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Abstract—As AJAX applications gain popularity, client-side
JavaScript code is becoming increasingly complex. However,
few automated vulnerability analysis tools for JavaScript exist.
In this paper, we describe the first system for exploring the
execution space of JavaScript code using symbolic execution.
To handle JavaScript code’s complex use of string operations,
we design a new language of string constraints and implement
a solver for it. We build an automatic end-to-end tool, Kudzu,
and apply it to the problem of finding client-side code injection
vulnerabilities. In experiments on 18 live web applications,
Kudzu automatically discovers 2 previously unknown vulner-
abilities and 9 more that were previously found only with a
manually-constructed test suite.

Keywords-web security; symbolic execution; string decision
procedures

I. INTRODUCTION

Rich web applications have a significant fraction of their
code written in client-side scripting languages, such as
JavaScript. As an increasing fraction of code is found on
the client, client-side security vulnerabilities (such as client-
side code injection [18], [22], [24], [25]) are becoming
a prominent threat. However, a majority of the research
on web vulnerabilities so far has focused on server-side
application code written in PHP and Java. There is a
growing need for powerful analysis tools for the client-side
components of web applications. This paper presents the
first techniques and system for automatically exploring the
execution space of client-side JavaScript code. To explore
this execution space, our techniques generate new inputs
to cover a program’s value space using dynamic symbolic
execution of JavaScript, and to cover its event space by
automatic GUI exploration.
Dynamic symbolic execution for JavaScript has numerous

applications in web security. In this paper we focus on one
of these applications: automatically finding client-side code
injection vulnerabilities. A client-side code injection attack
occurs when client-side code passes untrusted input to a
dynamic code evaluation construct, without proper validation
or sanitization, allowing an attacker to inject JavaScript code
that runs with the privileges of a web application.
JavaScript execution space exploration is challenging for

many reasons. In particular, JavaScript applications accept
many kinds of input, and those inputs are structured just
as strings. For instance, a typical application might take
user input from form fields, messages from its server via

XMLHttpRequest, and data from code running concur-
rently in other browser windows. Each kind of input string
has its own format, so developers use a combination of cus-
tom routines and third-party libraries to parse and validate
the inputs they receive. To effectively explore a program’s
execution space, a tool must be able to supply values for all
of these different kinds of inputs and reason about how they
are parsed and validated.

Approach. In this paper, we develop the first com-
plete symbolic-execution based framework for client-side
JavaScript code analysis. We build an automated, stand-
alone tool that, given a URL for a web application, automat-
ically generates high-coverage test cases to systematically
explore its execution space. Automatically reasoning about
the operations we see in real JavaScript applications requires
a powerful constraint solver, especially for the theory of
strings. However, the power needed to express the semantics
of JavaScript operations is beyond what existing string
constraint solvers [14], [16] offer. As a central contribution
of this work, we overcome this difficulty by proposing
a constraint language and building a practical solver that
supports the specification of boolean, machine integer (bit-
vector), and string constraints, including regular expressions,
over multiple variable-length string inputs. This language’s
rich support for string operations is crucial for reasoning
about the parsing and validation checks that JavaScript
applications perform.
To show the practicality of our constraint language, we

detail a translation from the most commonly used JavaScript
string operations to our constraints. This translation also
harnesses concrete information from a dynamic execution
of the program in a way that allows the analysis to scale.
We analyze the theoretical expressiveness of the theory of
strings supported by our language (including in comparison
to existing constraint solvers), and bound its computational
complexity. We then give a sound and complete decision
procedure for the bounded-length version of the constraint
language. We develop an end-to-end system, called Kudzu,
that performs symbolic execution with this constraint solver
at its core.

End-to-end system. We identify further challenges in build-
ing an end-to-end automated tool for rich web applications.
For instance, because JavaScript code interacts closely with a
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user interface, its input space can be divided into two classes,
the events space and the value space. The former includes
the state (check boxes, list selections) and sequence of
actions of user-interface elements, while the latter includes
the contents of external inputs. These kinds of input jointly
determine the code’s behavior, but they are suited to differ-
ent exploration techniques. Kudzu uses GUI exploration to
explore the event space, and symbolic execution to explore
the value space.
We evaluate Kudzu’s end-to-end effectiveness by applying

it to a collection of 18 JavaScript applications. The results
show that Kudzu is effective at getting good coverage
by discovering new execution paths, and it automatically
discovers 2 previously-unknown vulnerabilities, as well as 9
client-side code injection vulnerabilities that were previously
found only with a manually-created test suite.

Contributions. In summary, this paper makes the following
main contributions:

• We identify the limitations of previous string constraint
languages that make them insufficient for parsing-heavy
JavaScript code, and design a new constraint language
to resolve those limitations. (Section IV)

• We design and implement a practical decision proce-
dure for this constraint language. (Section V)

• We build the first symbolic execution engine for
JavaScript, using our constraint solver. (Sections III and
VI)

• Combining symbolic execution of JavaScript with au-
tomatic GUI exploration and other needed components,
we build the first end-to-end automated system for
exploration of client-side JavaScript. (Section III)

• We demonstrate the practical use of our implementation
by applying it to automatically discovering 11 client-
side code injection vulnerabilities, including two that
were previously unknown. (Section VII)

II. PROBLEM STATEMENT AND OVERVIEW

In this section we state the problem we focus on, exploring
the execution space of JavaScript applications; describe
one of its applications, finding client-side code injection
vulnerabilities; and give an overview of our approach.

Problem statement. We develop techniques to systemati-
cally explore the execution space of JavaScript application
code.
JavaScript applications often take many kinds of input.

We view the input space of a JavaScript program as split
into two categories: the event space and the value space.

• Event space. Rich web applications typically define tens
to hundreds of JavaScript event handlers, which may
execute in any order as a result of user actions such
as clicking buttons or submitting forms. Event handler
code may check the state of GUI elements (such as
check-boxes or selection lists). The ordering of events

and the state of the GUI elements together affects the
behavior of the application code.

• Value space. The values of inputs supplied to a program
also determine its behavior. JavaScript has numerous
interfaces through which input is received:

– User data. Form fields, text areas, and so on.
– URL and cross-window communication abstrac-

tions. Web principals hosted in other windows
or frames can communicate with JavaScript code
via inter-frame communication abstractions such as
URL fragment identifiers and HTML 5’s proposed
postMessage, or via URL parameters.

– HTTP channels. Client-side JavaScript code can
exchange data with its originating web server using
XMLHttpRequest, HTTP cookies, or additional
HTTP GET or POST requests.

This paper primarily focuses on techniques to systemat-
ically explore the value space using symbolic execution of
JavaScript, with the goal of generating inputs that exercise
new program paths. However, automatically exploring the
event space is also required to achieve good coverage. To
demonstrate the efficacy of our techniques in an end-to-end
system, we combine symbolic execution of JavaScript for the
value space with a GUI exploration technique for the event
space. This full system is able to automatically explore the
combined input space of client-side web application code.

Application: finding client-side code injection vulnerabil-
ities. Exploring a program’s execution space has a number of
applications in the security of client-side web applications.
In this paper, we focus specifically on one security applica-
tion, finding client-side code injection vulnerabilities.

Client-side code injection attacks, which are sometimes
referred to as DOM-based XSS, occur when client-side
code uses untrusted input data in dynamic code evaluation
constructs without sufficient validation. Like reflected or
stored XSS attacks, client-side code injection vulnerabilities
can be used to inject script code chosen by an attacker,
giving the attacker the full privileges of the web application.
We call the program input that supplies the data for an attack
the untrusted source, and the potentially vulnerable code
evaluation construct the critical sink. Examples of critical
sinks include eval, and HTML creation interfaces like
document.write and .innerHTML.
In our threat model, we treat all URLs and cross-window

communication abstractions as untrusted sources, as such in-
puts may be controlled by an untrusted web principal. In ad-
dition, we also treat user data as an untrusted source because
we aim to find cases where user data may be interpreted as
code. The severity of attacks from user-data on client-side is
often less severe than a remote XSS attack, but developers
tend to fix these and Kudzu takes a conservative approach of
reporting them. HTTP channels such as XMLHttpRequest
are currently restricted to communicating with a web server
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from the same domain as the client application, so we
do not treat them as untrusted sources. Developers may
wish to treat HTTP channels as untrusted in the future
when determining susceptibility to cross-channel scripting
attacks [5], or when enhanced abstractions (such as the
proposed cross-origin XMLHttpRequest [27]) allow cross-
domain HTTP communication directly from JavaScript.
To effectively find XSS vulnerabilities, we require two

capabilities: (a) generating directed test cases that explore
the execution space of the program, and (b) checking, on
a given execution path, whether the program validates all
untrusted data sufficiently before using it in a critical sink.
Custom validation checks and parsing routines are the norm
rather than the exception in JavaScript applications, so our
tool must check the behavior of validation rather than simply
confirming that it is performed.
In previous work, we developed a tool called FLAX which

employs taint-guided fuzzing for finding client-side code
injection attacks [24]. However, FLAX relies on an external,
manually developed test harness to explore the path space.
Kudzu, in contrast, automatically generates a test suite that
explores the execution space systematically. Kudzu also uses
symbolic reasoning (with its constraint solver) to check if the
validation logic employed by the application is sufficient to
block malicious inputs — this is a one-step mechanism for
directed exploit generation as opposed to multiple rounds
of undirected fuzzing employed in FLAX. Static analysis
techniques have also been employed for JavaScript [12]
to reason about multiple paths, but can suffer from false
positives and do not produce test inputs or attack instances.
Symbolic analyses and model-checking have been used for
server-side code [2], [19]; however, the complexity of path
conditions we observe requires more expressive symbolic
reasoning than supported by tools for server-side code.

Approach Overview. The value space and event space of
a web application are two different components of its input
space: code reachable by exploring one part of the input
space may not be reachable by exploring the other com-
ponent alone. For instance, exploring the GUI event space
results in discovering new views of the web application, but
this does not directly affect the coverage that can be achieved
by systematically exploring all the paths in the code imple-
menting each view. Conversely, maximizing path coverage is
unlikely to discover functionality of the application that only
happens when the user explores a different application view.
Therefore, Kudzu employs different techniques to explore
each part of the input space independently.
Value space exploration. To systematically explore differ-

ent execution paths, we develop a component that performs
dynamic symbolic execution of JavaScript code, and a new
constraint solver that offers the desired expressiveness for
automatic symbolic reasoning.
In dynamic symbolic execution, certain inputs are treated

as symbolic variables. Dynamic symbolic execution differs
from normal execution in that while many variable have their
usual (concrete) values, like 5 for an integer variable, the
values of other variables which depend on symbolic inputs
are represented by symbolic formulas over the symbolic
inputs, like input

1
+ 5. Whenever any of the operands of a

JavaScript operation is symbolic, the operation is simulated
by creating a formula for the result of the operation in terms
of the formulas for the operands. When a symbolic value
propagates to the condition of a branch, Kudzu can use its
constraint solver to search for an input to the program that
would cause the branch to make the opposite choice.
Event space exploration. As a component of Kudzu we

develop a GUI explorer that searches the space of all event
sequences using a random exploration strategy. Kudzu’s GUI
explorer component randomly selects an ordering among the
user events registered by the web page, and automatically
fires these events using an instrumented version of the web
browser. Kudzu also has an input-feedback component that
can replay the sequence of GUI events explored in any
given run, along with feeding new values generated by the
constraint solver to the application’s data inputs.
Testing for client-side code injection vulnerabilities. For

each input explored, Kudzu determines whether there is a
flow of data from an untrusted data source to a critical
sink. If it finds one, it seeks to determine whether the
program sanitizes and/or validates the input correctly to
prevent attackers from injecting dangerous elements into
the critical sink. Specifically, it attempts to prove that the
validation is insufficient by constructing an attack input. As
we will describe in more detail in Section III-B, it combines
the results of symbolic execution with a specification for
attacks to create a constraint solver query. If the constraint
solver finds a solution to the query, it represents an attack
that can reach the critical sink and exploit a client-side code
injection vulnerability.

III. END-TO-END SYSTEM DESIGN

This section describes the various components that work
together to make a complete Kudzu-based vulnerability-
discovery system work. The full explanation of the constraint
solver is in Sections IV through VI. For reference, the
relationships between the components are summarized in
Figure 1.

A. System Components

First, we discuss the core components that would be used
in any application of Kudzu: the GUI explorer that generates
input events to explore the event space, the dynamic symbolic
interpreter that performs symbolic execution of JavaScript,
the path constraint extractor that builds queries based on
the results of symbolic execution, the constraint solver that
finds satisfying assignments to those queries, and the input
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Figure 1: Architecture diagram for Kudzu. The components drawn in the dashed box perform functions specific to our
application of finding client-side code injection. The remaining components are application-agnostic. Components shaded in
light gray are the core contribution of this paper.

feedback component that uses the results from the constraint
solver as new program inputs.

The GUI explorer. The first step in automating JavaScript
application analysis is exploring the event space of user
interactions. Each event corresponds to a user interaction
such as clicking a check-box or a button, setting focus
on a field, adding data to data fields, clicking a link,
and so on. Kudzu currently explores the space of all se-
quences of events using a random exploration strategy. One
of the challenges is to comprehensively detect all events
that could result in JavaScript code execution. To address
this, Kudzu instruments the browser functions that process
HTML elements on the current web page to record when an
event handler is created or destroyed. Kudzu’s GUI explorer
component randomly selects an ordering among the user
events registered by the web page and executes them1. The
random seed can be controlled to replay the same ordering
of events. While invoking handlers, the GUI component also
generates (benign) random test strings to fill text fields.
(Later, symbolic execution will generate new input values
for these fields to explore the input space further.) Links
that navigate the page away from the application’s domain
are cancelled, thereby constraining the testing to a single
application domain at a time. In the future, we plan to
investigate alternative strategies to prioritize the execution
of events discovered as well.

Dynamic symbolic interpreter. Kudzu performs dynamic
symbolic execution by first recording an execution of the
program with concrete inputs, and then symbolically in-
terpreting the recorded execution in a dynamic symbolic

1Invoking an event handler may invalidate another handler (for instance,
when the page navigates as a result). In that case, the invalidated handlers
are ignored and if new handlers are created by the event that causes
invalidation, these events are explored subsequently.

interpreter. For recording an execution trace, Kudzu employs
an existing instrumentation component [24] implemented in
the web browser’s JavaScript interpreter. For each JavaScript
bytecode instruction executed, it records the semantics of
the operation, its operands and operand values in a sim-
plified intermediate language called JASIL [24]. The set
of JavaScript operations captured includes all operations
on integers, booleans, strings, arrays, as well as control-
flow decisions, object types, and calls to browser-native
methods. For the second step, dynamic symbolic execution,
we have developed from scratch a symbolic interpreter for
the recorded JASIL instructions.
Symbolic inputs for Kudzu are configurable to match the

needs of an application. For instance, in the application we
consider, detecting client-side code injection, all URL data,
data received over cross-window communication abstrac-
tions, and user data fields are marked symbolic. Symbolic
inputs may be strings, integers, or booleans. Symbolic execu-
tion proceeds on the JASIL instructions in the order they are
recorded in the execution trace. At any point during dynamic
symbolic execution, a given operand is either symbolic or
concrete. If the operand is symbolic, it is associated with a
symbolic value; otherwise, its value is purely concrete and is
stored in the dynamic execution trace. When interpreting a
JASIL operation in the dynamic symbolic interpreter, the
operation is symbolically executed if one or more of its
input operands is symbolic. Otherwise the operation of the
symbolic interpreter on concrete values would be exactly the
same as the real JavaScript interpreter, so we simply reuse
the concrete results already stored in the execution trace.
The symbolic value of an operand is a formula that

represents its computation from the symbolic inputs. For
instance, for the JASIL assignment operation y := x, if x
is symbolic (say, with the value input

1
+ 5), then symbolic

execution of the operation copies this value to y, giving
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y the same symbolic value. For an arithmetic operation,
say y := x1 + x2 where x1 is symbolic (say with value
input

2
+ 3) and x2 is not (say with the concrete value 7),

the symbolic value for y is the formula representing the
sum (input

2
+10). Operations over strings and booleans are

treated in the same way, generating formulas that involve
string operations like match and boolean operations like
and. At this point, string operations are treated simply
as uninterpreted functions. During the symbolic execution,
whenever the symbolic interpreter encounters an operation
outside the supported formula grammar, it forces the desti-
nation operand to be concrete. For instance, if the operation
is x = parseFloat(s) for a symbolic string s, x and
s can be replaced with their concrete values from the trace
(say, 4.3 and “4.3”). This allows symbolic computation to
continue for other values in the execution.

Path constraint extractor. The execution trace records
each control-flow branch (e.g., if statement) encountered
during execution, along with the concrete value (true or
false) representing whether the branch was taken. During
symbolic execution, the corresponding branch condition is
recorded by the path constraint extractor if it is symbolic.
As execution continues, the formula formed by conjoining
the symbolic branch conditions (negating the conditions of
branches that were not taken) is called the path constraint. If
an input value satisfies the path constraint, then the program
execution on that input will follow the same execution path.
To explore a different execution path, Kudzu selects a

branch on the execution path and builds a modified path
constraint that is the same up to that branch, but that has
the negation of that branch condition (later conditions from
the original branch are omitted). An input that satisfies
this condition will execute along the same path up to the
selected branch, and then explore the opposite alternative.
There are several strategies for picking the order in which
branch conditions can be negated — Kudzu currently uses
a generational search strategy [11].

Constraint solver.Most symbolic execution tools in the past
have relied on an existing constraint solver. However, Kudzu
generates a rich set of constraints over string, integer and
boolean variables for which existing off-the-shelf solvers
are not powerful enough. Therefore, we have built a new
solver for our constraints (we present the algorithm and
design details in Section V). In designing this component,
we examined the symbolic constraints Kudzu generates
in practice. From the string constraints arising in these,
we distilled a set of primitive operations required in a
core constraint language. (This core language is detailed
in Section IV, while the solver’s full interface is given in
Section VI.) We justify our intuition that solving the core
constraints is sufficient to model JavaScript string operations
in Section VI, where we show a practical translation of
JavaScript string operations into our constraint language.

Input feedback. Solving the path constraint formula using
the solver creates a new input that explores a new program
path. These newly generated inputs must be fed back to
the JavaScript program: for instance simulated user inputs
must go in their text fields, and GUI events should be
replayed in the same sequence as on the original run. The
input feedback component is responsible for this task. As a
particular HTML element (e.g a text field) in a document
is likely allocated a different memory address on every
execution, the input feedback component uses XPath [29]
and DOM identifiers to uniquely identify HTML elements
across executions and feed appropriate values into them. If
an input comes from an attribute for a DOM object, the input
feedback component sets that attribute when the object is
created. If the input comes via a property of an event that
is generated by the browser when handling cross-window
communication, such as the origin and data properties
of a postMessage event, the component updates that
property when the JavaScript engine accesses it. Kudzu
instruments the web browser to determine the context of
accesses, to distinguish between accesses coming from the
JavaScript engine and accesses coming from the browser
core or instrumentation code.

B. Application-specific components

Next, we discuss three components that are specialized for
the task of finding client-side code injection vulnerabilities: a
sink-source identification component that determines which
critical sinks might receive untrusted input, a vulnerability
condition extractor that captures domain knowledge about
client-side code injection attacks, and the attack verification
component that checks whether inputs generated by the tool
in fact represent exploits.

Sink-source identification. To identify if external inputs
are used in critical sink operations such as eval or
document.write, we perform a dynamic data flow anal-
ysis on the execution trace. As outlined earlier, we treat all
URL data, data received over cross-window communication
abstractions (such as postMessage), and data filled into
user data fields as potentially untrusted. The data flow
analysis is similar to a dynamic taint analysis. Any execution
trace that reveals a flow of data to a critical sink is subject
to further symbolic analysis for exploit generation. We
use an existing framework, FLAX, for this instrumentation
and taint-tracking [24] in a manner that is faithful to the
implementation of JavaScript in the WebKit interpreter.

Vulnerability condition extractor. An input represents an
attack against a program if it passes the program’s validation
checks, but nonetheless implements the attacker’s goals (i.e.,
causes a client-side code injection attack) when it reaches a
critical sink. The vulnerability condition extractor collects
from the symbolic interpreter a formula representing the
(possibly transformed) value used at a critical sink, and
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combines it with the path constraint to create a formula
describing the program’s validation of the input.2. To de-
termine whether this value constitutes an attack, the vulner-
ability condition extractor applies a sink-specific vulnera-
bility condition specification, which is a (regular) grammar
encoding a set of strings that would constitute an attack
against a particular sink. This specification is conjoined with
the formula representing the transformed input to create a
formula representing values that are still dangerous after the
transformation.
For instance, in the case of the eval sink, the vulnera-

bility specification asserts that a valid attack should be zero
or more statements each terminated by a ‘;’, followed by
the payload. Such grammars can be constructed by using
publicly available attack patterns [13]. The tool’s attack
grammars are currently simple and can be extended easily
for comprehensiveness and to incorporate new attacks.
To search only for realistic attacks, the specification also

incorporates domain knowledge about the possible values
of certain inputs. For instance, when a string variable cor-
responds to the web URL for the application, we assert that
the string starts with the same domain as the application.

Attack verification. Kudzu automatically tests the exploit
instance by feeding the input back to the application, and
checking if the attack payload (such as a script with an alert
message) is executed. If this verification fails, Kudzu does
not report an alarm.

IV. CORE CONSTRAINT LANGUAGE

In order to support a rich language of input constraints
with a simple solving back end, we have designed an
intermediate form we call the core constraint language.
This language is rich enough to express constraints from
JavaScript programs, but simple enough to make solving the
constraints efficient. In this section we define the constraint
language, analyze its expressiveness and the theoretical
complexity of deciding it, and compare its expressiveness
to the core languages of previous solvers.

A. Language Definition

The abstract syntax for our core constraint language is
shown in Figure 2. A formula in the language is an ar-
bitrary boolean combination of constraints. Variables which
represent strings may appear in five types of constraints. The
first three constraint types indicate that a string is a member
of the language defined by a regular expression, that two
strings are equal, or one string is equal to the concatenation
of two other strings. The two remaining constraints relate
the length of one string to a constant natural number, or to
the length of another string, by any of the usual equality or

2Sanitization for critical client-side sink operations may happen on the
server side (when data is sent back via XMLHttpRequest). Our imple-
mentation handles this by recognizing such transformations using approxi-
mate tainting techniques [24] for data transmitted over XMLHttpRequest

Formula ::= ¬Formula
| Formula ∧ Formula
| Constraint

Constraint ::= Var ∈ RegExp
| Var = Var
| Var = Var ◦ Var
| length(Var) Rel Number
| length(Var) Rel length(Var)

RegExp ::= Character
| ε

| RegExp RegExp
| RegExp|RegExp
| RexExp*

Rel ::= < | ≤ | = | ≥ | >

Figure 2: Abstract grammar of the core constraint language.

ordering operations. Regular expressions are formed from
characters or the empty string (denoted by ε) via the usual
operations of concatenation (represented by juxtaposition),
alternation (|), and repetition zero or more times (Kleene
star *).

The constraints all have their usual meanings. Any number
of variables may be introduced, and Characters are drawn
from an arbitrary non-empty alphabet, but Numbers must be
non-negative integers. For present purposes, strings may be
of unbounded length, though we will introduce upper bounds
on their lengths later.

B. Expressiveness and Complexity

Though the core constraint language is intentionally small,
it is not minimal: some types of constraints are included for
the convenience of translating to and from the core language,
but do not fundamentally increase its expressiveness. String
equality, comparisons between lengths and constants, and
inequality comparisons between lengths can be expressed
using concatenation, regular expressions, and equality be-
tween string lengths respectively; the details are omitted for
space.

Each of the remaining constraint types (regular expres-
sion membership, concatenation, and length) makes its own
contribution to the expressiveness of the core constraints.
Appendix A gives examples of the sets of strings that each
constraint type can uniquely define. The core constraint lan-
guage is expressive enough that the complexity of deciding
it is not known precisely; it is at least PSPACE-hard. These
relationships are summarized in Figure 3. The complexity of
our core constraint language falls to NP-complete when the
lengths of string variables are bounded, as they are in our
implementation. Further details are in the extended version
of this paper [23].
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Figure 3: Relations between the unbounded versions of
several theories of strings. Theories higher in the graph are
strictly more expressive but are also at least as complex
to decide. Kudzu’s core constraint language (shaded) is
strictly more expressive than either the core language of
HAMPI [16] or the theory of word equations and an equal
length predicate (the “pure library language” of [4]).

C. Expressiveness Comparison

Our system’s core constraint language is more expressive
than the constraints used in similar previous systems, and
this expressiveness is key in allowing it to handle a more
complex class of applications.
Bjørner et al. [4] present a “pure library language” that,

like our core constraint language, includes word equations
and the ability to assert that two strings have the same length,
so like our language its decidability is open. However,
their language does not include regular expressions. Regular
expressions may be less common in the .NET applications
Bjørner et al. study, but they are used ubiquitously in
JavaScript, so regular expression support is mandatory in our
domain. Similarly the work of Caballero et al. [3], [7] deals
with programs compiled from C-family languages, whose
string operations are much more limited.
The DPRLE tool [14] focuses on a class of constraints that

combine concatenation and regular expression matching, but
in a more limited way than our tool supports. DPRLE ad-
dresses a different problem domain, since it gives solutions
for constraints over languages (potentially infinite sets of
strings) rather than single strings, but this makes the task
significantly more difficult. We were unable to express the
constraints from our application in DPRLE’s input format or
any straightforward extension of it. For instance, there is no
way to express the constraint that two language expressions
should be equal, not surprising since such constraints in
general are undecidable [8].
HAMPI [16] provides support for regular expression

constraints (and in fact we build on its implementation for

this feature), but its support for other constraints is limited,
particularly by the fact that it supports only a single string
variable. The variable can be concatenated with constant
strings, but these string expressions cannot be compared with
each other, only with regular expressions, so HAMPI lacks
the full generality of word equations. For instance, HAMPI
constraints cannot define the set {uv#u#v : u, v ∈ {0, 1}∗}.

It is worth reemphasizing that these limitations are not just
theoretical: they make these previous systems unsuitable for
our applications. One of the most common operations in
the programs we examine is to parse a single input string
(such as a URL) into separate input variables using split
or repeated regular expression matching. Representing the
semantics of such an operation requires relating the contents
of one string variable to those of another, something that
neither DPRLE nor HAMPI supports.

V. CORE CONSTRAINT SOLVING APPROACH

In this section, we explain our algorithm for solving the
core set of constraints. We introduce a bounded version
of the constraints where we assume a user-supplied upper
bound k on the length of the variables. This allows us to
employ a SAT-based solution strategy without reducing the
practical expressiveness of the language.
The algorithm satisfies three important properties, whose

informal proof appears in the extended version of this
paper [23]:

1) Soundness. Whenever the algorithm terminates with an
assignment of values to string variables, the solution
is consistent with the input constraints.

2) Bound-k completeness. If there exists a solution for
the string variables where all strings have length k or
less, then our algorithm finds one such solution.

3) Termination. The algorithm requires only a finite num-
ber of steps (a function of the bound) for any input.

The solver translates constraints on the contents of strings
into bit-vector constraints that can be solved with a SAT-
based SMT solver. For this purpose, the solver translates
each input string into a sequence of n-bit integers (n = 8 in
the current implementation). Each string variable S also has
an associated integer variable LS representing its length. A
single string is converted to a bit-vector by concatenating
the binary representations of each character. Then, the bit-
vectors representing each string are themselves concatenated
into a single long bit-vector. (The order in which the
strings are concatenated into the long vector reflects the
concatenation constraints, as detailed in step 1 below.) The
solver passes the constraints over this bit vector to a SMT
(satisfiability modulo theories) decision procedure for the
theory of bit vectors, STP [10] in our implementation.
Informally, it is convenient to refer to the combined bit
vector as if it were an array indexed by character offsets, but
we do not use STP’s theory of arrays, and character offsets
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Input: C : constraint list
Output: (IsSat : bool, Solutions : string list)
G← BuildConcatGraph(C);
(C′, StrOrderMap)← DecideOrder(G);
C ← C ∪ C′;
FailLenDB : length assignment list← ∅;
while true do

(X, lengths)← SolveLengths(C,FailLenDB);
if (X = UNSAT) then

print “Unsatisfiable”;
halt(false, ∅);

end
Final : bitvector constraints;
Final← CreateBVConstraints(StrOrderMap, C, lengths);
(Result,BVSolutions)← BVSolver(Final);
if (Result = SAT) then

print “Satisfiable”;
printSolutions(BVSolutions, lengths, StrOrderMap);
halt(true,BVsToStrings(BVSolutions));

end
else

FailLenDB← FailLenDB ∪ lengths;
end

end

Figure 4: Algorithm for solving the core constraints.

are multiplied by n to give bit offsets before producing the
final constraints.
Our algorithm is shown in Figure 4. At a high level,

it has three steps. First, it translates string concatenation
constraints into a layout of variables (with overlap) in the
final character array mentioned above. Second, it extracts
integer constraints on the lengths of strings and finds a
satisfying length assignment using the SMT solver. Finally,
given a position and length for each string, the solver
translates the constraints on the contents of each string into
bit-vector constraints and checks if they are satisfiable.
In general, because of the interaction of length constraints

and regular expressions, the length assignment chosen in step
2 might not correspond to satisfiable contents constraints,
even when a different length assignment would. So if step 3
fails to find a satisfying assignment, the algorithm returns to
step 2 to generate a new length assignment (distinct from any
tried previously). Steps 2 and 3 repeat until the solver finds
a satisfying assignment, or it has tried all possible length
assignments (up to the length bound k).

Step 1: Translating concatenation constraints.. The intu-
ition behind Kudzu’s handling of concatenation constraints
is that for a constraint S1 = S2 ◦ S3, it would be sufficient
to ensure that S2 comes immediately before S3 in the final
character array, and to lay out S1 as overlapping with S2

and S3 (so that S1 begins at the same character as S2 and
ends at the same character as S3). This overlapping layout
also has the advantage of reducing the total length of bit-
vectors required. Each concatenation constraint suggests an
ordering relation among the string variables, but it might
not be possible to satisfy all such ordering constraints

S1

S2 S3

S4 S5

S6

S7

L

L L

R

R R(1,1)

(2,2) (3,3) (4,4)

(3,4)(2,3)

(1,3)

S1 = S2 . S3
S3 = S4 . S5
S6 = S5 . S7

INPUT CONCAT CONSTRAINTS

Figure 5: A sample concat graph for a set of concatenation
constraints. The relative ordering of the strings in the final
character array is shown as start and end positions in
parentheses alongside each node.

simultaneously.
To systematically choose an ordering, the solver builds

a graph of concatenation constraints (a concat graph for
short). The graph has a node for each string variable, and for
each constraint S1 = S2◦S3, S2 and S3 are the left and right
children (respectively) of S1. An example of such a graph is
shown in Figure 5. Without loss of generality, we can assume
that the graph is acyclic: if there is a cycle from S1 to S2

to S3 . . . back to S1, then S1= S2 ◦ S3 ◦ · · · ◦ S1 (or some
other order), so all the variables other than S1 must be the
empty string, and can be removed from the constraints. (In
our applications the constraints will in any case be acyclic by
construction.) Given this graph, the algorithm then chooses
the relative ordering of the strings in the character array by
assigning start and end positions to each node with a post-
order traversal of the graph. (In Figure 5, these positions are
shown in parentheses next to each node.)
For the layout generated by the algorithm to be correct, the

concat graph must be a DAG in which each internal node
has exactly two children, and those children are adjacent
in the layout. (This implies that the graph is planar.) The
graph may not have these properties at construction; for
instance, Figure 6 gives a set of example constraints with
contradictory ordering requirements: S2 cannot be simulta-
neously to the left and to the right of S3. The algorithm
resolves such requirements by duplicating a subtree of the
graph (for instance as shown in the right half of Figure 6).
To maintain the correct semantics, the algorithm adds string
equality constraints to ensure that any duplicated strings
have the same contents as the originals. The algorithm
performs duplications to ensure that the graph satisfies the
correctness invariant, but our current algorithm does not
attempt to perform the minimal number of copies (for
instance, in Figure 6 it would suffice to copy either only
S2 or only S3), which in our experience has not hurt the
solver’s performance.

Step 2: Finding a satisfiable length assignment. Each
string variable S has an associated length variable LS . Each
core string constraint implies a corresponding constraint
on the lengths of the strings, as detailed in Table I. For
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S1

S2 S3

S4
L LR R

S1

S2 S3

S4

L LR R

S3_COPY S2_COPY

COPY CREATION

(1,1) (2,2) (3,3) (4,4)

(3,4)(1,2)

S2 = S2_COPY
S3 = S3_COPY

NEW CONSTRAINTS
DUE TO COPY CREATION

S1 = S2 . S3
S4 = S3 . S2

INPUT CONCAT CONSTRAINTS

Figure 6: A set of concat constraints with contradictory
ordering requirements. Nodes are duplicated to resolve the
contradiction.

the regular expression containment constraint (S1 ∈ R),
the set of possible lengths is an ultimately periodic set:
whether a length is possible depends only on its remainder
when divided by a fixed period, except for a finite set of
exceptions. (Yu et al. use the equivalent concept of a semi-
linear set in a conservative automaton-based approach [30].)
The details of computing this set are covered in the lit-
erature [20]; we note that such sets can be conveniently
represented with our SMT solver since it supports a modulus
operation. At each iteration of step 2, the solver conjoins
the length constraints corresponding to all of the original
string constraints, along with a constraint to rule out each
length assignment that had previously been tried, and passes
this formula to the SMT solver. If it returns a satisfying
assignment, it represents a new length assignment to try;
if the constraint is unsatisfiable, then so were the original
string constraints.

Core Constraint Implication on lengths
S1 = S2 ◦ S3 LS1

= LS2
+ LS3

S1 ∈ R LS1
∈ LengthSet(R)

S1 = S2 LS1
= LS2

length(S1) � i LS1
� i

length(S1) � length(S2) LS1
� LS2

Table I: Length constraints implied by core string con-
straints, where LS is the length of a string S, and � ranges
over the operators {<,≤,=,≥,>}.

It is not necessary for correctness that the length abstrac-
tion performed by the solver be precise, but determining
precise length bounds improves performance by avoiding
wasted iterations. In the complete system, the integer con-
straints over lengths are solved together with integer con-
straints arising directly from the original program, discussed
in Section VI. In our experience it is important for good
performance to solve these two sets of integer constraints
together. The two sets of constraints may be interrelated,
and solving them together prevents the solver from wasting
time exploring solutions that satisfy one set but not the other.

Step 3: Encoding as bitvectors. Given the array layout and
lengths computed in steps 1 and 2, the remaining constraints
over the contents of strings can be expressed as constraints
over fixed-size bit-vectors. String equality translates directly

into bit-vector equality. For the encoding of regular expres-
sion constraints, we reuse part of the implementation of
the HAMPI tool [16]. At a high-level, the translation first
unrolls uses of the Kleene star ∗ in a regular expression
into a finite number of repetitions (never more than the
string length). Next, where the regular expression has con-
catenation, HAMPI determines all possible combinations of
lengths that sum to the total length, and instantiates each as a
conjunction of constraints. Along with the alternations that
appeared in the original regular expression, each of these
conjunctions also represents an alternative way in which the
regular expression could match the string. To complete the
translation, the choice between all of these alternatives is
represented with a disjunction. (See [16] for a more detailed
explanation and some optimizations.)
HAMPI supports only a single, fixed-length input, so we

invoke it repeatedly to translate each constraint between a
regular expression and a string into an STP formula. We then
combine each of these translations with our translations of
other string contents constraints (e.g., string equality), and
conjoin all of these constraints so that they apply to the
same single long character array. It is this single combined
formula that we pass to the SMT solver (STP) to find a
satisfying assignment.

VI. REDUCING JAVASCRIPT TO STRING CONSTRAINTS

In this section we describe our tool’s translation from
JavaScript to the language of our constraint solver, focusing
on the treatment of string operations. We start by giving the
full constraint language the solver supports, then describe
our general approach to modeling string operations, our use
of concrete values from the dynamic trace, and the process of
translating real regular expressions into textbook-style ones.

Full constraint language. The core constraint language
presented in Section IV captures the essence of our solving
approach, but it excludes several features for simplicity, most
notably integer constraints. The full constraint language sup-
ported by our solver supports values of string, integer, and
boolean types, and its grammar is given in Figure 8, along
with its type system in Figure 7. The additional constraints
are solved at step 2 of the string solution procedure, together
with the integer constraints on the lengths of strings. To
match common JavaScript implementations (which reserve
a bit as a type tag), we model integers as 31-bit signed bit-
vectors in our SMT solver, which supports all the integer
operations that JavaScript does. The solver replaces each
toString constraint with the appropriate string once a
value for its argument is selected: for instance, if i is given
the value 12, toString(i) is replaced with “12”.

JavaScript string operations. JavaScript has a large library
of string operations, and we do not aim to support every
operation, or the full generality of their behavior. Beyond the
engineering challenge of building such a complete transla-
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τ ::= string | int | bool
ConstRegex ::= Regex | CapturedBrack(R, i) |

BetweenCapBrack(R, i, j)

Figure 7: Type system for the full constraint language
S1 : string = (S2 : string) ◦ (S3 : string) ◦ · · ·

I1 : int = length(S : string)
S1 : string ∈ R : ConstRegex
S1 : string /∈ R : ConstRegex

I1 : int = (I2 : int) {+,−, ·, /} (I3 : int)
B1 : bool = (A1 : τ) {=, �=} (A2 : τ)
B1 : bool = (I1 : int) {<,≤,≥, >} (I2 : int)
B1 : bool = ¬(B2 : bool)
B1 : bool = (B1 : bool) {∧,∨} (B2 : bool)

S1 : string = toString(I1 : int)

Figure 8: Grammar and types for the full constraint
language including operations on strings, integers, and
booleans.

function validate (input) {
//input = ’{"action":"","val":""}’;
mustMatch = ’{]:],]:]}’;
re1 =/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;
re2 =/"[ˆ"\\\n\r]*"|true|false|null|

-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;
re3 = /(?:ˆ|:|,)(?:\s*\[)+/g;
rep1 = str.replace(re1, "@");
rep2 = rep1.replace(re2, "]");
rep3 = rep2.replace(re3, "");
if(rep3==mustMatch) { eval(input); return true; }
return false; }

Figure 9: Example of a regular-expression-based validation
check, adapted from a real-world JavaScript application. This
illustrates the complexity of real regular expression syntax.

tion, having very complex symbolic translations for common
operators would likely cause the system to bog down, and
the generality would usually be wasted. Instead, our choice
has been to model the string operations that occur commonly
in web applications, and the core aspects of their behavior.
For other operations and behavior aspects our tool uses
values from the original execution trace (described further
below), so that they are accurate with respect to the original
execution even if the tool cannot reason symbolically about
how they might change on modified executions. The detailed
translation from several common operators (a subset of those
supported by our implementation) to our constraint language
is shown in Table II.

Using dynamic information. One of the benefits of dy-
namic symbolic execution is that it provides the flexibil-
ity to choose between symbolic values (which introduce
generality) and concrete values (which are less general,
but guaranteed to be precise) to control the scope of the
search process. Our tool’s handling of string constraints
takes advantage of concrete values from the dynamic traces
in several ways. An example is string replace, which
is often used in sanitization to transform unsafe characters
into safe ones. Our translation uses a concrete value for
the number of occurrences of the searched-for pattern: if

a pattern was replaced six times in the original run, the
tool will search for other inputs in which the pattern occurs
six times. This sacrifices some generality (for instance, if a
certain attack is only possible when the string appears seven
times). However, we believe this is a beneficial trade-off
since it allows our tool to analyze and find bugs in many uses
of replace. For comparison, most previous string con-
straint solvers do not support replace at all, and adding
a replace that applied to any number of occurrences of a
string (even limited to single-character strings) would make
our core constraint language undecidable in the unbounded
case [6].

Regular expressions in practice. The “regular expressions”
supported by languages like JavaScript have many more
features than the typical definition given in a computability
textbook (or Figure 2). Figure 9 shows an example (adapted
from a real web site) of one of many regular expressions
Kudzu must deal with. Kudzu handles a majority of the
syntax for regular expressions in JavaScript, which includes
support for (possibly negated) character classes, escaped
sequences, repetition operators ({n}/?/*/+/) and sub-
match extraction using capturing parentheses. Kudzu keeps
track of the nesting of capturing parentheses, so that it
can express the relation between the input string and the
parts of it that match the captured groups (as shown in
Table II). Kudzu does not currently support back-references
(they are strictly more expressive than true regular expres-
sions), though if we see a need in the future, many uses
of back-references could be translated using (non-regular)
concatenation constraints.

VII. EXPERIMENTAL EVALUATION

We have built a full-implementation of Kudzu using the
WebKit browser, with 650, 7430 and 2200 lines of code in
the path constraint extraction component, constraint solver,
and GUI explorer component, respectively. The system is
written in a mixture of C++, Ruby, and OCaml languages.

We evaluate Kudzu with three objectives. One objective
is to determine whether Kudzu is practically effective in
exploring the execution space of real-world applications and
uncovering new code. The second objective is to determine
the effectiveness of Kudzu as a stand-alone vulnerability dis-
covery tool — whether Kudzu can automatically find client-
side code injection vulnerabilities and prune away false
reports. Finally, we measure the efficiency of the constraint
solver. Our evaluation results are promising, showing that
Kudzu is a powerful system that finds previously unknown
vulnerabilities in real-world applications fully automatically.

A. Experiment Setup

We select 18 subject applications consisting of popular
iGoogle gadgets and AJAX applications, as these were
studied by our previous tool FLAX [24]. FLAX assumes
availability of an external (manually developed) test suite to
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Figure 10: Distribution of string operations in our subject
applications.

seed its testing; in contrast, Kudzu automatically generates
a much more comprehensive test suite and finds the points
of vulnerability without requiring any external test harness
a priori. Further, in our experiments Kudzu discovers 2 new
vulnerabilities within a few hours of testing which were
missed by the FLAX because of its lack of coverage. In
addition, as we show later in this section, many of the
generated constraints are highly complex and not suitable
for manual inspection or fuzzing, whereas Kudzu either
asserts the safety of the validation checks or finds exploits
for vulnerabilities in one iteration as opposed to many rounds
of random testing.
To test each subject application, we seed the system with

the URL of the application. For the gadgets, the URLs are
the same as those used by iGoogle page to embed the gadget.
We configure Kudzu to give a pre-prepared username and
login password for applications that required authentication.
We report the results for running each application under
Kudzu, capping the testing time to a maximum of 6 hours
for each application. All tests ran on a Ubuntu 9.10 Linux
workstation with 2.2 GHz Intel dual-core processors and 2
GB of RAM.

B. Results

Table III presents the final results of testing the subject
applications. The summary of our evaluation highlights
three features of Kudzu: (a) it automatically discovers new
program paths in real applications, significantly enhancing
code coverage; (b) it finds 2 client-side code injection in
the wild and several in applications that were known to
contain vulnerabilities; and (c) Kudzu significantly prunes
away false positives, successfully discarding cases that do
employ sufficient validation checks.

Characteristics of string operations in our applications.
Constraints arising from our applications have an average

of 63 JavaScript string operations, while the remaining

Application # of new Initial / Final Bug
inputs Code Coverage found

Academia 20 30.27 / 76.47% �

AJAXIm 15 49.58 / 77.67% �

FaceBook Chat 54 26.85 / 76.84% -
ParseUri 13 53.90 / 86.10% �

Plaxo 31 5.72 / 76.43% �

AskAWord 10 29.30 / 67.95 % �

Birthday Reminder 27 59.47 / 73.94% -
Block Notes 457 65.06 / 71.50 % �

Calorie Watcher 16 64.54 / 73.53% -
Expenses Manager 133 61.09 / 76.56% -

Listy 19 65.31 / 79.73% �

Notes LP 25 46.62 / 76.67% -
Progress Bar 12 63.60 / 75.09% -

Simple Calculator 1 46.96 / 80.52% �

Todo List 15 72.51 / 86.41% �

TVGuide 6 30.39 / 75.13% �

Word Monkey 20 14.84 / 75.36% �

Zip Code Gas 11 59.05 / 74.28% -

Average 51 46.95 / 76.68% 11

Table III: The top 5 applications are AJAX applications,
while the rest are Google/IG gadget applications. Column
2 reports the number of distinct new inputs generated, and
column 3 reports the increase in code coverage from the
initial run to and the final run.

are boolean, logical and arithmetic constraints. Figure 10
groups the observed string operations by similarity. The
largest fraction are operations like indexOf that take string
inputs and return an integer, which motivate the need for
a solver that reasons about integers and strings simulta-
neously. A significant fraction of the operations, including
subtring, split and replace, implicitly give rise
to new strings from the original one, thereby giving rise
to constraints involving multiple string variables. Of the
match, split and replace operations, 31% are regular
expression based. Over 33% of the regular expressions have
one or more capturing parentheses. Capturing parentheses in
regular expression based match operations lead to constraints
involving multiple string variables, similar to operations such
as split.

These characteristics show that a significant fraction of the
string constraints arising in our target applications require a
solver that can reason about multiple string variables. We
empirically see examples of complex regular expressions
as well as concatenation operations, which stresses the
need for our solver that handles both word equations and
regular expression constraints. Prior to this work, off-the-
shelf solvers did not support word equations and regular
expressions simultaneously.

Vulnerability Discovery. Kudzu is able to find client-side
code injection vulnerabilities in 11 of the applications tested.
2 of these were not known prior to these experiments
and were missed by FLAX. One of them is on a social-
networking application (http://plaxo.com) that was
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Figure 11: Kudzu code coverage improvements over the
testing period. For each experiment, the right bar shows the
increase in the executed code from the initial run to total
code executed. The left bar shows the increase in the code
compiled from initial run to the total code compiled in the
entire test period.

missed by our FLAX tool because the vulnerability exists
on a page linked several clicks away from the initial post-
authentication page. The vulnerable code is executed only
as part of a feature in which a user sets focus on a text
box and uses it to update his or her profile. This is one
of the many different ways to update the profile that the
application provides. Kudzu found that only one of these
ways resulted in a client-side code injection vulnerability,
while the rest were safe. In this particular functionality,
the application fails to properly validate a string from a
postMessage event before using it in an eval operation.
The application implicitly expects to receive this message
from a window hosted at a sub-domain of facebook.com;
however, Kudzu automatically determines that any web
principal could inject any data string matching the format
FB_msg:.*{.*}. This subsequently results in code injec-
tion because the vulnerable application fails to validate the
origin of the sender and the structure of JSON string before
its use in eval.
The second new vulnerability was found in a ToDo

Google/IG gadget. Similar to the previous case, the vul-
nerability becomes reachable only when a specific value is
selected from a dropdown box. This interaction is among
many that the gadget provides and we believe that Kudzu’s
automatic exploration is the key to discovering this use case.
In several other cases, such as AjaxIM, the vulnerable code
is executed only after several events are executed after initial
sign-in page—Kudzu automatically reaches them during its
exploration.

Kudzu did not find vulnerabilities in only one case that
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Figure 12: Benefits from symbolic execution alone (dark
bars) vs. complete Kudzu (light bars). For each experiment,
the right bar shows the increase in the total executed code
when the event-space exploration is also turned on. The left
bar shows the observed increase in the code compiled when
the event-space exploration is turned on.

FLAX reported a bug. This is because the vulnerability
was patched in the time period between our experimental
evaluation of FLAX and Kudzu.

Code and Event-space Coverage. Table III shows the
code coverage by executing the initial URL, and the final
coverage after the test period. Measuring code coverage in
a dynamically compiled language is challenging because all
the application code is not known prior to the experiments.
In our experiments, we measured the total code compiled
during our experiments and the total code executed 3.

Table III shows an average improvement of over 29% in
code coverage. The coverage varies significantly depending
on the application. Figure 11 provides more detail. On
several large applications, such as Facebook Chat, AjaxIM,
and Plaxo, Kudzu discovers a lot of new code during testing.
Kudzu is able to concretely execute several code paths, as
shown by the increase in the right-side bars in Figure 11.
On the other less complex gadget applications, most of the
relevant code is observed during compilation in the initial
run itself, leaving a relatively smaller amount of new code
for Kudzu to discover. We also manually analyzed the source
code of these applications and found that a large fraction of
their code branches were not dependent on data we treat as
untrusted.

To measure the benefits of symbolic execution alone, we
repeated the experiments with the event-space exploration

3One unit of code in our experiments is a JavaScript bytecode compiled
by the interpreter. To avoid counting the same bytecode across several runs,
we adopted a conservative counting scheme. We assigned a unique identifier
to each bytecode based on the source file name, source line number, line
offset and a hash of the code block (typically one function body) compiled.
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Application # of initial # of total Total events
events fired events fired discovered

Academia 20 78 310
AJAXIm 72 481 988

FaceBook Chat 15 989 1354
ParseUri 5 16 17
Plaxo 88 381 688

AskAWord 2 8 11
Birthday Reminder 12 20 20

Block Notes 7 85 319
Calorie Watcher 14 18 22

Expenses Manager 10 107 1473
Listy 15 470 638

Notes LP 10 592 1034
Progress Bar 8 24 36

Simple Calculator 17 34 67
Todo List 8 26 61
TVGuide 17 946 1517

Word Monkey 3 10 22
Zip Code Gas 12 12 12

Average 18.61 238.72 477.17

Table IV: Event space Coverage: Column 2 and 3 show the
number of events fired in the first run and in total. The last
column shows the total events discovered during the testing.

turned off during the test period and report the comparison
to full-featured Kudzu in Figure 12. We consistently observe
that symbolic execution alone discovers and executes a
significant fraction of the application by itself. The event-
exploration combined with symbolic execution does perform
strictly better than symbolic execution in all but 3 cases. In a
majority of the cases, turning on the event-space exploration
significantly complements symbolic execution, especially
for the AJAX applications which have a significant GUI
component. In the 3 cases where improvements are not
significant, we found that the event exploration generally
either led to off-site navigations or the code executed could
be explored by symbolic execution alone. For example, in
the parseUri case, same code is executed by text-box input
as well as by clicking a button on the GUI.
Table IV shows the increase in number of events executed

by Kudzu from the initial run to the total at the end of test
period. These events include all keyboard and mouse events
which result in execution of event handlers, navigation,
form submissions and so on. We find that new events are
dynamically generated during one particular execution as
well as when new code is discovered. As a result, Kudzu
gradually discovers new events and was able to execute
approximately 50% of the events it observes during the
period of testing.

Effectiveness. Kudzu automatically generates a test suite of
over 50 new distinct inputs on average for an application in
the test period (shown in column 2 of table III).
In the exploitable cases we observed, Kudzu was able

to show the existence of a vulnerability with an attack
string once it reached the point of vulnerability. That is,

its constraint solver correctly determines the sufficiency or
insufficiency of validation checks in a single query without
manual intervention or undirected iteration. This eliminates
false positives significantly in practice. For instance, Kudzu
found that the Facebook web application has several uses of
postMessage data in eval constructs, but all uses were
correctly preceded by checks that assert that the origin of the
message is a domain ending in .facebook.com. In con-
trast, the vulnerability in Plaxo fails to check this and Kudzu
identifies the vulnerability the first time it reaches that point.
Some of the validation checks Kudzu deals with are quite
complex — Figure 9 shows an example which is simplified
from a real application. These examples are illustrative of
the need for automated reasoning tools, because checking
the sufficiency of such validation checks would be onerous
by hand and impractical by random fuzzing. Lastly, we point
out that like most other vulnerability discovery tools, Kudzu
can have false negatives because it may fail to cover code,
or because of overly strict attack grammars.

Constraint Solver Evaluation. Figure 13 shows the running
times for solving queries of various input constraint sizes.
Each constraint is a either a JavaScript string, arithmetic,
logical, or boolean operation. The sizes of the equations
varied from 1 to up to 250 constraints. The solver decides
satisfiability of the constraints typically under a second for
satisfiable cases. As expected, to assert unsatisfiability, the
solver often takes time varying from nearly a second to 50
seconds. The variation is large because in many cases the
solver asserts unsatisfiable by asserting the unsatisfiability
of length constraints, which is inexpensive because the
step of bit-vector encoding is avoided. In other cases, the
unsatisfiability results only when the solver determines the
unsatisfiability of bit-vector solutions.
Our solver requires only an upper bound on the lengths

of input variables, and is able to infer satisfiable lengths of
variables internally. In these experiments, we increase the
upper bound of the input variables from 10 to 100 characters
in steps of 20 each. If the solver asserts unsatisfiability
up to the length bound of 100, the constraints are deemed
unsatisfiable.

VIII. RELATED WORK

Kudzu is the first application of dynamic symbolic execu-
tion to client-side JavaScript. Here, we discuss some related
projects that have applied similar techniques to server-side
web applications, or have used different techniques to search
for JavaScript bugs. Finally, we summarize why we needed
to build a new string constraint solver.

Server-side analysis. JavaScript application code is similar
in some ways to server-side code (especially PHP); for
instance, both tend to make heavy use of string operations.
Several previous tools have demonstrated the use of sym-
bolic execution for finding SQL injection and reflected or
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Figure 13: The constraint solver’s running time (in seconds)
as a function of the size of the input constraints (in terms
of the number of symbolic JavaScript operations)

stored cross-site scripting attacks to code written in PHP
and Java [1], [17], [28]. However, JavaScript code usually
parses its own input, so JavaScript symbolic execution
requires more expressive constraints, specifically to relate
different strings that were previously part of a single string.
Additional challenges unique to JavaScript arise because
JavaScript programs take many different kinds of input,
some of which come via user interface events.
Like Kudzu, the Saner [2] tool for PHP aims to check

whether sanitization routines are sufficient, not just that they
are present. However their techniques are quite different:
they select paths and model transformations statically, then
perform testing to verify some vulnerabilities. Their def-
inition of sanitization covers only string transformations,
not validation checks involving branches, which occur fre-
quently in our applications.

Analysis frameworks for JavaScript. Several works have
recently applied static analysis to detect bugs in JavaScript
applications (e.g., [9], [12]). Static analysis is complemen-
tary to symbolic execution: if a static analysis is sound, an
absence of bug reports implies the absence of bugs, but static
analysis warnings may not be enough to let a developer
reproduce a failure, and in fact may be false positives.
FLAX uses taint-enhanced blackbox fuzzing to detect if

the JavaScript application employs sufficient validation or
not [24]; like Kudzu, it searches for inputs to trigger a
failure. However, FLAX requires an external test suite to
be able to reach the vulnerable code, whereas Kudzu gen-
erates a high-coverage test suite automatically. Also, FLAX
performs only black-box fuzz testing to find vulnerabilities,
while Kudzu’s use of a constraint solver allows it to reason
about possible vulnerabilities based on the analyzed code.

Crawljax is a recently developed tool for event-space
exploration of AJAX applications [21]. Specifically, Crawl-
jax builds a static representation of a Web 2.0 application
by clicking elements on the page and building a state
graph from the resulting transitions. Kudzu’s value space
exploration complements such GUI exploration techniques
and enables a more complete analysis of the application
using combined symbolic execution and GUI exploration.

String constraint solvers. String constraint solvers have
recently seen significant development, and practical tools
are beginning to become available, but as detailed in Sec-
tion IV-C, no previous solvers would be sufficient for
JavaScript, since they lack support for regular expres-
sions [3], [4], [7], string equality [14], or multiple vari-
ables [16], which are needed in combination to reason
about JavaScript input parsing. In concurrent work, Veanes
et al. give an approach based on automata and quantified
axioms to reduce regular expressions to the Z3 decision
procedure [26]. Combined with [4], this would provide
similar expressiveness to Kudzu.

IX. CONCLUSION

With the rapid growth of AJAX applications, JavaScript
code is becoming increasingly complex. In this regard,
security vulnerabilities and analysis of JavaScript code is
an important area of research. In this paper, we presented
the design of the first complete symbolic-execution based
system for exploring the execution space of JavaScript
programs. In making the system practical we addressed
challenges ranging from designing a more expressive lan-
guage for string constraints to implementing exploration and
replay of GUI events. We have implemented our ideas in
a tool called Kudzu. Given a URL for a web application,
Kudzu automatically generates a high-coverage test suite.
We have applied Kudzu to find client-side code injection
vulnerabilities and Kudzu finds 11 vulnerabilities (2 previ-
ously unknown) in live applications without producing false
positives.
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APPENDIX

A. Expressiveness

Each of the following constraint types allows new sets of
strings to be defined:

• The theory of just concatenation constraints v1 = v2◦v3

(plus constant strings) is equivalent to the theory of
word equations, which is known to be neither a subset
nor a superset of the theory of regular expressions in
terms of expressiveness [15]. For instance, the set of
strings that consist of a single string repeated {ww :
w ∈ Σ∗} can be easily expressed with a word equation,
but is not regular.

• Conversely, the regular languages expressed by regular
expressions include sets of strings that cannot be ex-
pressed solely with word equations. An example given
in [15] is the set of strings consisting of a and b over
a three-letter alphabet {a,b,c}, which is represented
by the regular expression (a|b)*.

• The constraint length(v1) = length(v2) also adds
expressiveness, since the language {u$v : |u| = |v|} is
not regular, and the relation of two strings having equal
length also can not be expressed in word equations for
any non-unary alphabet [15].
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