the same “structure” (i.e., whose
properties are laid out the same order in memory). When
a script accesses a property of an object, the engine
caches the object’s group and the memory offset of the
property inline in the compiled script. The next time
that compiled script accesses a property of an object, the
inline cache checks whether the current object has the
same structure as the original object. If the two objects
have the same structure, a cache hit, the engine uses the
memory offset stored in the cache to access the prop-
erty. Otherwise, a cache miss, the engine accesses the
property using the normal algorithm.

Notice that two objects share the same structure only
if their prototypes share the same structure. Addi-
tionally, the Nitro JavaScript engine initializes each
Object .prototype with a unique structure identi-
fier, preventing two object from different security ori-
gins (as defined by our prototype-based algorithm) from
being be grouped together as sharing the same structure.
(Other JavaScript engines, such as V8, do contain struc-
ture groups that span security origins, but this design
is not necessary for performance.) Whenever the inline
cache has a hit, we observe the following:

e The current object is from the same security origin
as the original object that created the cache entry
because the two objects share the same structure.

e The script has the same security origin as when the
cache entry was created because the cache is inlined
into the script and the security origin of the script is
fixed at compile time.

Taken together, these properties imply that the current
access control check will return the same result as the
original check because both of the origins involved in the
check are unchanged. Therefore, we need not perform
an access control check during a cache hit, greatly reduc-
ing the performance overhead of adding access control
checks to the JavaScript engine.

5.4 Evaluation

To evaluate performance overhead of our defense,
we added access control checks to Safari 4’s Nitro
JavaScript engine in a 394 line patch. We verified that
our access control checks actually defeat the proof-of-
concept exploits we construct in Section 4. To speed up
the access control checks, we represented each security
origin by a pointer, letting us allow the vast majority of
accesses using a simple pointer comparison. In some
rare cases, including to deny access, our implementation
performs a more involved access check. The majority of
performance overhead in our implementation is caused

25%

2.0% l
1.5% l ‘
1.0% l

0.5%

Slowdown

0.0%

Dromaeo SunSpider V8 Suite

Benchmark
Figure 4: Overhead for access control checks as measure

by industry-standard JavaScript benchmarks (average of
10 runs, 95% confidence).

12%

10% I |

8%
6%

4%

Slowdown

0% T I

¥ 3+
Read Write Read Write

2%
No Inline Cache

Inline Cache
Figure 5: Overhead for reading and writing properties of
JavaScript objects both with and without an inline cache
as measured by microbenchmarks (average of 10 runs,
95% confidence).

by computing the currently active origin from the lexical
scope, which can be reduced with further engineering.

Overall Performance. Our implementation incurs a
small overhead on industry-standard JavaScript bench-
marks (see Figure 4). On Mozilla’s Dromaeo bench-
mark, we observed a 0.57% slowdown for access con-
trol versus an unmodified browser (average of 10 runs,
+0.58%, 95% confidence). On Apple’s SunSpider
benchmark, we observed a 1.16% slowdown (average
of 10 runs, £0.45%, 95% confidence). On Google’s V8
benchmark, we observed a 1.94% slowdown (average of
10 runs, £0.61, 95% confidence). We hypothesize that
the variation in slowdown between these benchmarks is
due to the differing balance between arithmetic opera-
tions and property accesses in the different benchmarks.
Note that these overhead numbers are tiny in comparison
with the 338% speedup of Safari 4 over Safari 3.1 [24].

Benefits of Inline Cache. We attribute much of the
performance of our access checks to the inline cache,
which lets our implementation skip redundant access
control checks for repeated property accesses. To evalu-
ate the performance benefits of the inline cache, we cre-
ated two microbenchmarks, “read” and “write.” In the
read benchmark, we repeatedly performed a get opera-
tion on one property of a JavaScript object in a loop. In
the write benchmark, we repeatedly performed a set
operation on one property of a JavaScript object in a
loop. We then measured the slowdown incurred by the
access control checks both with the inline cache enabled
and with the inline cache disabled (see Figure 5). With
the inline cache enabled, we observed a —0.08% slow-
down (average of 50 runs, +0.22%, 95% confidence)
on the read benchmark and a 0.55% slowdown (aver-
age of 50 runs, +0.74%, 95% confidence) on the write
benchmark. By contrast, with the inline cache disabled,
we observed a 9.41% slowdown (average of 50 runs,
+1.11%, 95% confidence) on the read benchmark and
a 10.25% slowdown (average of 50 runs, +1.00%, 95%
confidence) on the write benchmark.

From these observations we conclude that browser
vendors can implement access control checks for ev-
ery get and set operation with a performance over-
head of less than 1-2%. To reap these security bene-
fits with minimal overhead, the JavaScript engine should
employ an inline cache to optimize repeated property
accesses, and the inline cache should group structurally
similar JavaScript objects only if those objects are from
the same security origin.

6 Related Work

The operating system literature has a rich history
of work on access control and object-capability sys-
tems [13, 21, 23, 8]. In this section, we focus on com-
paring our work to related work on access control and
object-capability systems in Web browsers.

FBJS, Caja, and ADsafe. Facebook, Yahoo!, and
Google have developed JavaScript subsets, called
FBJS [5], ADsafe [3], and Caja [16], respectively,
that enforce an object-capability discipline by remov-
ing problematic JavaScript features (such as prototypes)
and DOM APIs (such as innerHTML). These projects
take the opposite approach from this paper: they extend
the JavaScript engine’s object-capability security model
to the DOM instead of extending the DOM’s access
control security model to the JavaScript engine. These
projects choose this alternative design point for two rea-
sons: (1) the projects target new social networking gad-
gets and advertisements that are free from compatibil-
ity constraints and (2) these projects are unable to al-
ter legacy browsers because they must work in existing

browsers. We face the opposite constraints: we cannot
alter legacy content but we can change the browser. For
these reasons, we recommend the opposite design point.

Opus Palladianum. The Opus Palladianum (OP) Web
browser [6] isolates security origins into separate sand-
boxed components. This component-based browser
architecture makes it easier to reason about cross-
origin JavaScript capability leaks because these capa-
bility leaks must occur between browser components
instead of within a single JavaScript heap. We can
view the sandbox as a coarse-grained reference mon-
itor. Unfortunately, the sandbox alone is too coarse-
grained to implement standard browser features such
as postMessage. To support these features, the
OP browser must allow inter-component references, but
without a public implementation, we are unable to eval-
uate whether these inter-component references give rise
to cross-origin JavaScript capability leaks.

Script Accenting. Script accenting [2] is a technique
for adding defense-in-depth to the browser’s enforce-
ment of the same-origin policy. To mitigate mistaken
script execution, the browser encrypts script source code
with a key specific to the security origin of the script.
Whenever the browser attempts to run a script in a secu-
rity origin, the browser first decrypts the script with the
security origin’s key. If decryption fails, likely because
of a vulnerability, the browser refuses to execute the
script. Script accenting similarly encrypts the names of
JavaScript properties ostensibly preventing a script from
manipulating properties of objects from another origin.
Unfortunately, this approach is not expressive enough to
represent the same-origin policy (e.g., this design does
not support document .domain). In addition, script
accenting requires XOR encryption to achieve sufficient
performance, but XOR encryption lacks the integrity
protection required to make the scheme secure.

Cross-Origin Wrappers. Firefox 3 uses cross-origin
wrappers [20] to mitigate security vulnerabilities caused
by cross-origin JavaScript capability leaks. Instead of
exposing JavaScript objects directly to foreign security
origins, Firefox exposes a “wrapper” object that me-
diates access to the wrapped object with a reference
monitor. Implementing cross-origin wrappers correctly
is significantly more complex than implementing ac-
cess control correctly because the cross-origin wrappers
must wrap and unwrap objects at the appropriate times
in addition to implementing all the same access con-
trol checks. Our access control design can be viewed
as a high-performance technique for reducing this com-
plexity (and the attendant bugs) by adding the reference
monitor to every object.

7 Conclusions

In this paper, we identify a class of vulnerabilities, cross-
origin JavaScript capability leaks, that arise when the
browser leaks a JavaScript pointer from one security
origin to another. These vulnerabilities undermine the
same-origin policy and prevent Web sites from secur-
ing themselves against Web attackers. We present an
algorithm for detecting cross-origin JavaScript capabil-
ity leaks by monitoring the “points-to” relation between
JavaScript objects in the JavaScript heap. We imple-
ment our detection algorithm in WebKit and use it to
find new cross-origin JavaScript capability leaks by run-
ning the WebKit regression test suite in our instrumented
browser. Having discovered these leaked pointers, we
turn our attention to exploiting these vulnerabilities. We
construct exploits to illustrate the vulnerabilities and find
that the root cause of the these vulnerabilities is the
mismatch in security models between the DOM, which
uses access control, and the JavaScript engine, which
uses object-capabilities. Instead of patching each leak,
we recommend that browser vendors repair the under-
lying architectural issue by implementing access con-
trol checks throughout the JavaScript engine. Although
a straight-forward implementation that performed these
checks for every access would have a prohibitive over-
head, we demonstrate that a JavaScript engine optimiza-
tion, the inline cache, reduces this overhead to 1-2%.

Acknowledgements. We thank Chris Karloff, Oliver
Hunt, Collin Jackson, John C. Mitchell, Rachel Parke-
Houben, and Sam Weinig for their helpful suggestions
and feedback. This material is based upon work par-
tially supported by the National Science Foundation un-
der Grants No. 0311808, No. 0448452, No. 0627511,
and CCF-0424422, and by the Air Force Office of Scien-
tific Research under MURI Grant No. 22178970-4170.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
Air Force Office of Scientific Research, or the National
Science Foundation.

References

[1] Adam Barth, Collin Jackson, and John C. Mitchell.
Securing frame communication in browsers. In
Proceedings of the 17th USENIX Security Sympo-
sium, 2008.

[2] Shuo Chen, David Ross, and Yi-Min Wang. An
analysis of browser domain-isolation bugs and a
light-weight transparent defense mechanism. In
CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security, pages
2-11, New York, NY, USA, 2007. ACM.

[3] Douglas Crockford. ADsafe.

[4] Douglas Crockford. ADsafe DOM API.
[5] Facebook. Facebook Markup Language (FBML).

[6] Chris Grier, Shuo Tang, and Samuel T. King. Se-
cure web browsing with the OP web browser. In
IEEE Symposium on Security and Privacy, 2008.

[7] Jeremiah Grossman. Clickjacking: Web pages can
see and hear you, October 2008.

[8] Norm Hardy. The keykos architecture. Operating
Systems Review, 1985.

[9] Norm Hardy. The confused deputy: (or why capa-
bilities might have been invented). SIGOPS Oper.
Syst. Rev., 22(4):36-38, 1988.

[10] Ian Hickson et al. HTML 5 Working Draft.

[11] Collin Jackson and Helen J. Wang. Sub-
space: Secure cross-domain communication for
web mashups. In Proceedings of the 16th Interna-
tional World Wide Web Conference. (WWW), 2007.

[12] Peter-Paul Koch. Frame busting, 2004.
http://www.quirksmode.org/js/
framebust .html.

[13] Butler Lampson. Protection and access control in
operating systems. Operating Systems: Infotech
State of the Art Report, 14:309-326, 1972.

[14] Sergio Maffeis, John C. Mitchell, and Ankur Taly.
An operational semantics for JavaScript. In Pro-
ceedings of the 6th Asian Programming Language
Symposium (APLAS), December 2008.

[15] Mark Miller. A theory of taming.
[16] Mark Miller. Caja, 2007.
[17] Mitre. CVE-2008-4058.
[18] Mitre. CVE-2008-4059.
[19] Mitre. CVE-2008-5512.
[

20] Mozilla. XPConnect wrappers.
http://developer.mozilla.org/en/
docs/XPConnect_wrappers.

[21] Sape J. Mullender, Guido van Rossum, Andrew
Tannenbaum, Robbert van Renesse, and Hans van
Staveren. Amoeba: A distributed operating system
for the 1990s. Computer, 23(5):44-53, 1990.

[22] Prototype JavaScript framework.
http://www.prototypejs.org/.

[23] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. Eros: a fast capability system. In

17th ACM Symposium on Operating System Prin-
ciples, New York, NY, USA, 1999. ACM.

[24] Maciej Stachowiak. Introducing SquirrelFish Ex-
treme, 2008.

[25] Kris Zyp. CrossSafe.

