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Abstract. Despite the conventional wisdom that proactive security is
superior to reactive security, we show that reactive security can be com-
petitive with proactive security as long as the reactive defender learns
from past attacks instead of myopically overreacting to the last attack.
Our game-theoretic model follows common practice in the security lit-
erature by making worst-case assumptions about the attacker: we grant
the attacker complete knowledge of the defender’s strategy and do not
require the attacker to act rationally. In this model, we bound the com-
petitive ratio between a reactive defense algorithm (which is inspired by
online learning theory) and the best fixed proactive defense. Additionally,
we show that, unlike proactive defenses, this reactive strategy is robust
to a lack of information about the attacker’s incentives and knowledge.

1 Introduction

Many enterprises employ a Chief Information Security Officer (CISO) to man-
age the enterprise’s information security risks. Typically, an enterprise has many
more security vulnerabilities than it can realistically repair. Instead of declaring
the enterprise “insecure” until every last vulnerability is plugged, CISOs typi-
cally perform a cost-benefit analysis to identify which risks to address, but what
constitutes an effective CISO strategy? The conventional wisdom [28,21] is that
CISOs ought to adopt a “forward-looking” proactive approach to mitigating se-
curity risk by examining the enterprise for vulnerabilities that might be exploited
in the future. Advocates of proactive security often equate reactive security with
myopic bug-chasing and consider it ineffective. We establish sufficient conditions
for when reacting strategically to attacks is as effective in discouraging attackers.

We study the efficacy of reactive strategies in an economic model of the CISO’s
security cost-benefit trade-offs. Unlike previously proposed economic models of
security (see Section 7), we do not assume the attacker acts according to a
fixed probability distribution. Instead, we consider a game-theoretic model with
a strategic attacker who responds to the defender’s strategy. As is standard in
the security literature, we make worst-case assumptions about the attacker. For
example, we grant the attacker complete knowledge of the defender’s strategy
and do not require the attacker to act rationally. Further, we make conservative

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 192–206, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010



A Learning-Based Approach to Reactive Security 193

assumptions about the reactive defender’s knowledge and do not assume the
defender knows all the vulnerabilities in the system or the attacker’s incentives.
However, we do assume that the defender can observe the attacker’s past actions,
for example via an intrusion detection system or user metrics [4].

In our model, we find that two properties are sufficient for a reactive strategy
to perform as well as the best proactive strategies. First, no single attack is
catastrophic, meaning the defender can survive a number of attacks. This is
consistent with situations where intrusions (that, say, steal credit card numbers)
are regrettable but not business-ending. Second, the defender’s budget is liquid,
meaning the defender can re-allocate resources without penalty. For example, a
CISO can reassign members of the security team from managing firewall rules
to improving database access controls at relatively low switching costs.

Because our model abstracts many vulnerabilities into a single graph edge, we
view the act of defense as increasing the attacker’s cost for mounting an attack
instead of preventing the attack (e.g., by patching a single bug). By making
this assumption, we choose not to study the tactical patch-by-patch interaction
of the attacker and defender. Instead, we model enterprise security at a more
abstract level appropriate for the CISO. For example, the CISO might allocate a
portion of his or her budget to engage a consultancy, such as WhiteHat or iSEC
Partners, to find and fix cross-site scripting in a particular web application or
to require that employees use SecurID tokens during authentication. We make
the technical assumption that attacker costs are linearly dependent on defense
investments locally. This assumption does not reflect patch-by-patch interaction,
which would be better represented by a step function (with the step placed at the
cost to deploy the patch). Instead, this assumption reflects the CISO’s higher-
level viewpoint where the staircase of summed step functions fades into a slope.

We evaluate the defender’s strategy by measuring the attacker’s cumulative
return-on-investment, the return-on-attack (ROA), which has been proposed
previously [8]. By studying this metric, we focus on defenders who seek to “cut
off the attacker’s oxygen,” that is to reduce the attacker’s incentives for attack-
ing the enterprise. We do not distinguish between “successful” and “unsuccessful”
attacks. Instead, we compare the payoff the attacker receives from his or her ne-
farious deeds with the cost of performing said deeds. We imagine that sufficiently
disincentivized attackers will seek alternatives, such as attacking a different or-
ganization or starting a legitimate business.

In our main result, we show sufficient conditions for a learning-based reactive
strategy to be competitive with the best fixed proactive defense in the sense that
the competitive ratio between the reactive ROA and the proactive ROA is at
most 1 + ε, for all ε > 0, provided the game lasts sufficiently many rounds (at
least Ω(1/ε)). To prove our theorems, we draw on techniques from the online
learning literature. We extend these techniques to the case where the learner
does not know all the game matrix rows a priori, letting us analyze situations
where the defender does not know all the vulnerabilities in advance. Although
our main results are in a graph-based model with a single attacker, our results
generalize to a model based on Horn clauses with multiple attackers. Our results
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Fig. 1. An attack graph representing an enterprise data center

are also robust to switching from ROA to attacker profit and to allowing the
proactive defender to revise the defense allocation a fixed number of times.

Although myopic bug chasing is most likely an ineffective reactive strategy, we
find that in some situations a strategic reactive strategy is as effective as the opti-
mal fixed proactive defense. In fact, we find that the natural strategy of gradually
reinforcing attacked edges by shifting budget from unattacked edges “learns” the
attacker’s incentives and constructs an effective defense. Such a strategic reactive
strategy is both easier to implement than a proactive strategy—because it does
not presume that the defender knows the attacker’s intent and capabilities—and
is less wasteful than a proactive strategy because the defender does not expend
budget on attacks that do not actually occur. Based on our results, we encourage
CISOs to question the assumption that proactive risk management is inherently
superior to reactive risk management.

Organization. Section 2 formalizes our model. Section 3 shows that perimeter
defense and defense-in-depth arise naturally in our model. Section 4 presents our
main results bounding the competitive ratio of reactive versus proactive defense
strategies. Section 5 outlines scenarios in which reactive security out-performs
proactive security. Section 6 generalizes our results to Horn clauses and multiple
attackers. Section 7 relates related work. Section 8 concludes.

2 Formal Model

In this section, we present a game-theoretic model of attack and defense. Unlike
traditional bug-level attack graphs, our model is meant to capture a managerial
perspective on enterprise security. The model is somewhat general in the sense
that attack graphs can represent a number of concrete situations, including a
network (see Figure 1), components in a complex software system [9], or an
Internet Fraud “Battlefield” [13].

System. We model a system using a directed graph (V, E), which defines the
game between an attacker and a defender. Each vertex v ∈ V in the graph
represents a state of the system. Each edge e ∈ E represents a state transition the
attacker can induce. For example, a vertex might represent whether a particular
machine in a network has been compromised by an attacker. An edge from one
machine to another might represent that an attacker who has compromised the
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first machine might be able to compromise the second machine because the two
are connected by a network. Alternatively, the vertices might represent different
components in a software system. An edge might represent that an attacker
sending input to the first component can send input to the second.

In attacking the system, the attacker selects a path in the graph that be-
gins with a designated start vertex s. Our results hold in more general models
(e.g., based on Horn clauses), but we defer discussing such generalizations until
Section 6. We think of the attack as driving the system through the series of
state transitions indicated by the edges included in the path. In the networking
example in Figure 1, an attacker might first compromise a front-end server and
then leverage the server’s connectivity to the back-end database server to steal
credit card numbers from the database.

Incentives and Rewards. Attackers respond to incentives. For example, at-
tackers compromise machines and form botnets because they make money from
spam [20] or rent the botnet to others [32]. Other attackers steal credit card
numbers because credit card numbers have monetary value [10]. We model the
attacker’s incentives by attaching a non-negative reward to each vertex. These
rewards are the utility the attacker derives from driving the system into the state
represented by the vertex. For example, compromising the database server might
have a sizable reward because the database server contains easily monetizable
credit card numbers. We assume the start vertex has zero reward, forcing the
attacker to undertake some action before earning utility. Whenever the attacker
mounts an attack, the attacker receives a payoff equal to the sum of the rewards
of the vertices visited in the attack path: payoff(a) =

∑
v∈a reward(a). In the

example from Figure 1, if an attacker compromises both a front-end server and
the database server, the attacker receives both rewards.

Attack Surface and Cost. The defender has a fixed defense budget B > 0,
which the defender can divide among the edges in the graph according to a
defense allocation d: for all e ∈ E, d(e) ≥ 0 and

∑
e∈E d(e) ≤ B.

The defender’s allocation of budget to various edges corresponds to the de-
cisions made by the Chief Information Security Officer (CISO) about where to
allocate the enterprise’s security resources. For example, the CISO might allo-
cate organizational headcount to fuzzing enterprise web applications for XSS
vulnerabilities. These kinds of investments are continuous in the sense that the
CISO can allocate 1/4 of a full-time employee to worrying about XSS. We denote
the set of feasible allocations of budget B on edge set E by DB,E .

By defending an edge, the defender makes it more difficult for the attacker
to use that edge in an attack. Each unit of budget the defender allocates to an
edge raises the cost that the attacker must pay to use that edge in an attack.
Each edge has an attack surface [19] w that represents the difficulty in defending
against that state transition. For example, a server that runs both Apache and
Sendmail has a larger attack surface than one that runs only Apache because
defending the first server is more difficult than the second. Formally, the attacker
must pay the following cost to traverse the edge: cost(a, d) =

∑
e∈a d(e)/w(e).

Allocating defense budget to an edge does not “reduce” an edge’s attack surface.
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For example, consider defending a hallway with bricks. The wider the hallway
(the larger the attack surface), the more bricks (budget allocation) required to
build a wall of a certain height (the cost to the attacker).

In this formulation, the function mapping the defender’s budget allocation to
attacker cost is linear, preventing the defender from ever fully defending an edge.
Our use of a linear function reflects a level of abstraction more appropriate to
a CISO who can never fully defend assets, which we justify by observing that
the rate of vulnerability discovery in a particular piece of software is roughly
constant [29]. At a lower level of detail, we might replace this function with a step
function, indicating that the defender can “patch” a vulnerability by allocating
a threshold amount of budget.

Objective. To evaluate defense strategies, we measure the attacker’s incentive
for attacking using the return-on-attack (ROA) [8], which we define as follows:

ROA(a, d) =
payoff(a)
cost(a, d)

We use this metric for evaluating defense strategy because we believe that if
the defender lowers the ROA sufficiently, the attacker will be discouraged from
attacking the system and will find other uses for his or her capital or industry.
For example, the attacker might decide to attack another system. Analogous
results hold if we quantify the attacker’s incentives in terms of profit (e.g., with
profit(a, d) = payoff(a) − cost(a, d)), but we focus on ROA for simplicity.

A purely rational attacker will mount attacks that maximize ROA. However,
a real attacker might not maximize ROA. For example, the attacker might not
have complete knowledge of the system or its defense. We strengthen our results
by considering all attacks, not just those that maximize ROA.

Proactive Security. We evaluate our learning-based reactive approach by com-
paring it against a proactive approach to risk management in which the defender
carefully examines the system and constructs a defense in order to fend off future
attacks. We strengthen this benchmark by providing the proactive defender com-
plete knowledge about the system, but we require that the defender commit to a
fixed strategy. To strengthen our results, we state our main result in terms of all
such proactive defenders. In particular, this class of defenders includes the ratio-
nal proactive defender who employs a defense allocation that minimizes the max-
imum ROA the attacker can extract from the system: argmind maxa ROA(a, d).

3 Case Studies

In this section, we describe instances of our model to build the reader’s intu-
ition. These examples illustrate that some familiar security concepts, including
perimeter defense and defense in depth, arise naturally as optimal defenses in our
model. These defenses can be constructed either by rational proactive attackers
or converged to by a learning-based reactive defense.
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Fig. 2. Attack graph representing a simplified data center network

Perimeter Defense. Consider a system in which the attacker’s reward is non-
zero at exactly one vertex, t. For example, in a medical system, the attacker’s
reward for obtaining electronic medical records might well dominate the value of
other attack targets such as employees’ vacation calendars. In such a system, a
rational attacker will select the minimum-cost path from the start vertex s to the
valuable vertex t. The optimal defense limits the attacker’s ROA by maximizing
the cost of the minimum s-t path. The algorithm for constructing this defense
is straightforward [7]:

1. Let C be the minimum weight s-t cut in (V, E, w).
2. Select the following defense:

d(e) =

{
Bw(e)/Z if e ∈ C

0 otherwise
, where Z =

∑

e∈C

w(e) .

Notice that this algorithm constructs a perimeter defense: the defender allocates
the entire defense budget to a single cut in the graph. Essentially, the defender
spreads the defense budget over the attack surface of the cut. By choosing the
minimum-weight cut, the defender is choosing to defend the smallest attack
surface that separates the start vertex from the target vertex. Real defenders
use similar perimeter defenses, for example, when they install a firewall at the
boundary between their organization and the Internet because the network’s
perimeter is much smaller than its interior.

Defense in Depth. Many experts in security practice recommend that defend-
ers employ defense in depth. Defense in depth rises naturally in our model as an
optimal defense for some systems. Consider, for example, the system depicted
in Figure 2. This attack graph is a simplified version of the data center net-
work depicted in Figure 1. Although the attacker receives the largest reward
for compromising the back-end database server, the attacker also receives some
reward for compromising the front-end web server. Moreover, the front-end web
server has a larger attack surface than the back-end database server because
the front-end server exposes a more complex interface (an entire enterprise web
application), whereas the database server exposes only a simple SQL interface.
Allocating defense budget to the left-most edge represents trying to protect sen-
sitive database information with a complex web application firewall instead of
database access control lists (i.e., possible, but economically inefficient).

The optimal defense against a rational attacker is to allocate half of the de-
fense budget to the left-most edge and half of the budget to the right-most
edge, limiting the attacker to a ROA of unity. Shifting the entire budget to the
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right-most edge (i.e., defending only the database) is disastrous because the
attacker will simply attack the front-end at zero cost, achieving an unbounded
ROA. Shifting the entire budget to the left-most edge is also problematic because
the attacker will attack the database (achieving an ROA of 5).

4 Reactive Security

To analyze reactive security, we model the attacker and defender as playing
an iterative game, alternating moves. First, the defender selects a defense, and
then the attacker selects an attack. We present a learning-based reactive defense
strategy that is oblivious to vertex rewards and to edges that have not yet been
used in attacks. We prove a theorem bounding the competitive ratio between
this reactive strategy and the best proactive defense via a series of reductions
to results from the online learning theory literature. Other applications of this
literature include managing stock portfolios [26], playing zero-sum games [12],
and boosting other machine learning heuristics [11]. Although we provide a few
technical extensions, our main contribution comes from applying results from
online learning to risk management.

Repeated Game. We formalize the repeated game between the defender and
the attacker as follows. In each round t from 1 to T :

1. The defender chooses defense allocation dt(e) over the edges e ∈ E.
2. The attacker chooses an attack path at in G.
3. The path at and attack surfaces {w(e) : e ∈ at} are revealed to the defender.
4. The attacker pays cost(at, dt) and gains payoff(at).

In each round, we let the attacker choose the attack path after the defender
commits to the defense allocation because the defender’s budget allocation is not
a secret (in the sense of a cryptographic key). Following the “no security through
obscurity” principle, we make the conservative assumption that the attacker can
accurately determine the defender’s budget allocation.

Defender Knowledge. Unlike proactive defenders, reactive defenders do not
know all of the vulnerabilities that exist in the system in advance. (If defend-
ers had complete knowledge of vulnerabilities, conferences such as Black Hat
Briefings would serve little purpose.) Instead, we reveal an edge (and its attack
surface) to the defender after the attacker uses the edge in an attack. For exam-
ple, the defender might monitor the system and learn how the attacker attacked
the system by doing a post-mortem analysis of intrusion logs. Formally, we define
a reactive defense strategy to be a function from attack sequences {ai} and the
subsystem induced by the edges contained in

⋃
i ai to defense allocations such

that d(e) = 0 if edge e �∈ ⋃
i ai. Notice that this requires the defender’s strategy

to be oblivious to the system beyond the edges used by the attacker.
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Algorithm 1. A reactive defense strategy for hidden edges.
– Initialize E0 = ∅
– For each round t ∈ {2, ..., T}

• Let Et−1 = Et−2 ∪ E(at−1)
• For each e ∈ Et−1, let

St−1(e) =

{
St−2(e) + M(e, at−1) if e ∈ Et−2

M(e, at−1) otherwise.

P̃t(e) = β
St−1(e)

t−1

Pt(e) =
P̃t(e)

∑
e′∈Et

P̃t(e′)
,

where M(e, a) = −1 [e ∈ a] /w(e) is a matrix with |E| rows and a column for
each attack.

Algorithm. Algorithm 1 is a reactive defense strategy based on the multiplica-
tive update learning algorithm [6,12]. The algorithm reinforces edges on the
attack path multiplicatively, taking the attack surface into account by allocat-
ing more budget to easier-to-defend edges. When new edges are revealed, the
algorithm re-allocates budget uniformly from the already-revealed edges to the
newly revealed edges. We state the algorithm in terms of a normalized defense
allocation Pt(e) = dt(e)/B. Notice that this algorithm is oblivious to unattacked
edges and the attacker’s reward for visiting each vertex. An appropriate setting
for the algorithm parameters βt ∈ [0, 1) will be described below.

The algorithm begins without any knowledge of the graph whatsoever, and so
allocates no defense budget to the system. Upon the tth attack on the system,
the algorithm updates Et to be the set of edges revealed up to this point, and
updates St(e) to be a weight count of the number of times e has been used in an
attack thus far. For each edge that has ever been revealed, the defense allocation
Pt+1(e) is chosen to be β

St(e)
t normalized to sum to unity over all edges e ∈ Et. In

this way, any edge attacked in round t will have its defense allocation reinforced.
The parameter β controls how aggressively the defender reallocates defense

budget to recently attacked edges. If β is infinitesimal, the defender will move
the entire defense budget to the edge on the most recent attack path with the
smallest attack surface. If β is enormous, the defender will not be very agile and,
instead, leave the defense budget in the initial allocation. For an appropriate
value of β, the algorithm will converge to the optimal defense strategy. For
instance, the min cut in the example from Section 3.

Theorems. To compare this reactive defense strategy to all proactive defense
strategies, we use the notion of regret from online learning theory. The following
is an additive regret bound relating the attacker’s profit under reactive and
proactive defense strategies.
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Theorem 1. The average attacker profit against Algorithm 1 converges to the
average attacker profit against the best proactive defense. Formally, if defense
allocations {dt}T

t=1 are output by Algorithm 1 with parameter sequence βs =
(
1 +

√
2 log |Es|/(s + 1)

)−1

on any system (V, E, w, reward, s) revealed online

and any attack sequence {at}T
t=1, then

1
T

T∑

t=1

profit(at, dt) − 1
T

T∑

t=1

profit(at, d
�) ≤ B

√
log |E|

2T
+

B(log |E| + w−1)
T

,

for all proactive defense strategies d� ∈ DB,E where w−1 = |E|−1
∑

e∈E w(e)−1,
the mean of the surface reciprocals.

Remark 2. We can interpret Theorem 1 as establishing sufficient conditions
under which a reactive defense strategy is within an additive constant of the best
proactive defense strategy. Instead of carefully analyzing the system to construct
the best proactive defense, the defender need only react to attacks in a principled
manner to achieve almost the same quality of defense in terms of attacker profit.

Reactive defense strategies can also be competitive with proactive defense strate-
gies when we consider an attacker motivated by return on attack (ROA). The
ROA formulation is appealing because (unlike with profit) the objective function
does not require measuring attacker cost and defender budget in the same units.
The next result considers the competitive ratio between the ROA for a reactive
defense strategy and the ROA for the best proactive defense strategy.

Theorem 3. The ROA against Algorithm 1 converges to the ROA against best
proactive defense. Formally, consider the cumulative ROA:

ROA
({at}T

t=1, {dt}T
t=1

)
=

∑T
t=1 payoff(at)

∑T
t=1 cost(at, dt)

(We abuse notation slightly and use singleton arguments to represent the cor-
responding constant sequence.) If defense allocations {dt}T

t=1 are output by Al-

gorithm 1 with parameters βs =
(
1 +

√
2 log |Es|/(s + 1)

)−1

on any system
(V, E, w, reward, s) revealed online, such that |E| > 1, and any attack sequence
{at}T

t=1, then for all α > 0 and proactive defense strategies d� ∈ DB,E

ROA
({at}T

t=1, {dt}T
t=1

)

ROA
({at}T

t=1, d
�
) ≤ 1 + α ,

provided T is sufficiently large.1

Remark 4. Notice that the reactive defender can use the same algorithm re-
gardless of whether the attacker is motivated by profit or by ROA. As discussed
in Section 5 the optimal proactive defense is not similarly robust.

1 To wit: T ≥
(

13√
2

(
1 + α−1

) (∑
e∈inc(s) w(e)

))2

log |E|.
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We present proofs of these theorems in the full version [3]. We first prove the
theorems in the simpler setting where the defender knows the entire graph.
Second, we remove the hypothesis that the defender knows the edges in advance.

Lower Bounds. In the full version [3], we use a two-vertex, two-edge graph
to establish a lower bound on the competitive ratio of the ROA for all reactive
strategies. The lower bound shows that the analysis of Algorithm 1 is tight and
that Algorithm 1 is optimal given the information available to the algorithm. The
proof gives an example where the best proactive defense (slightly) out-performs
every reactive strategy, suggesting the benchmark is not unreasonably weak.

5 Advantages of Reactivity

In this section, we examine some situations in which a reactive defender out-
performs a proactive defender. Proactive defenses hinge on the defender’s model
of the attacker’s incentives. If the defender’s model is inaccurate, the defender
will construct a proactive defense that is far from optimal. By contrast, a reactive
defender need not reason about the attacker’s incentives directly. Instead, the
reactive defender learns these incentives by observing the attacker in action.

Learning Rewards. One way to model inaccuracies in the defender’s estimates
of the attacker’s incentives is to hide the attacker’s rewards from the defender.
Without knowledge of the payoffs, a proactive defender has difficulty limiting the
attacker’s ROA. Consider, for example, the star system whose edges have equal
attack surfaces, as depicted in Figure 3. Without knowledge of the attacker’s
rewards, a proactive defender has little choice but to allocate the defense budget
equally to each edge (because the edges are indistinguishable). However, if the
attacker’s reward is concentrated at a single vertex, the competitive ratio for
attacker’s ROA (compared to the rational proactive defense) is the number of
leaf vertices. (We can, of course, make the ratio worse by adding more vertices.)
By contrast, the reactive algorithm we analyze in Section 4 is competitive with
the rational proactive defense because the reactive algorithm effectively learns
the rewards by observing which attacks the attacker chooses.

Robustness to Objective. Another way to model inaccuracies in the de-
fender’s estimates of the attacker’s incentives is to assume the defender mis-
takes which of profit and ROA actually matter to the attacker. The defense
constructed by a rational proactive defender depends crucially on whether the
attacker’s actual incentives are based on profit or based on ROA, whereas the re-
active algorithm we analyze in Section 4 is robust to this variation. In particular,
consider the system depicted in Figure 4, and assume the defender has a budget
of 9. If the defender believes the attacker is motivated by profit, the rational
proactive defense is to allocate the entire defense budget to the right-most edge
(making the profit 1 on both edges). However, this defense is disastrous when
viewed in terms of ROA because the ROA for the left edge is infinite (as opposed
to near unity when the proactive defender optimizes for ROA).
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Fig. 3. Star-shaped attack graph
with rewards concentrated in an
unknown vertex

Fig. 4. An attack graph that separates the
minimax strategies optimizing ROA and at-
tacker profit

Catachresis. The defense constructed by the rational proactive defender is op-
timized for a rational attacker. If the attacker is not perfectly rational, there is
room for out-performing the rational proactive defense. There are a number of
situations in which the attacker might not mount “optimal” attacks:

– The attacker might not have complete knowledge of the attack graph. Con-
sider, for example, a software vendor who discovers five equally severe vulner-
abilities in one of their products via fuzzing. According to proactive security,
the defender ought to dedicate equal resources to repairing these five vul-
nerabilities. However, a reactive defender might dedicate more resources to
fixing a vulnerability actually exploited by attackers in the wild. We can
model these situations by making the attacker oblivious to some edges.

– The attacker might not have complete knowledge of the defense allocation.
For example, an attacker attempting to invade a corporate network might
target computers in human resources without realizing that attacking the
customer relationship management database in sales has a higher return-on-
attack because the database is lightly defended.

By observing attacks, the reactive strategy learns a defense tuned for the actual
attacker, causing the attacker to receive a lower ROA.

6 Generalizations

Horn Clauses. Thus far, we have presented our results using a graph-based
system model. Our results extend, however, to a more general system model
based on Horn clauses. Datalog programs, which are based on Horn clauses, have
been used in previous work to represent vulnerability-level attack graphs [27]. A
Horn clause is a statement in propositional logic of the form p1∧p2∧· · ·∧pn → q.
The propositions p1, p2, . . . , pn are called the antecedents, and q is called the
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consequent. The set of antecedents might be empty, in which case the clause
simply asserts the consequent. Notice that Horn clauses are negation-free. In
some sense, a Horn clause represents an edge in a hypergraph where multiple
pre-conditions are required before taking a certain state transition.

In the Horn model, a system consists of a set of Horn clauses, an attack surface
for each clause, and a reward for each proposition. The defender allocates defense
budget among the Horn clauses. To mount an attack, the attacker selects a valid
proof : an ordered list of rules such that each antecedent appears as a consequent
of a rule earlier in the list. For a given proof Π ,

cost(Π, d) =
∑

c∈Π

d(c)/w(e) payoff(Π) =
∑

p∈[[Π]]

reward(p) ,

where [[Π ]] is the set of propositions proved by Π (i.e., those propositions that
appear as consequents in Π). Profit and ROA are computed as before.

Our results generalize to this model directly. Essentially, we need only replace
each instance of the word “edge” with “Horn clause” and “path” with “valid proof.”
For example, the rows of the matrix M used throughout the proof become the
Horn clauses, and the columns become the valid proofs (which are numerous,
but no matter). The entries of the matrix become M(c, Π) = 1/w(c), analogous
to the graph case. The one non-obvious substitution is inc(s), which becomes
the set of clauses that lack antecedents.

Multiple Attackers. We have focused on a security game between a single
attacker and a defender. In practice, a security system might be attacked by
several uncoordinated attackers, each with different information and different
objectives. Fortunately, we can show that a model with multiple attackers is
mathematically equivalent to a model with a single attacker with a randomized
strategy: Use the set of attacks, one per attacker, to define a distribution over
edges where the probability of an edge is linearly proportional to the number
of attacks which use the edge. This precludes the interpretation of an attack as
an s-rooted path, but our proofs do not rely upon this interpretation and our
results hold in such a model with appropriate modifications.

Adaptive Proactive Defenders. A simple application of an online learning
result [18], omitted due to space constraints, modifies our regret bounds for
a proactive defender who re-allocates budget a fixed number of times. In this
model, our results remain qualitatively the same.

7 Related Work

Anderson [1] and Varian [31] informally discuss (via anecdotes) how the design
of information security must take incentives into account. August and Tunca [2]
compare various ways to incentivize users to patch their systems in a setting
where the users are more susceptible to attacks if their neighbors do not patch.

Gordon and Loeb [15] and Hausken [17] analyze the costs and benefits of secu-
rity in an economic model (with non-strategic attackers) where the probability
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of a successful exploit is a function of the defense investment. They use this
model to compute the optimal level of investment. Varian [30] studies various
(single-shot) security games and identifies how much agents invest in security at
equilibrium. Grossklags [16] extends this model by letting agents self-insure.

Miura et al. [24] study externalities that appear due to users having the
same password across various websites and discuss pareto-improving security
investments. Miura and Bambos [25] rank vulnerabilities according to a random-
attacker model. Skybox and RedSeal offer practical systems that help enterprises
prioritize vulnerabilities based on a random-attacker model. Kumar et al. [22]
investigate optimal security architectures for a multi-division enterprise, taking
into account losses due to lack of availability and confidentiality. None of the
above papers explicitly model a truly adversarial attacker.

Fultz [14] generalizes [16] by modeling attackers explicitly. Cavusoglu et al. [5]
highlight the importance of using a game-theoretic model over a decision theo-
retic model due to the presence of adversarial attackers. However, these models
look at idealized settings that are not generically applicable. Lye and Wing [23]
study the Nash equilibrium of a single-shot game between an attacker and a de-
fender that models a particular enterprise security scenario. Arguably this model
is most similar to ours in terms of abstraction level. However, calculating the
Nash equilibrium requires detailed knowledge of the adversary’s incentives, which
as discussed in the introduction, might not be readily available to the defender.
Moreover, their game contains multiple equilibria, weakening their prescriptions.

8 Conclusions

Many security experts equate reactive security with myopic bug-chasing and ig-
nore principled reactive strategies when they recommend adopting a proactive
approach to risk management. In this paper, we establish sufficient conditions for
a learning-based reactive strategy to be competitive with the best fixed proactive
defense. Additionally, we show that reactive defenders can out-perform proac-
tive defenders when the proactive defender defends against attacks that never
actually occur. Although our model is an abstraction of the complex interplay
between attackers and defenders, our results support the following practical ad-
vice for CISOs making security investments:

– Employ monitoring tools that let you detect and analyze attacks against your
enterprise. These tools help focus your efforts on thwarting real attacks.

– Make your security organization more agile. For example, build a rigorous
testing lab that lets you roll out security patches quickly once you detect
that attackers are exploiting these vulnerabilities.

– When determining how to expend your security budget, avoid overreacting
to the most recent attack. Instead, consider all previous attacks, but discount
the importance of past attacks exponentially.

In some situations, proactive security can out-perform reactive security. For
example, reactive approaches are ill-suited for defending against catastrophic
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attacks because there is no “next round” in which the defender can use infor-
mation learned from the attack. We hope our results will lead to a productive
discussion of the limitations of our model and the validity of our conclusions.

Instead of assuming that proactive security is always superior to reactive
security, we invite the reader to consider when a reactive approach might be
appropriate. For the parts of an enterprise where the defender’s budget is liquid
and there are no catastrophic losses, a carefully constructed reactive strategy can
be as effective as the best proactive defense in the worst case and significantly
better in the best case.

Acknowledgments. We would like to thank Elie Bursztein, Eu-Jin Goh, and
Matt Finifter for their thoughtful comments and helpful feedback. We gratefully
acknowledge the support of the NSF through the TRUST Science and Tech-
nology Center and grants DMS-0707060, CCF-0424422, 0311808, 0448452, and
0627511, and the support of the AFOSR through the MURI Program, and the
support of the Siebel Scholars Foundation.

References

1. Anderson, R.: Why information security is hard—An economic perspective. In:
17th Annual Computer Security Applications Conference, pp. 358–365 (2001)

2. August, T., Tunca, T.I.: Network software security and user incentives. Manage-
ment Science 52(11), 1703–1720 (2006)

3. Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett,
P.L.: A learning-based approach to reactive security (2009),
http://arxiv.org/abs/0912.1155

4. Beard, C.: Introducing Test Pilot (March 2008),
http://labs.mozilla.com/2008/03/introducing-test-pilot/

5. Cavusoglu, H., Raghunathan, S., Yue, W.: Decision-theoretic and game-theoretic
approaches to IT security investment. Journal of Management Information Sys-
tems 25(2), 281–304 (2008)

6. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the Association for Computing
Machinery 44(3), 427–485 (1997)

7. Chakrabarty, D., Mehta, A., Vazirani, V.V.: Design is as easy as optimization.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 477–488. Springer, Heidelberg (2006)

8. Cremonini, M.: Evaluating information security investments from attackers per-
spective: the return-on-attack (ROA). In: Fourth Workshop on the Economics of
Information Security (2005)

9. Fisher, D.: Multi-process architecture (July 2008), http://dev.chromium.org/
developers/design-documents/multi-process-architecture

10. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An inquiry into the nature and
causes of the wealth of internet miscreants. In: Proceedings of the 2007 ACM
Conference on Computer and Communications Security, pp. 375–388. ACM, New
York (2007)

11. Freund, Y., Schapire, R.: A short introduction to boosting. Journal of the Japanese
Society for Artificial Intelligence 14(5), 771–780 (1999)

http://arxiv.org/abs/0912.1155
http://labs.mozilla.com/2008/03/introducing-test-pilot/
http://dev.chromium.org/developers/design-documents/multi-process-architecture
http://dev.chromium.org/developers/design-documents/multi-process-architecture


206 A. Barth et al.

12. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights.
Games and Economic Behavior 29, 79–103 (1999)

13. Friedberg, J.: Internet fraud battlefield (April 2007), http://www.ftc.gov/bcp/
workshops/proofpositive/Battlefield_Overview.pdf

14. Fultz, N., Grossklags, J. (eds.): Blue versus Red: Towards a model of distributed
security attacks. Proceedings of the Thirteenth International Conference Financial
Cryptography and Data Security (February 2009)

15. Gordon, L.A., Loeb, M.P.: The economics of information security investment. ACM
Transactions on Information and System Security 5(4), 438–457 (2002)

16. Grossklags, J., Christin, N., Chuang, J.: Secure or insure?: A game-theoretic anal-
ysis of information security games. In: Proceeding of the 17th International Con-
ference on World Wide Web, pp. 209–218. ACM, New York (2008)

17. Hausken, K.: Returns to information security investment: The effect of alternative
information security breach functions on optimal investment and sensitivity to
vulnerability. Information Systems Frontiers 8(5), 338–349 (2006)

18. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32(2),
151–178 (1998)

19. Howard, M.: Attack surface: Mitigate security risks by minimizing the code you
expose to untrusted users. MSDN Magazine (November 2004),
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx

20. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V.,
Savage, S.: Spamalytics: An empirical analysis of spam marketing conversion. In:
Proceedings of the 2008 ACM Conference on Computer and Communications Se-
curity, pp. 3–14. ACM, New York (2008)

21. Kark, K., Penn, J., Dill, A.: 2008 CISO priorities: The right objectives but the
wrong focus. Le Magazine de la Sécurité Informatique (April 2009)

22. Kumar, V., Telang, R., Mukhopadhyay, T.: Optimal information security architec-
ture for the enterprise, http://ssrn.com/abstract=1086690

23. Lye, K.W., Wing, J.M.: Game strategies in network security. In: Proceedings of
the Foundations of Computer Security Workshop, pp. 13–22 (2002)

24. Miura-Ko, R.A., Yolken, B., Mitchell, J., Bambos, N.: Security decision-making
among interdependent organizations. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium, pp. 66–80. IEEE Computer Society, Washington
(2008)

25. Miura-Ko, R., Bambos, N.: SecureRank: A risk-based vulnerability management
scheme for computing infrastructures. In: Proceedings of IEEE International Con-
ference on Communications, pp. 1455–1460 (June 2007)

26. Ordentlich, E., Cover, T.M.: The cost of achieving the best portfolio in hindsight.
Mathematics of Operations Research 23(4), 960–982 (1998)

27. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345 (2006)

28. Pironti, J.P.: Key elements of an information security program. Information Sys-
tems Control Journal 1 (2005)

29. Rescorla, E.: Is finding security holes a good idea? IEEE Security and Privacy 3(1),
14–19 (2005)

30. Varian, H.: System reliability and free riding (2001)
31. Varian, H.R.: Managing online security risks, June 1. New York Times (2000)
32. Warner, B.: Home PCs rented out in sabotage-for-hire racket. Reuters (July 2004)

http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://ssrn.com/abstract=1086690

	A Learning-Based Approach to Reactive Security
	Introduction
	Formal Model
	Case Studies
	Reactive Security
	Advantages of Reactivity
	Generalizations
	Related Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




