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Abstract

The channel capacity of a program is a quantitative mea-

sure of the amount of control that the inputs to a program

have over its outputs. Because it corresponds to worst-case

assumptions about the probability distribution over those in-

puts, it is particularly appropriate for security applications

where the inputs are under the control of an adversary. We

introduce a family of complementary techniques for mea-

suring channel capacity automatically using a decision pro-

cedure (SAT or #SAT solver), which give either exact or nar-

row probabilistic bounds.

We then apply these techniques to the problem of analyz-

ing false positives produced by dynamic taint analysis used

to detect control-flow hijacking in commodity software. Dy-

namic taint analysis is based on the principle that an attacker

should not be able to control values such as function pointers

and return addresses, but it uses a simple binary approxima-

tion of control that commonly leads to both false positive and

false negative errors. Based on channel capacity, we propose

a more refined quantitative measure of influence, which can

effectively distinguish between true attacks and false pos-

itives. We use a practical implementation of our influence

measuring techniques, integrated with a dynamic taint anal-

ysis operating on x86 binaries, to classify tainting warnings

produced by vulnerable network servers, such as those at-

tacked by the Blaster and SQL Slammer worms. Influence

measurement correctly distinguishes real attacks from taint-

ing false positives, a task that would otherwise need to be

done manually.

Categories and Subject Descriptors D.2.4 [Software/Pro-

gram Verification]; D.2.5 [Testing and Debugging]; E.4

[Coding and Information Theory]

General Terms Languages, Measurement, Security, Veri-

fication
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1. Introduction

Dynamic taint analysis is a practical and popular [11, 30, 10,

25, 26] technique for detecting violations of data integrity

in computer systems, including commercial software that is

only available in binary form. Tainting implements a sim-

ple Biba “low water-mark” integrity model [2] with two lev-

els: tainted data (untrusted, low integrity) should not influ-

ence sensitive (trusted, high integrity) operations. A binary-

level tainting policy will immediately catch the broad class

of overwrite attacks in which a malicious input causes an

unexpected memory write with a value under the attacker’s

control (typically leading to control-flow hijacking and the

execution of the attacker’s injected code) [25].

Despite these attractive features, dynamic taint analy-

sis suffers from significant sources of both false positive

and false negative errors. Dynamic taint analysis suffers

from false positives when programs properly sanitize ini-

tially untrusted data, since such sanitization removes the

danger caused by untrusted data values without removing

their taint. Conversely, dynamic taint analysis suffers false

negatives when it fails to track implicit flows such as load-

address dependencies and effects mediated by control flow.

These errors can be reduced by special case rules and manual

program annotations, but these increase development cost

and introduce more sources of error. These weaknesses stem

from the fact that taint is a binary attribute.

We propose the construct of influence to capture in more

detail the control that input variables have over an output

variable. Influence is based on the information-theory con-

cept of channel capacity. Channel capacity is a quantitative

information-flow measure that represents a maximum flow

over all possible probability distributions of input. This mea-

sure is particularly appropriate in an integrity context, since

the untrusted input is assumed to be under the control of an

attacker, so that its distribution is not known a priori. We

show that channel capacity naturally generalizes dynamic

taint analysis, and gives accurate results in the cases where

dynamic taint analysis is inaccurate.

To evaluate this measure, we present a practical approach

for measuring influence, and implement it. Our approach is
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a family of strategies that complement each other, giving re-

sults that are either exact or have narrow error bounds. Our

tool uses these strategies to measuring influence in commod-

ity binary software. (By comparison, previous scalable ap-

proaches provide soundness without any guarantee of preci-

sion, and previous precise approaches do not scale to off-the-

shelf software.) We then apply this tool to the post-analysis

of dynamic taint analysis alerts. Our tool’s results confirm

some alerts as true positives, and show that others are false

positives due to sanitized data.

In summary, this paper makes the following contribu-

tions:

• We give a family of complementary techniques for mea-

suring channel capacity with a decision procedure that

give precise results for both small and large capacities.

• We show how to implement channel capacity measure-

ment in a tool that runs without source code or human

annotations on off-the-shelf x86 binaries.

• We apply channel capacity measurement to the problem

of false positives in dynamic taint analysis, showing that

it accurately distinguishes real attacks from false posi-

tives.

2. Background

We begin by reviewing two concepts from information-flow

analysis that will be linked in this work: the channel capacity

of a program, and the technique of dynamic taint analysis.

2.1 Channel capacity

In information theory, the capacity of a possibly noisy chan-

nel is the maximum amount of information it can transmit.

In quantitative information-flow analysis, the same concept

is applied to a computer program, for instance to measure the

flow from a program input to a program output. If the proba-

bility distribution of the inputs to a program is known, a pro-

gram output can be considered as a random variable whose

distribution determines the amount of information about the

input it conveys. Specifically, the entropy of a random vari-

able X , H(X), is given by
∑

p(X = x) log2
1

p(X=x) . If the

probability distribution over the inputs is unknown, the in-

formation flow can be safely approximated by taking the

distribution that maximizes the output entropy; this is the

channel capacity [13]. It is not hard to see that the entropy is

maximized when each output is equally probable.

Channel capacity is a good match for the adversarial sit-

uations that occur in security, in which the job of a defender

is to minimize the damage that an attacker could do, given

that the attacker tries to do maximum damage. It would usu-

ally be unsafe to assume that the attacker’s inputs are chosen

from a fixed (for instance, uniform) distribution, since the

attacker might use knowledge of the program to choose only

the most dangerous values. Instead, channel capacity repre-

sents an upper bound that applies regardless of the strategy

an attacker uses.

2.2 Dynamic taint analysis

Dynamic taint analysis is a flexible technique that can be

applied to programs at the source or binary level to track the

movement of security-sensitive data. Though it is sometimes

used to track secret data, we concentrate on the more com-

mon case of an integrity policy that tracks untrusted data and

ensures it does not influence security-sensitive operations.

For instance, dynamic taint analysis can be used to automat-

ically detect code injection attacks against servers by tainting

untrusted network inputs and preventing tainted instructions

from being executed. This overview is brief; interested read-

ers may refer to an extensive literature [11, 30, 10, 25, 26]

for more implementation details and practical evaluation.

The principle of dynamic taint analysis is to associate

some extra metadata with each value a program operates

on (for instance, each variable in a source code analysis

or each register and memory location in a binary analysis).

This tainting information records that a particular value is

untrusted, and optionally other information like the original

source of the untrusted information. The key feature of this

taint attribute is that it propagates to later values that are

computed based on a tainted value: for instance, a copy of

a tainted value is tainted. An operation, say addition, that

takes both tainted and untainted values as input produces a

tainted value at its result. Then, to check whether a data value

used in a sensitive operation (like a control flow transfer)

is trustworthy, a dynamic taint analysis must simply check

whether it is tainted.

Limitations of dynamic taint analysis. Unfortunately, dy-

namic taint analysis suffers from two generic kinds of inac-

curacies. First, because taint propagates through any direct

flow, a data value may still be tainted after a program has

verified that it is in fact safe. Unless such a value is explicitly

untainted (say via a manually written annotation, impracti-

cal for the analysis of off-the-shelf binaries we target), it can

produce a false positive report. Conversely, however, taint-

ing generally does not propagate via more indirect kinds of

program relationships like the addresses used for memory

accesses and the previous control flow decisions that caused

execution to reach a certain point. However, these indirect

relationships, collectively called implicit flows, can still have

an effect on computations performed later in a program. If a

value fails to be tainted because it was only indirectly af-

fected by the untrusted input, a false negative (missing re-

port) is the result.

The limitations of dynamic taint analysis stem from the

fact that tainting is only a binary attribute: a value is either

tainted or it is not. To more precisely distinguish safe from

unsafe programs, we would like tainting to be a matter of

degree, and to know what values an attacker might produce.

To address these limitations, we introduce a more graduated
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attribute of influence, which is an application of channel

capacity.

3. Influence for accurate dynamic taint

analysis

In order to improve on the results of dynamic taint analysis,

we introduce influence as a more finely gradated attribute for

a data value, based on channel capacity. This section first in-

troduces influence in general, then shows how it applies in

situations where simple tainting is inaccurate. We then dis-

cuss possible approaches for building a quantitative integrity

policy based on influence.

3.1 Influence

To measure the damage that an attacker can do to the control

flow integrity of a program (as a refinement of dynamic taint

analysis), we specialize channel capacity to what we call

quantitative influence, or just “influence.”

In what follows, we restrict ourselves to programs that

are deterministic from the perspective of the attacker, and

we assume that any inputs not under the attacker’s control

are fixed for the purposes of analysis. In this case, both the

influence and the channel capacity are given by the logarithm

of the number of possible program outputs.

In more detail, we consider a deterministic computation

P(I, Iaux) → V. The inputs to the computation are parti-

tioned into I and Iaux, where I are the possibly malicious

inputs we are interested in (e.g. data read from the network),

and Iaux is the set of all other inputs to the computation (e.g.

data read from a configuration file). Non-deterministic com-

putations could be modeled as taking a random variable as

part of the auxiliary input Iaux, but we concentrate on de-

terministic ones. Moreover, we fix the effect of the auxiliary

input entirely by taking a particular value Iaux = c.

Definition The feasible value set of V is the set of all values

that could be assigned to V by the computation P .

Definition The (quantitative) influence I of I over V is the

log2 of the size of the feasible value set.

Note that in general, the influence of I over V is a more ac-

curate characterization than the number of bits that I can af-

fect in V. For example, if we have the program “if (p(I))

V = 0x0 else V = 0xffffffff”, for any predicate p,

the number of bits of V affected by I is 32 bits—the same as

if I had been directly assigned to V. However, the influence

from I to V is only 1 bit.

For the application we consider, the value of the influ-

ence will be the same as the channel capacity, but that equal-

ity may not hold in more complicated situations with non-

determinism or other inputs that are neither fixed nor com-

pletely under the attacker’s control. We also find that the

term “influence” more accurately conveys the intuition that

we are interested in measuring the degree of control that an

attacker has over the program’s execution.

3.2 Influence in action

In this section we describe several program structures that

are known to be problematic for dynamic taint analysis tools.

For each program structure we explain why dynamic taint

analysis does not accurately characterize the influence that I

has over V, while the influence measurement does. We also

discuss when each problem occurs in real-world programs.

In each example, we examine the influence of the un-

trusted message I over the final value of the variable V. For

simplicity, I and V are 8 bit unsigned integers, and the ex-

amples do not take auxiliary inputs Iaux.

We start with examples that cause false positives from

dynamic taint analysis, then discuss ones that cause false

negatives.

3.2.1 False positive examples

We first examine sanity checks implemented by conditional

execution: cases where V is only derived from I after I has

been found to be within some acceptable range.

Example 1 Sanity check

if I < 16 then

V:= base + I

else

V:= base

end if

In Example 1, dynamic taint analysis tools will find that

V is tainted by I in cases where the sanity check passes. This

is misleading, because in fact I has very limited influence

over V due to the sanity check.

In contrast, the feasible value set is [base, base + 15], and

the quantitative influence is 4 bits. Both of these measures

provide a more accurate characterization of the influence that

I has over V.

We have observed such structures in real programs.

In particular, we have verified that GCC compiles some

switch statements by performing a check on the switch

variable, and then using it to calculate an address that is

used in an indirect jump. While the sanity check makes this

structure safe, dynamic taint analysis tools detect this as a

security violation when the switch variable is tainted.

Example 2 Arithmetic restriction: mask

V := base + (I & 0x0f)

A similar problem occurs when arithmetic is used to re-

strict the range of a calculation. Example 2 gives I the same

control over V as in Example 1, but instead of restricting

what inputs may be used via control-flow, Example 2 instead

simply masks off the bits that could cause V to take on an un-

desired value. It is possible that some switch structures may

be compiled in this way.
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As in the previous example, dynamic taint analysis tools

measure the influence as tainted, while the feasible value set

is [base, base + 15], and the quantitative influence is 4 bits.

All dynamic taint analysis tools that we are aware of

would consider V to be tainted in this case, which could lead

to false positives.

3.2.2 False negative examples

There are several ways in which data from an untrusted

message can be used to select other data. One of the most

ubiquitous ways is via a table lookup.

Example 3 Table lookup

V:= table[I]

In Example 3, I is used as an index into a table. Dynamic

taint analysis tools that we are aware of optionally measure

V as tainted in this case, using a rule that data loaded via a

tainted pointer is also tainted. Disabling this rule can lead

to false negatives in cases such as when untrusted data is

translated from one character-set to another via a lookup

table, which we have observed in functions such as toupper

and tolower. Conversely, enabling this rule without some

way of accounting for data sanitization can lead to false

positives when untrusted data is used to select from a table

of pointers. We investigate a false positive of this nature in

Samba in Section 5.3.

The quantitative influence in this example is the logarithm

of the number of unique values in the table.

Another way that tainted data can be used to select un-

tainted data is via control flow.

Example 4 Implicit flow via branching

if I == 0 then

V:= 0

else if I == 1 then

...

else if I == 255 then

V:= 255

end if

In Example 4, the final value of V is equal to I (assuming

I is 8 bits), yet there was never a direct assignment from I

to V.

The influence of I over V in this example is 8 bits, since

V can take on 256 unique values.

Some dynamic taint analysis tools do not track implicit

flows, and would consider V to be untainted, which could

lead to false negatives. Some dynamic taint analysis tools

that are used for confidentiality rather than integrity [22, 16]

do track implicit flows. Note that dynamic taint analyses for

data integrity do not track implicit flows not only because

of the additional complexity required to do so, but because

most implicit flows yield relatively little influence.

These code structures can be used to translate input from

one format to another. For instance, keyboard input is propa-

gated via implicit flows in the Windows keyboard driver [6].

3.3 Influence-based integrity policies

Dynamic taint analysis may be used, for instance, to im-

plement a policy of the form “data derived from the net-

work may not be loaded into the program counter” to prevent

control-flow hijacking by remote attackers. Using quantita-

tive influence, a corresponding policy would be “data influ-

enced x or more bits by the network may not be loaded into

the program counter”. Our primary contribution is a mea-

surement technique that could be used with an arbitrary pol-

icy, but here we briefly discuss the policies in which such

measurements can be used to detect overwrite attacks.

In an overwrite attack, a maliciously crafted input causes

a memory write operation to overwrite an unintended des-

tination with a value controlled by the attacker. The more

detailed information produced by our influence analysis can

catch overwrite attacks by highlighting two features: the

amount of influence the attacker has is high, and the specific

values he can produce are unsafe.

Thresholds for influence. In a control-flow hijacking

overwrite attack, the unintended destination is one that is

later loaded into the program counter, or used to derive a

value that is later loaded into the program counter. Note that

by our definition, an overwrite attack results in a write to an

unintended destination, of a value substantially controlled by

the attacker (typically part of the attacker’s input). In such

cases, the attacker’s influence over a 32 bit value loaded into

the program counter will be nearly 32 bits. It may be not

quite 32 bits due to constraints imposed by the protocol; e.g.

inputs with white-space or null characters may be rejected

by the program.

In more general situations, there is a set of program

counter values that could allow an attack (e.g., pointing to

an area that could contain attack code); an attack is possible

if this set intersects the feasible value set. The larger the fea-

sible value set, the more likely it is that this intersection will

be nonempty. However, a small feasible value set is not on

its own a guarantee that no attack is possible, for instance if

an attacker is able to fill most of a program’s memory with

copies of malicious code.

Thus, we expect that in general the influence of an un-

trusted input over the program counter will be nearly 32 bits

in the case of a control-flow hijacking attack, and nearly 0

bits otherwise, with cases in between being relatively rare.

In our experiments in Sections 5.2 and 5.3, we found that the

largest legitimate influence was 4.17 bits, while the smallest

attack influence was much larger, about 26 bits. Thus there

is wide scope for a policy to distinguish attacks from false

positives.

Unsafe feasible values. In the influence measurement tool

that we developed, we explicitly identify values that are in
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the feasible value set. In cases where we have information

about what values of V are acceptable, we can use this in-

formation directly to implement policies such as “untrusted

inputs should not be able to cause the program counter to

take on illegal values”. For example, when V is a value that

is loaded into the program counter, values that would result

in a segmentation fault, such as zero, can be assumed to be

unacceptable. In some cases more refined information about

safe and unsafe values may be available; for instance, we

might check for a library code address that could be used for

a return-into-libc attack, or an area of memory that is known

to contain network input.

4. Techniques for measuring quantitative

influence

We have designed an approach for measuring quantitative

influence (channel capacity), and implemented it in a tool

for binary programs. The approach is based on an accurate

model of program behavior, which allows it to obtain precise

quantitative results. Unlike type-system or static-analysis

approaches, which use abstraction and generally guarantee

a one-sided soundness property but not precision, our tech-

nique gives results that are exact or have a tight probabilistic

error bound. The high level idea of our approach is to build

a sound model of the program in a first-order logic. We then

use a decision procedure to reason about the feasible value

set, which can then in turn be used to reason about the quan-

titative influence.

The model we build is a predicate over I, Iaux, and V.

Because the model is sound, for any assignment to I, Iaux,

and V for which the predicate is satisfied, the program is

guaranteed to compute the corresponding value for V when

given those values for I and Iaux.

For small, loop-free programs, the model is also com-

plete. That is, for any assignment to I, Iaux, and V such

that the program computes V when given I and Iaux, the

predicate is guaranteed to be satisfied. For programs that are

too large or complex to model completely, including most

real-world programs, we restrict the model to a particular

execution path, as described in Section 4.2.2.

We employ several query strategies using a decision pro-

cedure to reason about the set of values of V for which the

predicate can be satisfied. In cases where the model is com-

plete, this is the feasible value set, and the quantitative influ-

ence is the base-2 logarithm of the size of that set. In cases

where the model is not complete, this is a subset of the feasi-

ble value set, and a lower bound of the quantitative influence

is the log of the size of that set.

We now discuss the details of the design of our technique

for quantitative influence measurement, and its implementa-

tion in a practical tool.

4.1 Overview of solution

As input, our technique takes: (1) a loop-free binary program

(or an execution trace rewritten as a loop-free program as

described in Section 4.2.2); (2) a variable V, specified as

a storage location (e.g. CPU register or memory location)

and program point (instruction pointer); (3) a description of

which storage locations or system calls correspond to the

untrusted input I over which to measure influence; and (4)

concrete values c for auxiliary inputs Iaux.

As output, it produces: (1) what we can soundly and

probabilistically determine about the feasible value set; (2)

sound low and high bounds of the quantitative influence; and

(3) a probabilistic estimate of the quantitative influence.

At a high level, our approach is as follows:

• Step 1: We convert the program to a logic predicate by

disassembling it, converting to an intermediate represen-

tation, and then calculating the weakest precondition [14]

over the program. The result is a model of the program in

quantifier-free first-order logic. For large programs, we

perform this conversion for a single path, but in any case

no abstraction is performed: the model is bit-precise.

• Step 2: We pose a series of queries to a decision proce-

dure to learn about the feasible value set.

• Step 3: We calculate the quantitative influence from the

feasible value set.

We now describe these steps in more detail.

4.2 Step 1: Program to predicate

We generate a predicate that accurately models the program,

and which a decision procedure can reason about. At a high

level, we first convert the IA-32 binary program to an in-

termediate representation (IR) with a smaller instruction set,

which makes all side-effects (such as setting and checking

condition flags) explicit. We then compute the weakest pre-

condition [14] over the program. The details of these tech-

niques are described in our previous work [3, 29, 24, 4].

4.2.1 Static program conversion

For relatively small programs, up to a few functions, our

technique can accurately compute the complete influence of

an input variable on an output variable. We statically extract

all the instructions in a program from a 32-bit ELF binary,

and convert any initialized data areas (such as tables) into

explicit initialization statements. Our tool can automatically

inline function calls and unroll loops up to a supplied bound

to obtain a loop-free program. We used this static conversion

for the illustrative examples of Section 5.1.

4.2.2 Converting a single path

For larger programs, complete (all-paths) influence becomes

impractical to compute precisely, and often is not even

meaningful. (For instance, if the set of possible program

outputs is unbounded, the channel capacity is infinite.) So
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we apply our approach to large programs by computing the

influence that is possible along a single control-flow path.

In this section, we first motivate this single-path approach in

more detail, then describe how it is implemented.

Uses for a single path. The feasible value set with respect

to executions on a single path is a subset of the feasible value

set with respect to the entire space of program executions.

Similarly, the quantitative influence over a path is less than

or equal to the quantitative influence over the entire space.

Hence, the influence with respect to a path can be interpreted

as a sound lower bound of the whole-program influence.

There are two important ways in which the influence

over a single path may be significantly less than the total

influence. One is that there may be significant flows on a

path that was not analyzed, such as in the program “if (I

< 1000) V = 0; else V = I”. The second possible situation

is that a program may have many paths, but the influence

on every path individually is small; for instance, this is the

case in Example 4. Despite the potential for underestimating

influence due to these issues, we show in Section 5.2 that

for real-world exploits the calculated influence is sufficiently

high to be confident that they are indeed exploits.

Measurement on a single path. To measure influence

along a single, observed, path we obtain an execution trace

from the TEMU dynamic taint analysis tool [3, 16, 34], and

restrict our model to the execution path followed in that

trace.

The execution trace contains the address of each exe-

cuted instruction, the instruction itself, and the values of

each operand. As in our previous work [24, 4], we convert

this execution trace to a straight-line program that accurately

models the corresponding execution path in the original pro-

gram. We add guards to ensure that we reject inputs that

would follow unmodelled execution paths.

The influence calculated in this modified program corre-

sponds to the influence from inputs that would have followed

the same execution path and used the same memory-write

destinations as logged in the trace. The feasible value set is

thus a subset of the feasible value set for the entire program,

and the quantitative influence is a lower bound. While this

could result in false negatives when classifying exploits, we

did not find this to be the case in our evaluation of real-world

exploits in Section 5.2.

4.3 Step 2: Predicate to feasible value set

Given the predicate that specifies the relationship between I

and V, our tool calculates the influence by a series of queries

about the model to a decision procedure. This is similar to

a game of “Twenty Questions,” but in addition to yes or

no answers, the decision procedure can give a satisfying

assignment if our query involves free variables. The goal is

to obtain enough information to get an accurate influence

bound without requiring too many queries (for instance,

asking separately about the feasibility of each output point

would be much too slow).

For illustration, we visualize the feasible value set as

a number line representing the potential range of V. For

instance, in our experiments, V is a 32-bit value, so this

number line goes from 0 to (232−1). Initially, the feasibility

of the entire number line is unknown. As we pose queries

to the decision procedure, we learn points and ranges on the

number line that are feasible or infeasible. Feasible points

are values that V can take on, for some value of I. Infeasible

points are values that V cannot take on, no matter what value

of I is chosen.

As a final step, we also perform sampling over any re-

maining unknown space in the value set, giving us a proba-

bilistic estimate of what fraction of that space is feasible. As

an alternative probabilistic technique we also use an approx-

imate model counting approach.

The decision procedure we use is STP [17]. STP takes as

input a predicate in a quantifier-free first order logic over bit-

vectors (which can represent machine integers) and arrays,

and outputs whether or not that predicate is satisfiable. If it

is satisfiable, it also outputs an assignment to the variables

in the predicate that allows the predicate to be satisfied.

As building blocks, we use the following basic query

strategies:

• Point feasibility query: Check whether a particular value

is feasible or not.

• Range feasibility query: For some range, check whether

a feasible value exists in that range or not. If so, the

decision procedure gives us an example feasible value.

If not, we learn that the entire range is infeasible.

• Exhaust-up-to-c: Repeat the range feasibility query up

to some number of times c, or until there are no more

feasible values.

• Density sampling: Choose points at random within some

range, and use point feasibility queries to determine

whether or not they are feasible. Use this to estimate

the fraction of that range that is feasible.

• Probabilistic model counting: Using the “XOR streamlin-

ing” approximation to #SAT [18], we add k random par-

ity constraints to the model, and check whether the aug-

mented model is still feasible. Each random constraint re-

duces the number of feasible outputs by a factor of 2, so

if the augmented model has at least one feasible output,

the original probably has at least 2k.

These techniques have complementary strengths. Ex-

haustive output querying gives exact results when the num-

ber of feasible outputs is small, and negative range results

provide a sound upper bound that is tight when the feasible

outputs are clustered. Conversely, density sampling gives a

probabilistic estimate that is accurate to within a fraction of

a bit when a large fraction of the outputs are feasible. Proba-
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bilistic #SAT is relatively expensive, but its accuracy (within

1 or 2 bits in our experiments) is sufficient for many appli-

cations, and it is equally applicable whatever the number of

feasible outputs.

In our experiments, we use the following combined query

strategy:

• Use a range feasibility query to get any feasible value.

(There must be at least one, barring implementation er-

rors).

• Use point feasibility queries to check whether the small-

est (0) and largest (232 − 1) values are feasible.

• If either of those were infeasible, use a series of range

feasibility queries as a binary search to “widen” the in-

feasible point to the next feasible point. After this, we

have established the lowest and highest feasible values.

• Repeatedly query remaining unknown ranges to either

mark them as infeasible, or divide them at a feasible

point. We repeat this step until the space is exhausted,

or we have found c (64 in our implementation) more

feasible points. Thus every bound of up to log2(64) = 6
bits our tool computes is exact.

• Perform density sampling over any remaining unknown

space, and compute a 95% confidence interval using a

likelihood ratio technique [15].

As we show in our evaluation, this query strategy allows

us to learn quite a bit about the feasible value set in a

reasonable amount of time for real-world programs.

In examples where exhaust-up-to-c does not already give

an exact bound, we also separately test probabilistic #SAT,

using a simple iterative approximation algorithm. Our tool

keeps a running estimate of the influence, at each iteration

does an XOR-streamlining experiment based on that esti-

mate, and increases or decreases the estimate based on the

results.

4.4 Step 3: Feasible value set to quantitative influence

During the query process, our tool maintains its knowledge

about the feasible value set in the form of an exhaustive list

of ranges, each of which is either completely feasible, com-

pletely infeasible, or unknown. It computes the influence

by summing the total number of feasible points and then

taking the logarithm. Definitely feasible ranges are always

counted, and definitely infeasible ranges are never counted.

For a lower bound, unknown regions are counted as if they

were infeasible. For an upper bound, unknown regions are

counted as if they were feasible. For a probabilistic bound,

unknown regions are counted in proportion to the probabilis-

tically sampled density.

5. Evaluation

We next demonstrate our influence measurement techniques

on a number of examples. Our experiments show that feasi-

i n t i m p l i c i t ( i n t i n p u t )

{
i n t o u t p u t = 0 ;

i f ( i n p u t == 0) o u t p u t = 0 ;

e l s e i f ( i n p u t == 1) o u t p u t = 1 ;

/∗ . . . ∗ /

e l s e i f ( i n p u t == 6) o u t p u t = 6 ;

e l s e o u t p u t = 0 ;

r e t u r n o u t p u t ;

}

Figure 1. Implicit flow

i n t p o p cn t ( u n s i g n e d i n t i ) {
i = ( i & 0 x55555555 ) + ( ( i >> 1) & 0 x55555555 ) ;

i = ( i & 0 x33333333 ) + ( ( i >> 2) & 0 x33333333 ) ;

i = ( i & 0 x 0 f 0 f 0 f 0 f ) + ( ( i >> 4) & 0 x 0 f 0 f 0 f 0 f ) ;

i = ( i & 0 x 0 0 f f 0 0 f f ) + ( ( i >> 8) & 0 x 0 0 f f 0 0 f f ) ;

r e t u r n ( i + ( i >> 1 6 ) ) & 0 x f f f f ;

}

Figure 2. Population count

u n s i g n e d i n t mix copy ( u n s i g n e d i n t x ) {
u n s i g n e d y = ( ( x >> 16) ˆ x ) & 0 x f f f ;

r e t u r n y | ( y << 1 6 ) ;

}

Figure 3. Mix and duplicate

ble value set and quantitative influence are useful measures:

they are more accurate and give a better understanding than

dynamic taint analysis using a binary taint attribute. Our ex-

periments also show that our techniques to measure quanti-

tative influence provide useful bounds and estimates of these

measures in a reasonable amount of time.

In Section 5.1, we measure the feasible value set and

quantitative influence for several small, illustrative exam-

ples. We use these examples to illustrate what the influence

measure means in real programs, and to develop an under-

standing of the output that our tool produces.

In Sections 5.2 and 5.3, we use our tool to evaluate alarms

generated by the TEMU dynamic taint analysis tool in real-

world programs. Our results show that we are able to rea-

son about influence in real-world programs well enough to

soundly confirm alarms as true positives (Section 5.2), and to

identify other alarms as likely false positives (Section 5.3).

5.1 Illustrative examples

Table 1 shows our tool’s results on several illustrative ex-

amples. The purpose of these experiments is primarily to

demonstrate the feasible value set and quantitative influence

measurements for easy-to-understand programs. These ex-

amples also show that while we do not obtain the exact fea-

sible value set and quantitative influence measures when the
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Program Feasible Quant Influence (bits)

Value Set Low Bnd High Bnd Sample #SAT

Copy (v = i) 6.04 32.0 [31.8, 32.0] 32.0

Masked copy (v = i & 0x0f) 4.00 4.00 N/A N/A

Checked copy (Example 1) 4.00 4.00 N/A N/A

Divide by 2 (v = i / 2) 6.58 31.0 [30.8, 31.0] 31.7

Multiply by 2 (v = i * 2) 6.58 32.0 [30.4, 31.6] 31.5

Implicit flow (Figure 1) 2.81 2.81 N/A N/A

Population count (Figure 2) 5.04 5.04 N/A N/A

Mix and duplicate (Figure 3) 6.04 32.0 [0.0, 28.6] 15.8

Table 1. Influence measures for example programs. The feasible value sets are summarized graphically as show in the legend

at right.

influence is large, our tool still presents enough information

about these measures to be useful.

Each program was written in C and compiled before be-

ing given to our tool. For each example, we use the function

parameter input as I, and the value returned via eax as V.

The influence is measured over the entire domain of 0 to

232 − 1. That is, we generate a model that is complete with

respect to the computation; it accounts for all possible exe-

cution paths.

For each program, we obtain information about the feasi-

ble value set and quantitative influence of I over V. We show

the feasible value set graphically. For the quantitative influ-

ence, we show the sound low and high bounds, and (when

the exact bounds do not already match) a probabilistic es-

timate based on sampling (as a confidence interval) or ap-

proximate #SAT. To show separately the performance of the

different techniques, the results in each column are indepen-

dent; our tool’s actual reported estimates are combination of

the different results as described in Section 4.4.

In the copy function, I is simply copied to V, and hence

I can cause V to take on any value from 0 to 232 − 1, giving

it 32 bits of influence over V.

In the masked copy (output = input & 0x0f) and

checked copy functions (Example 1), I is copied to V, but V

is restricted to values between 0 and 15. In the masked copy

function this is done by masking off all but the low 4 bits of

I, while in the checked copy function this is done by only

executing the copy when I is between 0 and 15. In both

cases, I has 4 bits of influence over V.

In the div and mult functions, V is set to I divided by two

(unsigned), or multiplied by two, respectively. This gives I

control over all but the most significant bit, or all but the

least significant bit, respectively. Hence, in either case, the

influence is 31 bits.

The example implicit is an implicit flow. There is no

direct assignment from I to V, but I is able to “choose”

between seven values for V, giving it log2 7 ≈ 2.8 bits of

influence over V.

The remaining two examples demonstrate characteristics

of a computation that present difficulty for some analysis

techniques. The population count example (Figure 2) counts

the number of bits in a word that are 1. Some outputs of

this function are much less frequent than others, so randomly

choosing inputs would be very unlikely to, for instance, find

the one input that causes the output 0. But because our ap-

proach samples the output space instead, it can easily find all

33 possible outputs. The mix and duplication example (Fig-

ure 3) combines the two halves of its input word with XOR,

and then duplicates these 16 bits in both the upper and lower

halves of its output, so its influence is 16 bits. But this influ-

ence is too large to be effectively measured exhaustively, too

small for effective sampling, and too uniformly distributed

for range queries, so only our probabilistic #SAT strategy

gives an accurate estimate.

In each case, our tool finds sound low and high bounds

of the quantitative influence. Recall from Section 4.3 that

to establish a lower bound of n, we must find 2n values

in the feasible value set, which requires 2n STP queries.

In these experiments, we establish a lower bound of up

to 6 bits; if we have not exhausted all feasible values at

that point, we perform sampling to establish a probabilistic

estimate. In each experiment where the influence is less

than 6 bits, we find the exact influence. In those where

the influence is greater than 6 bits, one of the probabilistic

estimates (sampling or #SAT) is correct within 0.2 bits. The

exhaustive and sampling measurements were obtained in 0.5

to 3.8 seconds, while the probabilistic #SAT measurement

was slightly slower, taking up to 30 seconds for 200 queries.

5.2 Confirms attacks

In the next set of experiments, we measure the feasible value

set and quantitative influence in several real-world vulnera-

ble programs. As described in Section 4.2.2, we scale our

techniques to real-world programs by using an execution

trace, and measuring influence over the inputs that would

follow exactly that execution path. The potential drawback

to this approach is that the influence over this path could

under-represent the influence over the whole space of exe-

cutions; e.g., I may be able to exert greater influence over V

when other possible execution paths are considered.

Therefore, these experiments are designed to evaluate

whether we are able to scale our techniques to real-world
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Program Time Feasible Quant Influence (bits) #SAT

(hrs) Value Set Low Bnd High Bnd Sample #SAT Time

RPC DCOM (Blaster vuln) 6.0 6.07 32.0 [31.8, 32.0] 30.4 2.7 hr

SQL Server (Slammer vuln) 0.23 6.36 30.9 [26.7, 28.3] 26.6 12 min

ATPhttpd 8.8 6.04 32.0 [31.8, 32.0] 31.0 4.5 hr

Table 2. Influence measures for known attacks in real-world programs.

i n t d o s w i t c h ( c h a r ∗ s r c )

{
i n t i =0 ;

s w i t c h ( s r c [ 0 ] ) {
c a s e ’ a ’ : i = 1 ; b r e a k ;

c a s e ’b ’ : i = 2 ; b r e a k ;

/∗ . . . ∗ /

c a s e ’ r ’ : i = 1 8 ; b r e a k ;

d e f a u l t : i = 1 9 ; b r e a k ;

}
r e t u r n i ;

}

Figure 4. Switch on input

programs using this trace-driven approach, and whether the

influence measured with respect to a single path is sufficient

to identify attacks.

In each experiment, TEMU detected that data tainted by a

network message had been loaded into the program counter.

We measure the influence of the network message, which

ranges from 376 bytes for SQL Server to 1822 bytes for RPC

DCOM, over the 32-bit program counter at the point where

the violation was detected. The experiments ran on a 3.0GHz

Core 2 Duo E8400 with 6MB of cache and 4GB of RAM.

(Though many of our query techniques could be parallelized,

our single-threaded prototype used only one core).

Our results are presented in Table 2. The measurements

took from 14 minutes to about 9 hours. In each of these

examples, the influence is measured sufficiently to identify

each of these as actual attacks. For a non-attack, we suspect

that it is rare for a network message to have more than a

few bits of influence over the program counter—even the

lower bound established in these measurements is enough to

strongly incriminate these examples as true positives. Likely

most accurate are the sampling and #SAT estimates, which

range from 26 to 32 bits, all very high. Finally, with some

knowledge of what values are valid, we can use the feasible

value set as further evidence. For example, in RPC DCOM

and ATPhttpd, the untrusted input is able to cause the return

address to take on the value 0x0, which is obviously invalid.

These results show that our measurement technique can

obtain useful influence measures on the order of hours.

These measures can be used to verify alarms generated by a

dynamic taint analysis tool as true positives.

5.3 Reveals over-tainting

The next question we sought to answer is whether our influ-

ence measurement tool can provide a better understanding of

how an untrusted input influences a variable in cases where

dynamic taint analysis has false positives; e.g., where sanity

checks restrict how much influence the untrusted input has

over the variable in question.

To answer this question, we examine several cases where

TEMU raises alarms for non-attack messages (false posi-

tives). As in the previous experiment, in each case we mea-

sure the influence of a network input, restricted to follow

the same execution path as our execution trace, over a 32-bit

variable. We summarize our results in Table 3.

The first experiment is from the Windows RPC DCOM

service. In the previous experiment where we analyzed an at-

tack against this service, we noticed that the esp register was

also being marked tainted. In our experience this is unusual,

and could potentially signify a vulnerability. However, us-

ing the influence measure, we see that the input actually has

very little control over the value of esp at the program point

we analyzed. Further manual analysis revealed that this is

caused by a stack allocated array, where the size of the array

is calculated from the message I, as in char a[f(I)].

The second experiment is in the Samba file server. TEMU

raises an alert for many requests, due to the program counter

becoming tainted. Again, our influence measure shows that

the untrusted input actually has very restricted control over

the program counter at the program point where TEMU

raises the alert. Further manual investigation reveals that the

alert is caused by the program using a field from the network

message to calculate an index into an array of function point-

ers, which is used to select which function to call to handle

the rest of the request. The calculation is done in such a way

as to ensure that the final function pointer selected is one of

a few predetermined values.

The third experiment is a synthetic program (Figure 4), in

which a byte read from the network is used in a C switch

statement. Dynamic taint analysis can have a false positive

in such cases, if the compiler constructs a jump table and

calculates a pointer from the switch variable to be used in

an indirect jump. In this experiment, we found this to be the

case for some switch statements, using the gcc compiler.

As expected, TEMU raises an alarm when tainted data is

used as an indirect jump target, but the influence measure

shows that the pointer in question can only be chosen from

a small set of values, and manual inspection of the compiled

81



Program Time Feasible Quant Influence (bits)

(s) Value Set Low Bnd High Bnd

RPC DCOM esp (dyn mem alloc) 4.3 3.81 3.81

Samba (fn ptr table) 240 3.32 3.32

synthetic switch stmt (Figure 4) 5.3 4.17 4.17

Table 3. Influence measures for over-tainted variables.

code confirms that gcc puts the proper checks in place such

that the operation is safe.

The results of these experiments show that the influence

measure is a useful tool for helping to understand cases

where an untrusted input has restricted control over a sensi-

tive variable, and can be used to help identify and understand

false positives in dynamic taint analysis.

6. Discussion and future work

Some directions for extension are suggested by the limits of

our current experimental results.

6.1 Limitations and extensions

Our approach is relatively slow for real-world programs,

even when considering only one execution path. As such,

it is mostly useful in a post-analysis step when using a less

accurate influence measurement tool such as dynamic taint

analysis. It is also useful as a “gold standard” by which

to measure the accuracy of future tools that sacrifice some

accuracy for better performance.

Our tool has the option of considering all execution paths,

which only works for small programs with relatively few

execution paths, or one execution path, obtained from an

execution log. When we consider only one execution path,

the influence over that path may be less than the influence

over other inputs. A useful extension to our tool would be

to incrementally consider more execution paths (such as by

inverting some branches or generalizing over loops [28]).

6.2 More detailed statistics

Our probabilistic sampling and approximate #SAT query

techniques are currently fairly simple, but they could be fur-

ther enhanced by applying standard statistical techniques.

For instance, our current method for obtaining a numeric

estimate based on the results of the XOR streamlining ex-

periments could likely be improved to extract more precise

results from the same number of iterations.

6.3 New query techniques

The query techniques our tool currently uses treat the out-

put as a single integer, but other approaches would likely

work better for larger outputs with internal structure such

as strings and arrays. One such strategy is partitioning the

input into pieces and then analyzing each separately. For ex-

ample, to calculate the exact influence over a 100 byte vari-

able exhaustively would require up to 28×100 decision proce-

dure queries. But by partitioning the variable first, the same

method would use only 28×100 decision procedure queries.

However, if done naively, this strategy may be quite impre-

cise: the correct value of the influence on the 100 bytes con-

sidered together might be anywhere between the maximum

of the 100 byte influences and their sum.

Because our decision procedure is based on SAT, it only

supports queries without quantifier alternation. Our tool can

query whether a range of outputs contains no feasible values,

but the seemingly similar query of whether they are all fea-

sible is not possible. However, some restrictions can make

such queries possible for a SAT solver. Our tool could make

positive range queries if it supplied a hypothesis about the

input/output relation on a range, such as that the output is a

linear function of the input. For instance, in the Blaster ex-

ample of Section 5.2, the output word is a copy of a certain

input word; if it could guess this hypothesis, our tool could

verify that the influence is exactly 32 bits in only one query.

Another direction for expanding the queries our tool can

perform would be to use a more powerful decision proce-

dure. A decision procedure that took arbitrarily quantified

boolean formulas (QBF) would allow positive general pos-

itive range queries, and an exact boolean model counting

(#SAT) procedure could give an exact influence result in one

query. However, these kinds of decisions procedures are less

mature than the SAT-solver-based one we now use, and they

lie in even higher complexity classes.

6.4 Compositional analysis

Since our technique gives precise results quickly for small

pieces of code, approaches that use our technique in a tar-

geted way could achieve precision and scalability simulta-

neously. For instance, our approach might be used to incre-

mentally refine inaccuracies in a dynamic taint analysis, by

heuristically locating code fragments that might cause false

positives. Or, our approach might be applied independently

to each small unit (e.g., function or basic block) in a pro-

gram, and then the numeric results combined using a com-

positional technique such as network flow [22].

7. Related work

Among related work, we first discuss systems based on dy-

namic tainting, and then other approaches to information-

flow analysis.

7.1 Dynamic taint analysis for integrity

A number of systems have been proposed to perform dy-

namic taint analysis to enforce Biba low water-mark data
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integrity policies on x86 binary programs, for the purpose of

detecting overwrite attacks [11, 12, 30, 10, 25, 26]. While

these approaches work well for many programs, they prop-

agate the taint attribute at the instruction level, and round

the influence attribute to “tainted” or “untainted” at each in-

struction. This can lead to false positives and false negatives

when multiple instructions interact in complex ways, such as

in data sanitization and in implicit flows.

Xu et al. [33] implement a system to rewrite the C source

code of a program to perform dynamic taint analysis. They

detect implicit flows that occur in some C-level if-then-else

structures.

7.2 Dynamic taint analysis for data confidentiality

Dynamic taint analysis has also been used by several systems

to enforce Bell-LaPadula data confidentiality policies [6, 34,

16, 22]. These systems are similar to dynamic taint analysis

systems used to enforce data integrity. Instead of marking

low-integrity inputs as tainted and checking whether high-

integrity operations use tainted data, these systems mark

confidential data as tainted, and check whether tainted data

is written to untrusted outputs. In practice, the taint propaga-

tion policies in these systems are quite similar to those that

are targeted to enforce data integrity, though they are often

tuned to propagate the taint attribute more aggressively; e.g.

the instruction-level propagation policies are tuned to “round

up” to marking things tainted. The system proposed by Egele

et al. [16] also employs static analysis to account for some

(‘positive’) implicit flows, but does not handle other ‘nega-

tive’ implicit flows without manual annotation.

7.3 Information flow

There is a large body of work on information-flow security.

Sabelfeld and Myers provide a good survey of the field [27].

Most prior work seeks to detect or prevent any flow of

sensitive data to an insecure output. Vachharajani et al. [31]

propose and implement a system to dynamically detect un-

permitted information flows in binary programs. Venkatakr-

ishnan et al. [32] propose a provably correct system to en-

force non-interference for a small well-structured language;

they are able to track implicit flows using the structure of

their proposed language.

Denning first proposed to quantitatively measure infor-

mation flow [13], defining the amount of information trans-

ferred in a flow as the reduction in uncertainty (entropy) of

a random variable. Other seminal work in quantitative infor-

mation flow was done by Millen [23] and by Gray [19].

Several alternative ways of measuring information flow

appear in previous work. Perhaps most common is an

entropy-based definition using a fixed input distribution, as

for instance in the techniques of Clark et al. [7, 8]. The

belief-based framework of Clarkson et al. [9] is theoretically

appealing, but depends on bounds on the attacker’s prior

beliefs that may be hard to support. The channel capacity

approach we argue for here has seen increasing interest re-

cently, such as in Malacaria and Chen’s application of the

Lagrange multipliers [21]. McCamant and Ernst [22] also

use channel capacity as a goal, though their results bound it

only in terms of expectation. Other techniques, such as the

precise analysis of loops by Malacaria [20] and the complete

enumeration of Backes et al. [1], are flexible enough to be

applied to multiple definitions.

Two recent projects scale quantitative upper bound flow

measurement techniques to confidentiality policies in binary

applications. Castro et al. [5] create privacy-protecting bug

reports, then use a conservative approximation of entropy

over a uniformly distributed input space to bound the amount

of information the report reveals. They generate constraints

from a program using a similar technique to our implemen-

tation, but use an SMT solver only to find a new test case

for a bug: their quantitative measurements do not require

solving constraints. Though some of their case studies use

software vulnerabilities, their concern is not with the flow

that constitutes the vulnerability, but with the private infor-

mation a bug report could reveal. McCamant and Ernst [22]

also use a conservative upper-bound approximation, includ-

ing manual annotations for implicit flows, but transform to a

network flow problem to compute a bound. Like our use of

channel capacity, this approach avoids making assumptions

about an input probability distribution. Because they repre-

sent only an upper bound, the results of these approaches

have no guarantee of precision, though they were found to

be sufficiently precise for their respective case studies.

In concurrent work, Backes et al. [1] give a measure-

ment technique that exhaustively enumerates a partition of

the input space into sets of inputs that produce the same

outputs, a similar high-level approach to our exhaust-up-to-

c query strategy. However their technique is more sophis-

ticated, using abstraction refinement and lattice point enu-

meration (model counting for linear constraints) to precisely

count the number of inputs that produce each output; this al-

lows many measurements beyond channel capacity as well.

Like exhaust-up-to-c, their technique fails to scale to pro-

grams with many outputs (their largest example has channel

capacity 4.8), such as the attacks we consider in Section 5.2.

8. Conclusion

In this work, we carefully examine a number of program

structures, such as data sanitization and implicit flows, that

can force dynamic taint analysis into false positives or false

negatives. We show that an end-to-end measure of channel

capacity from an untrusted input to a program variable is

an intuitive and accurate characterization of the influence

that the untrusted input has over that variable. We devise a

family of new techniques for measuring this influence that

are precise (exact for small flows, and accurate to within

a fraction of a bit for larger ones) and applicable to off-

the-shelf x86 binaries. Our tool measures influence in well-

known attacks on commodity software, and automatically
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distinguishes real attacks from similar executions that cause

false positives in a state-of-the-art taint analysis.
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