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ABSTRACT
Scripting vulnerabilities, such as cross-site scripting (XSS),
plague web applications today. Most research on defense
techniques has focused on securing existing legacy applica-
tions written in general-purpose languages, such as Java
and PHP. However, recent and emerging applications have
widely adopted web templating frameworks that have received
little attention in research. Web templating frameworks of-
fer an ideal opportunity to ensure safety against scripting
attacks by secure construction, but most of today’s frame-
works fall short of achieving this goal.

We propose a novel and principled type-qualifier based mech-
anism that can be bolted onto existing web templating frame-
works. Our solution permits rich expressiveness in the tem-
plating language while achieving backwards compatibility, per-
formance and formal security through a context-sensitive auto-
sanitization (CSAS) engine. To demonstrate its practicality,
we implement our mechanism in Google Closure Templates,
a commercially used open-source templating framework that
is used in GMail, Google Docs and other applications. Our
approach is fast, precise and retrofits to existing commer-
cially deployed template code without requiring any changes
or annotations.

Categories and Subject Descriptors: D.4.6 Operat-
ing Systems: Security and Protection; D.1.2 Programming
Techniques: Automatic Programming

General Terms: Languages, Security

Keywords: Cross-site Scripting, Type Systems

1. INTRODUCTION
Scripting vulnerabilities, such as cross-site scripting [36]

and cross-channel scripting [6], are pervasive in web applica-
tions [1, 7, 8, 10, 41], embedded systems [6, 17] and on smart-
phone platforms [9]. A central reason for this wide-spread
prevalence is the ad-hoc nature of output generation from
web applications today. Web applications emit code inter-
mixed with data in an unstructured way. Web application
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output is essentially text strings which can be emitted from
the server-side code (in Java or PHP) or from client-side
code in JavaScript. When a portion of the application out-
put controlled by the attacker is parsed by the browser as a
script, a scripting attack results.

The predominant first-line of defense against scripting vul-
nerabilities is sanitization—the process of applying encoding
or filtering primitives, called sanitization primitives or san-
itizers, to render dangerous constructs in untrusted inputs
inert [1, 38, 49, 50]. However, the practice of manually apply-
ing sanitizers is notoriously prone to errors [1, 27, 33, 41–43].

Web Templating Frameworks. To streamline the out-
put generation from application code, numerous web tem-
plating frameworks have recently emerged and are gain-
ing wide-spread adoption [11–14, 20, 25, 34, 40, 44, 45, 48, 53,
54]. Web templating frameworks allow developers to specify
their application’s output generation logic in code units or
modules called templates. Templates take untrusted inputs
which may be controlled by the attacker and emit web ap-
plication outputs, such as HTML or CSS code, as strings.
String outputs from templates are composed of static or
constant strings written by developers, which are explic-
itly trusted, and untrusted inputs which must be sanitized.
These templates can be compiled into a target language, such
as JavaScript or Java/PHP, as code functions that take un-
trusted data as template arguments and emit the applica-
tion’s output as strings. Templates are written in a differ-
ent language, called a templating language, the semantics of
which are much simpler as compared to that of the target
language. Notably, complex constructs such as JavaScript’s
eval and document.write are not included in the templat-
ing language. Code external to templates is responsible for
invoking compiled templates to obtain the string outputs
and evaluating/rendering them in the browser.

Vision. Ideally, we would like to create web applications
that are secure by construction. In fact, web templating
frameworks offer an ideal opportunity to relieve the develop-
ers from the burden of manual sanitization by auto-sanitizing—
inserting sanitization primitives automatically during the
compilation of templates to server-side or client-side code.
Despite this ideal opportunity, research so far has not broached
the topic of building auto-sanitization defenses in today’s
commercial templating frameworks.

Challenges. In this work, we first identify the following
practical challenges in building reliable and usable auto-
sanitization in today’s web templating frameworks:

• Context-sensitivity. XSS sanitization primitives vary
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significantly based on the context in which the data
sanitized is being rendered. For instance, applying the
default HTML escaping sanitizer is recommended for
untrusted values placed inside HTML tag content con-
text [38]; however, for URL attribute context (such as
src or href) this sanitizer is insufficient because the
javascript URI protocol (possibly masked) can be
used to inject malicious code [21]. We say, therefore,
that each sanitization primitive matches a context in
which it provides safety. Many developers fail to con-
sistently apply the sanitizers matching the context, as
highlighted in a recent study performed on a large com-
mercial application well-audited for security [43].
• Complexity of language constructs. Templating lan-

guages today permit a variety of complex constructs:
support for string data-type operations, control flow
constructs (if-else, loops) and calls to splice the
output of one template into another. Untrusted input
variables may, in such languages, be used in one con-
text along one execution path and a different context
along another path. With such rich language features,
determining the context for each use of untrusted input
variables becomes a path-sensitive, global data-flow
analysis task. Automatically applying correct saniti-
zation on all paths in templating code becomes chal-
lenging.
• Backwards compatibility with existing code. Developers

may have already applied sanitizers in existing tem-
plate code at arbitrary places; an auto-sanitization
mechanism should not undo existing sanitization un-
less it is unsafe. For practical adoption, auto-sanitization
techniques should only supplement missing sanitizers
or fix incorrectly applied ones, without placing unnec-
essary restrictions on where to sanitize data.
• Performance Overhead. Auto-sanitized templates should

have a minimal performance overhead. Previous tech-
niques propose parsing template outputs with a high-
fidelity HTML parser at runtime to determine the con-
text [5]. However, the overhead of this mechanism may
be high and undesirable for many practical applica-
tions.

Context-sensitive Auto-sanitization Problem. We ob-
serve that a set of contexts in which applications commonly
embed untrusted data is known [50]. And, we assume that
for each such context, a matching sanitizer is externally pro-
vided. Extensive recent effort has focused on developing a
library of safe or correctly-implemented sanitization primi-
tives [22, 23, 29, 30, 38, 41]. We propose to develop an auto-
matic system that, given a template and a library of sani-
tizers, automatically sanitizes each untrusted input with a
sanitizer that matches the context in which it is rendered.
By auto-sanitizing templates in this context-sensitive way,
in addition to enforcing the security properties we outline
in Section 2.2, templating systems can ensure that scripting
attacks never result from using template outputs in intended
contexts.

Our Approach & Contributions. In this paper, we ad-
dress the outlined challenges with a principled approach:

• Type Qualifier Based Approach. We propose a type-
based approach to automatically ensure context sen-
sitive sanitization in templates. We introduce context
type qualifiers, a kind of type qualifier that represents

the context in which untrusted data can be safely em-
bedded. Based on these qualifiers, which refine the
base type system of the templating language, we de-
fine a new type system. Type safety in our type sys-
tem guarantees that well-typed templates have all un-
trusted inputs context-sensitively sanitized.
• Type Inference during Compilation. To transform ex-

isting developer-written templates into well-typed tem-
plates, we develop a Context-Sensitive Auto-Sanitiza-
tion (CSAS) engine which runs during the compila-
tion stage of a web templating framework. The CSAS
engine performs two high-level operations. First, it
performs a static type inference to infer context type
qualifiers for all variables in templates. Second, based
on the inferred context types, the CSAS engine auto-
matically inserts sanitization routines into the gener-
ated server-side or client-side code. To the best of
our knowledge, our approach is the first principled
approach using type qualifiers and type inference for
context-sensitive auto-sanitization in templates.
• Real-world Deployability. To show that our design is

practical, we implement our type system in Google
Closure Templates, a commercially used open-source
templating framework that is used in large applica-
tions such as GMail and Google Docs. Our imple-
mentation shows that our approach requires less than
4000 lines of code to be built into an existing commer-
cial web framework. Further, we show that retrofitting
our type system to existing templates used in commer-
cial applications requires no changes or annotations to
existing code.
• Improved Security. Our approach eliminates the criti-

cal drawbacks of existing approaches to auto-sanitiza-
tion in today’s templating frameworks. Though all
the major web frameworks today support customiz-
able sanitization primitives, a majority of them today
do not automatically apply them in templates, leaving
this error-prone exercise to developers. Most others
automatically sanitize all untrusted variables with the
same sanitizer in a context-insensitive manner, a fun-
damentally unsafe design that provides a false sense of
security [50]. Google AutoEscape, the only context-
sensitive abstraction we are aware of, does not handle
the richness of language features we address. We refer
readers to Section 7 for a detailed comparison.
• Fast, Precise and Mostly Static Approach. We eval-

uate our type inference system on 1035 existing real-
world Closure templates. Our approach offers practi-
cal performance overhead of 3 − 9.6% on CPU inten-
sive benchmarks. In contrast, the alternative runtime
parsing approach incurs 78% - 510% overhead on the
same benchmarks. Our approach performs all parsing
and context type inference statically and so achieves
significantly better performance. Our approach does
not sacrifice any precision in context-determination as
compared to the runtime parsing approach— it defers
context-sensitive sanitization to runtime for a small
fraction of output operations in which pure static typ-
ing is too imprecise. Hence, our type system is mostly
static, yet precise.

2. PROBLEM DEFINITION
The task of auto-sanitization is challenging because state-
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Base Types α ::= β | η | β1 → β2 → . . . βk → unit
β ::= bool | int | string | unit

Commands S ::= print (e : β)
| (v : β) := (e : β)
| callTemplate f (e1, . . . ,ek)
| c1 ; S1

| if(e : bool) then S1 else S2 fi
| while(e : bool) S1

| return;
Expressions e ::= (e1 : int) ⊕ (e2 : int)

| (e1 : bool) � (e2 : bool)
| (e1 : string) · (e2 : string)
| const (i : β)
| v : β
| San (f, e : β)

v ::= Identifier

Figure 1: The syntax of a simple templating language. ⊕ rep-
resents the standard integer and bitvector arithmetic operators,
� represents the standard boolean operations and · is string con-
catenation. The San expression syntactically refers to applying
a sanitizer.

of-the-art templating frameworks don’t restrict templates
to be straight-line code. In fact, most templating frame-
works today permit control-flow constructs and string data
operations to allow application logic to conditionally alter
the template output at runtime. To illustrate the issues,
we describe a simple templating language that captures the
essence of the output-generating logic of web applications.
We motivate our approach by showing the various challenges
that arise in a running example written in our templating
language.

2.1 A Simple Templating Language
Our simple templating language is expressive enough to

model Google Closure Templates and several other frame-
works. We use this templating language to formalize and de-
scribe our type-based approach in later sections. It is worth
noting that the simple templating language we present here
is only an illustrative example—our type-based approach is
more general and can be applied to other templating lan-
guages as well.

The syntax for the language is presented in Figure 1. The
templating language has two kinds of data types in its base
type system: the primitive (string, bool, int) types and
a special type (denoted as η) for output buffers, which are
objects to which templates write their outputs. Figure 2(A)
shows a running example in our templating language. For
simplicity, we assume in our language that there is only a
single, global output buffer to which all templates append
their output, similar to the default model in PHP.

Command Semantics. The primary command in the lan-
guage is the print command which appends the value of its
only operand as a string to the output buffer. The running
example has several print commands. Note that the syntax
ensures that the output buffer (η-typed object) can not be
reassigned, or tampered with in the rest of the command
syntax.

Templates are akin to functions: they can call or invoke
other templates via the callTemplate command. This com-
mand allows a template to invoke another template during
its execution, thereby splicing the callee’s outputs into its
own. Parameter passing follows standard pass-by-value se-
mantics.

template contactRender($imgLink, $name) 

{

print (“<img src=\“”); 

if ($name != “”) then

x :=  “/” . $name. “/img?f=”. $imgLink;

else x:= $imgLink; 

fi

print ($x);

print “\”/>” . $name. “<br>”; return; 

} (A)

<img src=“ / /img?f= ”/> <br>$name $imgLink $name

PCDATA 
Context

URI START 
Context

URI PATH 
Context

URI QUERY
Context

PCDATA
Context

(B)

Figure 2: (A) shows a template used as running example. (B)
shows the output buffer after the running example has executed
the path including the true branch of the if statement.

The templating language allows control-flow commands
such as for and if-then-else to allow dynamic construc-
tion of template outputs. It supports the usual boolean
and integer operations as well as string concatenation. We
exclude more complex string manipulation operations like
string substitution and interpolation functions from the sim-
ple language; with simple extensions, their semantics can be
modeled as string concatenations [41].

Restricting Command Semantics. The semantics of
the templating language is much simpler than that of a
general-purpose language that templates may be compiled
to. Notably, for instance, the templating language does not
have any dynamic evaluation commands such as JavaScript’s
eval or document.write. Therefore, final code evaluation
in DOM evaluation constructs or serialization to the HTTP
response stream is performed by external application code.
For instance, Figure 3 below shows a JavaScript applica-
tion code written outside the templating language which
invokes the function compiled from the running example
template. It renders the returned result string dynamically
using a document.write. Therefore, the template code anal-
ysis does not need to model the complex semantics of doc-

ument.write 1 .
<script>

var o = new soy.StringBuilder();    

contactRender({O: o, imglink: $_GET(‘extlink’), 

name: [$_GET(‘name’)] })); 

document.write(o);

</script>

Figure 3: Psuedo-code of how external application code, such as
client-side Javascript, can invoke the compiled templates.

2.2 Problem Definition & Security Properties
In this paper, we focus on the following problem: given a

templating language such as the one in Section 2.1, and a
set of correct sanitization routines for different contexts, the
goal is to automatically apply the correct sanitization prim-
itives during compilation to all uses of untrusted inputs in
constructing template outputs, while satisfying the following
properties.

1The semantics of document.write varies based on
whether the document object is open or closed.
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Property NOS: No Over-Sanitization. The templating
language allows string expressions to be emitted at print

operations. String expressions may be constructed by con-
catenation of constant/static strings and untrusted input
variables; only the latter should be sanitized or else we risk
breaking the intended structure of the template output. For
instance in our running example, the auto-sanitization en-
gine should not place a sanitizer at the statement print

($x), because the expression x consists of a constant string
as well as untrusted input value. Sanitizing at this print
statement may strip out the / or ? characters rendering the
link unusable and breaking the intended structure of the
page.

Property CSAN: Context-Sensitive Sanitization. Each
untrusted input variable should be sanitized with a sanitizer
matching the context in which it is rendered in. However,
this is challenging because untrusted inputs may be used in
two different contexts along two different paths. In our run-
ning example, the $imgLink variable is used both in a URI
context as well as a HTTP parameter context, both of which
have different sanitization requirements. Similary, untrusted
inputs can be rendered in two different contexts even along
the same path, as seen for the variable $name in Figure 2 (B).
We term such use of inputs in multiple contexts as a static
context ambuiguity, which arise because of path-sensitive na-
ture of the template output construction logic and because
of multiple uses of template variables. Section 4 describes
further scenarios where context ambiguity may arise.

Property CR: Context Restriction. Template developers
should be forbidden from mistakenly using untrusted values
in contexts other than ones for which matching sanitizers
are available. Certain contexts are known to be hard to
sanitize, such as in an unqouted JavaScript string literal
placed directly in a JavaScript eval [21], and thus should be
forbidden.

Determining Final Output Start/End Context. For
each template, we infer the contexts in which the template’s
output can be safely rendered. However, since the final out-
put is used external to the template code, providing a guar-
antee that external code uses the output in an intended con-
text is beyond the scope of our problem. For example, it is
unsafe for external code to render the output of the running
example in a JavaScript eval, but such properties must be
externally checked.

2.3 Motivation for Our Approach
If a templating langauge has no control-flow or callTem-

plate constructs and no constructs to create string expres-
sions, all templates would be straight-line code with prints
of constant strings or untrusted variables. Auto-sanitizating
such templates is a straight-forward 3-step process— (a)
parse the template statically using a high-fidelity parser (like
HTMLPurify [23]), (b) determine the context at each print

of untrusted inputs and (c) apply the matching sanitizer to
it. Unfortunately, real templating languages are often richer
like our templating language and more sophisticated tech-
niques are needed.

One possible extension of the approach for straight-line
code is to defer the step of parsing and determing contexts
to runtime execution [5]. We call this approach a context-
sensitive runtime parsing (or CSRP) approach, where a parser
parses all output from the compiled template, determines

the context of each print of untrusted input and sanitizes
it at runtime. This approach has additional performance
overhead due to cost of parsing all application output at
runtime, as previously shown [5] and as we evaluate in Sec-
tion 6. If string operations are supported in the language,
the performance penalty may be exacerbated because of the
need for tracking untrusted values during execution.

Instead, we propose a new “mostly static” approach which
off-loads expensive parsing steps to a static type analysis
phase. Contexts for most uses of untrusted data can be
statically determined and their sanitizers can be selected
during compile-time; only a small fraction need the more
expensive CSRP-like sanitizer selection in our approach—
hence our approach is “mostly static”.

Assumptions. Our type-based approach relies on a set of
assumptions which we summarise below:

1. Canonical Parser. To reliably determine the contexts
in which untrusted inputs are rendered, constant/static
strings in templates must parse according to a canon-
ical grammar which reliably parses in the same way
across major browsers. This restriction is necessary
to ensure that our context determination is consis-
tent with its actual parsing in the client’s browser,
which is challenging because browser parsing behav-
iors vary in idiosyncratic ways. In our approach, tem-
plates not complying with our canonical grammar do
not typecheck as per our type rules defined in section 4.
Google AutoEscape based frameworks such as GWT
and CTemplate already tackle the practical issue of
developing such a canonical grammar [11, 13, 20]; our
engine leverages this existing code base.

2. Sanitizer Correctness. As mentioned previously, we
assume that a set of contexts in which applications
commonly render untrusted inputs is known and their
matching sanitizers are externally available. Creating
sanitizers that work across major browser versions is
an orthogonal challenge being actively researched [22,
23].

3. End-to-End Security. As explained earlier, if the ex-
ternal code renders the template outputs in an unin-
tended context or tampers with the template’s output
before emitting it to the browser, the end-to-end secu-
rity is not guaranteed. Ensuring correctness of external
code that uses template outputs is beyond the scope
of the problem we focus here—lint tools, static analy-
sis and code conformance testing can help enforce this
discipline externally.

3. OUR APPROACH
In our type-based approach, we enforce the aforemen-

tioned security properties by attaching or qualifying vari-
ables and expressions in templates with a new kind of qual-
ifier which we call the context type qualifier. Type qualifiers
are a formal mechanism to extend the basic type safety of
langauge to enforce additional properties [16]. Context type
qualifiers play different roles for the various expressions they
qualify. For an untrusted input variable, the context type
qualifier captures the contexts in which the variable can be
safely rendered. An untrusted input becomes safe for ren-
dering in a certain context only after it is sanitized by a
sanitizer matching that context. Unsanitized inputs have
the UNSAFE qualifier attached, and are not safe to be a part
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Figure 4: Overview of our CSAS engine.

of any expression that is used in a print statement. For con-
stant/static string expressions, context type qualifiers cap-
ture the result of parsing the expression, that is, the start
context in which the expression will validly parse and the
context that will result after parsing the expression. When
the template code constructs an output string expression by
concatenating a constant string and an untrusted input, a
type rule over context qualifiers of the two strings ensures
that the untrusted input is only rendered in contexts for
which it is sanitized.

This rule only enforces the CSAN property in the concate-
nation operation. Several additional rules are needed to en-
force all the outlined security properties to cover all opera-
tions in our templating language. We describe the full type
system with formal type rules over context type qualifiers in
section 4. The type safety of the type system implies that
the security properties outlined in Section 2.2 are enforced.

CSAS Engine. The input to our auto-sanitization engine
is an existing template which may be completely devoid of
sanitizers. We call these templates untyped or vanilla tem-
plates. The task of our auto-sanitization engine is two-fold:
(a) to convert untyped or vanilla templates into an internal
representation (or IR) complying with our type rules (called
the well-typed IR), and (b) to compile the well-typed IR to
the target language code with sanitization. We develop a
CSAS engine in the compiler of a templating framework to
handle these tasks. Figure 4 shows the CSAS architecture.
It has two high-level steps: (A) Type Qualifier Inference,
and (B) Compilation of CSAS templates.

The qualifier inference step transforms the vanilla tem-
plate into a well-typed IR and automatically infers the type
qualifiers for all program expressions in the IR. The inferred
type qualifiers exactly determine where and which sanitiz-
ers are required for untrusted inputs. The well-typed IR
must conform to the type rules that we define in Section 4.
The step (B) compiles the well-typed IR and inserts saniti-
zation primitives and additional instrumentation in the final
compiled code. The detailed design of the CSAS engine is
presented in Section 5.

4. THE CONTEXT TYPE SYSTEM
In this section, we formally describe our type qualifier

mechanism that refines the base type system of the language
defined in Section 2.1. We define the associated type rules
to which well-typed IR code must conform after the type
inference step.

4.1 Key Design Points
The CSAS engine must track the parsing context induced

Types τ ::= Q1 β | Q2 η
Base Types α ::= β | η | β1 → β2 → . . . unit

β ::= bool | int | string | unit
Type Q ::= Q1 | Q2 | ~Q1 → [Q2 → Q2]
Qualifiers Q1 ::= UNSAFE

| STATICc1↪→c2 c1, c2 ∈ C
| DYNSC SC ∈ 2C×C

Q2 ::= CTXSTATc c ∈ C
| CTXDYNS S ∈ 2C

Contexts C ::= PCDATA | RCDATA | . . .

Figure 5: The final types τ are obtained by augmenting base
types of the language α with type qualifiers Q

by the application’s output at each program point. Each
string expression, when parsed by the browser, causes the
browser to transition from one context to another. We term
this transition induced on the browser by parsing strings as
a context transition, denoted by the notation c1 ↪→ c2.

Notion of Context Type Qualifiers. Qualifiers play dif-
ferent roles for different kinds of expressions.

For constant/static strings, the context type qualifier cap-
tures the context transition it induces when parsed by our
canonical grammar. For example, the constant string <a

href=" is qualified with a STATICPCDATA↪→URI_START context type
qualifier indicating that it parses validly as per our canon-
ical grammar (HTML 5), causing the browser to transition
from PCDATA context (start of tag) to the URI_START con-
text. Unsanitized input variables are by default qualified
UNSAFE. The type system qualifies them with a STATICc↪→c′

context qualifier, where c and c′ are contexts, only after the
variable is sanitized with a sanitizer matching the context
c. The sanitizer ensures that the untrusted input safely ren-
ders in context c—we define this correctness property of the
sanitizer more precisely in Section 4.2. Variables qualified
UNSAFE are not permitted to be used in string expressions
that are emitted to the output buffer.

When data is emitted to the output buffer, the analy-
sis engine must track which context the output buffer is in.
The global output buffer (base type η) is also qualified with
a different set of context type qualifiers, which indicate the
context it is in at any given point in the program. For in-
stance, the output buffer which is in a URI_START context,
say just after <a href=" is written to it, is annotated with
a CTXSTATURI_START context qualifier. The context-sensitivity
property is enforced by matching the context type qualifiers
of the output buffer and the string expression being written
at each print command. For example, when an untrusted
variable is emitted to a CTXSTATc qualified buffer, it must
have the STATICc↪→c′ qualifier attached, ensuring that it has
been sanitized (or made safe) for rendering in context c.

We formally define the qualifiers in Figure 5. As ex-
plained, the type system defines two separate sets of type
qualifiers: Q1 and Q2. Type qualifiers Q2 annotate the out-
put buffer, which is an object of base type η, whereas the
set Q1 exclusively qualifies other typed expressions. Type
qualifiers of the form ~Q1 → [Q2 → Q2] are inferred for
each template function, which capture the expected quali-
fier types for the arguments and the template’s effect on the
output buffer, as explained in further detail in Section 4.2.

Handling Context ambiguity with Flow-Sensitivity.
Untrusted inputs may be used in different contexts along
different or even the same program paths. This leads to
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template StatAmb($imgLink, $name) 

{

if ($name == “”) then print (“<img src=\“”);

else print (“<div>”); fi

print ($imgLink);

if ($name == “”) then print (“\” />”);

else print (“</div>”); fi; return;

}

Figure 6: An example of a template with static context ambiguity
requiring a mixed static-dynamic approach.

context ambiguity, as explained in Section 2.2. A standard
flow-insensitive type inference algorithm would infer that
such an untrusted input has no single precise context quali-
fier because of its ambiguous usage in multiple different con-
texts. To handle such context ambiguity, we design our type
system to be flow-sensitive— a flow-sensitive type system
permits program variables to have varying type qualifiers at
different program locations [16].

Mixed Static-Dynamic Typing. Flow-sensitive typing
does address static ambiguity to a large extent, but not all
of the cases we observe in practice. Consider a template such
as the one in Figure 6. In one branch the program writes
<div> and in the other it writes <img src=" to the global
output buffer. The context that output buffer is in at the
join point is statically ambiguous, and consequently, stat-
ically selecting sanitizers on subsequent print statements
in the template is not possible. Similar examples of static
ambiguity have been shown to arise in large legacy applica-
tions [43].

Our approach avoids throwing type errors for such static
ambiguous types by using the following approach: we fur-
ther divide the type qualifiers into statically-qualified and
dynamically-qualified sets. QualifiersQ2 for the output buffer
are either static qualifiers (CTXSTATC) or dynamic (CTXDYNS).
At a given program location, if the output buffer is unam-
biguously determined to be in a single context c, a static
qualifier is attached to it. In contrast, when the embedding
context of the buffer is statically ambiguous (or imprecise),
as in the example of Figure 6, it is over-approximated by a
set of contexts S and is qualified with the dynamic qualifer
CTXDYNS . CTXDYNS signifies that the buffer is in one of the
contexts determined by the set S. Sanitizers can be stati-
cally selected for statically-qualified objects since their con-
texts are precisely known. For dynamically-qualified buffers,
the context-sensitive runtime parsing (or CSRP) approach
is employed—data written to such buffers is parsed and san-
itized at runtime.

Qualifiers Q1 for other program expressions are similarly
partitioned into static or dynamic sets—for instance, a string
expression used in a print statement with a dynamically-
qualified output buffer is also dynamically-qualified in our
type system using the DYNS qualifier. The set S is a static
over-approximation of the set of context transitions that the
string expression can induce. Sanitizer selection can be done
statically for statically-qualified (such as STATICc1↪→c2) ex-
pressions and these sanitizers can be placed during compila-
tion. For dynamically-qualified expressions, however, since
the context of the output buffer is known only at runtime,
the sanitizer selection is performed by the CSRP approach.
Specifically, the CSAS engine inserts additional instrumen-
tation for dynamically-qualified string expressions to keep
the untrusted substrings in the expression separate from
constant substrings. At runtime, when such an expression

is being used in a print, it is parsed at runtime as per
the dynamically-determined start context and the necessary
sanitization primitives are applied to the untrusted sub-
strings. In our evaluation, less than 1% of the expressions
were dynamically-qualified; a large majority of the cases do
not incur the cost of runtime parsing, enabling our type sys-
tem to be “mostly static”.

Handling Context Ambiguity for Templates. Static
context ambiguity may manifest for template start and end
contexts as well. A template may be invoked in multiple
starting contexts or may be expected to return in multiple
ending contexts. In such cases, our CSAS engine resolves
the ambiguity purely statically, by cloning templates. For
templates that may start or end in more than one context,
the CSAS engine generates multiple versions of the template
during compilation, each specializing to handle a specific
pair of start and end contexts.

Inferring Placement of Sanitizers. Our engine can in-
sert sanitizers into code in which developers have manu-
ally applied some sanitizers (chosen from the sanitization
library), without undoing existing sanitization if it is cor-
rect. Our type rules require additional sanitizers to only be
inserted at print statements and at type promotion opera-
tions. Type promotion operations identify points where ex-
pressions need to be converted from UNSAFE-qualified types
to statically- or dynamically-qualified types. These type
promotion commands have the form v := (Q)e, where Q
is a qualified type which are introduced by the CSAS engine
when converting templates into the IR. Note that this design
separates the type inference task from the type safety rules
— type promotions may be added anywhere in the IR by the
type qualifier inference algorithm, as long as the resulting IR
conforms to the type rules after inference.

4.2 Static Type Rules
In this section, we define a set of type rules which impose

static restrictions S0 - S4 to acheive the 3 properties (CR,
CSAN and NOV) described in Section 2.2.

The type system is subdivided into two main kinds of
typing judgements, one for typing language expressions (Fig-
ure 7) and one for typing language commands (Figure 8). In
our type rules, Γ denotes the type environment that maps
program variables, the output buffer (denoted by the symbol
ρ) and template name symbols to qualifiers Q.

In a flow-sensitive type system like ours, type qualifier
for variables change from one program location to another.
Therefore, typing judgements for the language commands
(Figure 8) capture the effects of command execution on type
environments and have the form Γ ` c =⇒ Γ′. This judge-
ment states that the command c is well-typed under the type
environment Γ and its execution changes the type environ-
ment Γ to Γ′. The expression typing judgement Γ ` e : Q is
standard: it states that at the given program location, the
expression e has a type qualifier Q under the environment
Γ. All expressions that are neither statically-qualified nor
dynamically-qualified, map to UNSAFE in Γ. The set of de-
clared variables V and a map LF from statement labels to
their enclosing functions are assumed to be pre-computed
and available externally.

Defining Sanitizer Correctness. The soundness of our
type system relies on the correctness of externally provided
sanitizers. To define sanitizer correctness more precisely, we
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v ∈ V {v 7→ Q} ∈ Γ

Γ ` v : Q
t-var

αi 6= string c ∈ C

Γ ` const(i : αi) : STATICc↪→c
t-const

IsParseV alid(s, c1, c2)

Γ ` const(s : string) : STATICc1↪→c2
t-conststr

Γ ` e1 : STATICc↪→c Γ ` e2 : STATICc↪→c c ∈ C

Γ ` (e1 : bool) � (e2 : bool) : STATICc↪→c
t-bool

Γ ` e1 : STATICc↪→c Γ ` e2 : STATICc↪→c c ∈ C

Γ ` (e1 : int) ⊕ (e2 : int) : STATICc↪→c
t-int

Γ ` e1 : STATICc1↪→c2 Γ ` e2 : STATICc2↪→c3
Γ ` (e1 : string) · (e2 : string) : STATICc1↪→c3

t-strcat-stat
Γ ` e : UNSAFE

SanMap(c1 ↪→ c2, f) c1, c2 ∈ C

Γ ` San(f, e) : STATICc1↪→c2
t-san

IsParseV alid(s, c1, c2)

Γ ` const(s : string) : DYN{c1↪→c2}
t-cstrdyn

Γ ` e1 : DYNS1
Γ ` e2 : DYNS2

Γ ` (e1 : string) · (e2 : string) : DYNS1./S2

t-strcat-dyn

Figure 7: Type Rules for Expressions.

Γ ` e : Q v ∈ V

Γ ` v := e =⇒ Γ[v 7→ Q]
t-assign

Γ ` e : Q Q ≤ Q′

Γ ` v1 := (Q′)e =⇒ Γ[v1 7→ Q
′]
t-prom

Γ0 ` c1 : Γ1 Γ1 ` S : Γ2

Γ0 ` c1;S =⇒ Γ2
t-seq

Γ ` e : STATICc1↪→c2 Γ ` ρ : CTXSTATc1
Γ ` print(e) =⇒ Γ[ρ 7→ CTXSTATc2 ]

t-print-static-1
Γ ` e : DYNS1

Γ ` ρ : CTXDYNS2
|CDom(S1, C) ∩ S2| 6= 0

Γ ` print(e) =⇒ Γ[ρ 7→ CTXDYNCRange(S1,S2)]
t-print-dyn-2

Γ ` f : (Q1, Q2 . . . Qk) → [Qρ → Q
ρ′ ] Γ ` ρ : Qρ

Qρ = CTXSTATcρ Q
ρ′ = CTXSTATc

ρ′
cρ, cρ′ ∈ C

^
i∈{1...k}

(Γ ` ei : Qi)
^

i∈{1...k}
((Qi ≤ STATICci↪→ci′

) ∧ (ci ∈ C) ∧ (c
i′ ∈ C))

Γ ` callTemplatef(e1, e2, . . . , ek) =⇒ Γ[ρ 7→ CTXSTATc
ρ′

]
t-call

Γ ` ρ : CTXSTATc c ∈ C {` 7→ f} ∈ LF
Γ ` f : (Q1, Q2 . . . Qk) → [Qρ → Q

ρ′ ] Q
ρ′ = CTXSTATc

Γ ` ` : return; =⇒ Γ
t-ret-stat

Γ ` ρ : Q
c ∈ C Q = CTXDYNS |S| = 1 c ∈ S {` 7→ f} ∈ LF

Γ ` f : (Q1, Q2 . . . Qk) → [Qρ → Q
ρ′ ] Q

ρ′ = CTXSTATc

Γ ` ` : return; =⇒ Γ[ρ 7→ CTXSTATc]
t-ret-dyn

Γ0 ` S1 : Γ Γ0 ` S2 : Γ

Γ0 ` if(e)thenS1elseS2 =⇒ Γ
t-ifelse

Γ ` S =⇒ Γ

Γ ` while(e)S =⇒ Γ
t-while

Figure 8: Type Rules for Commands. The output buffer (of base type η) is denoted by the symbol ρ.

reuse the notion of valid syntactic forms, formalized by Su
et. al. [47]. A sanitizer f is correct for a context transition
cs ↪→ ce, if all strings sanitized with f are guaranteed to
parse validly starting in context cs yielding an end context
ce according to our canonical grammar, and if the sentential
forms generated during such a parse are valid syntactic forms
as per the application’s intended security policy [47]. In
other words, sanitized strings can span different contexts,
but all the intermediate contexts induceded during parsing
untrusted strings should be syntactically confined to non-
terminals allowed by the application’s policy. We assume
that a relation SanMap, mapping each possible context-
transition to a matching sanitizer, is available externally.

S0: No Implicit Type Casts. Our type system separates
UNSAFE-qualified, statically-qualified and dynamic-qualified
types. It does not permit implicit type conversions be-
tween them. Type qualifier conversions are only permitted
through explicit type promotion operations, according to a
promotibility relation ≤ defined in Figure 9.

q ≤ q

c ∈ S S ∈ 2C

CTXSTATc ≤ CTXDYNS

c1, c2 ∈ C

UNSAFE ≤ STATICc1↪→c2

S ∈ 2C×C

UNSAFE ≤ DYNS

Figure 9: The promotibility relation ≤ between type qualifiers

Our promotibility relation is different from the standard
subtyping relation (�)—for example, the following subsump-
tion rule applies in standard subtyping, but our promotibil-
ity relation does not adhere to it:

Γ ` e : Qs Qs � Qt
Γ ` e : Qt

t-sub

The static type qualifier-based restrictions S1 and S3 de-

fined below together satisfy the no over-sanitization (NOS)
property. Similarly, S2 ensures the context restriction (CR)
property. The S3 and S4 together satisfy the context-sensitivity
(CSAN) property while maintaining strict separation between
dynamically-qualified and statically-qualified expressions.

S1: No Sanitization for Constants. The rules T-CONST,
T-CONSTSTR and T-CSTRDYN show that constant string values
acquire the type qualifier without any sanitization. These
values are program constants, so they are implicitly trusted.

S2: Canonical Parsing. The qualifier parameters (denot-
ing the context-transitions) for trusted constant strings are
inferred by parsing them according to the canonical gram-
mar. We assume the availability of such a canonical gram-
mar (assumption 1 in Section 2.3), embodied in a predicate
IsParseV alid defined below.

Definition 1. IsParseV alid is a predicate of type string

×C×C → bool, such that IsParseV alid(s, c1, c2) evaluates
to true if and only if the data string s parses validly as per
the assumed canonical grammar starting in context c1 yield-
ing a final context c2.

S3: Safe String Expression Creation. The rules for
concatenation do not permit strings qualified as UNSAFE to
be used in concatenations, forcing the type inference engine
to type promote (and hence sanitize) operands before they
can be used in concatenation opertions. The T-STRCAT-STAT
rule ensures that only statically safe strings can be concate-
nated whereas the T-STRCAT-DYN rule constructs dynami-
cally qualified strings. The latter rule conservatively over-
approximates the result’s dynamic set of context-transitions
that could occur at runtime. For over-approximating sets,
we define an inner-join S1 ./ S2 as the set of all context tran-
sitions c1 ↪→ c2 such that c1 ↪→ c3 ∈ S1 and c3 ↪→ c2 ∈ S2.
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S4: Context-Sensitive Output. The rules for print com-
mands ensure that the emitted string expression can not be
UNSAFE-qualified. Further, the type rule T-PRINT-STATIC-1

ensures that the context type qualifier of the emitted string
matches the context of the output buffer, when both of them
are statically-qualified.

Only dynamically-qualified strings can be emitted to dy-
namically qualified output buffers—a strict separation be-
tween dynamic and static type qualified expressions is main-
tained. The T-PRINT-DYN-2 type rule capture this case.
This requires a runtime parsing, as described in section 4.3,
to determine the precise context. The static type rules com-
pute the resulting context for the output buffer by an over-
approximate set, considering the context-transition sets of
two dynamically-qualified input operands. To compute the
resulting context set, we define 2 operations over a context-
transition set S for a dynamically qualified type DYNS :

CDom(S,E) = {Ci|Ci ↪→ Ce ∈ S,Ce ∈ E}

CRange(S,B) = {Ci|Cs ↪→ Ci ∈ S,Cs ∈ B}

Control flow Commands. Type rules T-IFELSE and T-

WHILE for control flow operations are standard, ensuring that
the type environment Γ resulting at join points is consis-
tent. Whenever static context ambiguity arises at a join
point, the types of the incoming values must be promoted
to dynamically-qualified type to conform to the type rules.
Our type inference step (as Section 5.1 explains) introduces
these type promotions at join points in the untyped IR, so
that after type inference completes, the well-typed IR ad-
heres to the T-IFELSE and T-WHILE rules.

Calls and Returns. In our language, templates do not
return values but take in parameters passed by value. In
addition, templates have side-effects on the global output
buffer. For a template f , Γ maps f by name to a type
(Q1, Q2, . . . Qk) → [Qρ → Qρ′ ], where (Q1, Q2, . . . Qk) de-
notes the expected types of its arguments and Qρ → Qρ′
denotes the side-effect of f on the global output buffer ρ.
The T-CALL rule imposes several restrictions.

First, it enforces that each formal parameter either has a
statically-qualified type or is promotible to one (by relation
≤). Second, it ensures that the types of actual parameters
and the corresponding formal parameters match. Finally, it
enforces that each (possibly cloned) template starts and ends
in statically precise contexts, by ensuring that Qρ and Qρ′
are statically-qualified. The output buffer (ρ) can become
dynamically qualified within a template’s body, as shown in
example of Figure 6, but the context of ρ should be precisely
known at the return statement. In the example of Figure 6,
the context of ρ is ambiguous at the join-point of the first
if-else block. However, we point out that at the return state-
ment the dynamically qualified set of contexts becomes a
singleton, that is, the end context is precisely known. The
T-RET-DYN rule applies in such cases and soundly converts
the qualifier for ρ back to a statically-qualified type.

For templates that do not start and end in precise con-
texts, our CSAS engine creates multiple clones of the tem-
plate, as explained in Section 5.1.3, to force conformance to
the type rules.

4.3 Sanitization
Handling manually placed sanitizers. The T-SAN rule
converts the type of the expression e in the sanitization ex-
pression San(f, e) from UNSAFE to a statically-qualified type
STATICc1↪→c2 , only if f is a correct sanitizer for the con-
text transition c1 ↪→ c2 according to the externally specified
SanMap relation.

Auto-sanitization Only at Type Promotions. Other
than T-SAN, the T-PROM type rule is the only way an UNSAFE-
qualified string can become statically-qualified. The CSAS
engine inserts statically selected sanitizers during compila-
tion only at the type promotion command that promote
UNSAFE-qualified to statically-qualified strings. For such a
command v := (STATICc1↪→c2)e, the CSAS engine’s compi-
lation step automatically inserts the sanitizer which matches
the start context c1 and will ensure that parsing v will safely
end in context c2 .

Type Promotion from UNSAFE to Dynamic. For dy-
namically qualified strings, the CSAS engine needs to per-
form runtime parsing and sanitization. To enable this for
dynamically-qualified strings, our instrumentation uses an
auxiliary data structure, which we call the CSRP-expression,
which keeps constant substrings separate from the untrusted
components. For conceptual simplicity, our CSRP-expression
data structure is simply a string in which untrusted sub-
strings are delimited by special characters LM. These special
delimiters are not part of the string alphabet of base tem-
plating language.

The T-PROM rule permits promotions from UNSAFE-qualified
strings to dynamically-qualified expressions. The CSAS en-
gine inserts instrumentation during compilation to insert
the special characters LM around the untrusted data and to
initialize this CSRP-expression with it. The concatenation
operation over regular strings naturally extends to CSRP-
expressions.

Runtime Parsing and Sanitization. At program points
where the output buffer is dynamically-qualified, the CSAS
engine adds instrumentation to track its dynamic context as
a metadata field. The metadata field is updated at each
print. When a CSRP-expression is written to the output
buffer at runtime, the CSRP-expression is parsed starting in
the dynamically-tracked context of the output buffer. This
parsing procedure internally determines the start and end
context of each untrusted substring delimited by LM, and
selects sanitizers for them context-sensitively.

We detail the operational semantics for the language and
sketch the soundness proof for our type system in the ap-
pendix A.

5. CSAS ENGINE
We present the design and implementation of the CSAS

engine in this section. The CSAS engine performs two main
steps of inferring context type qualifiers and then compiling
well-typed IR to JavaScript or server-side Java code with
sanitization logic.

5.1 Type Qualifier Inference & Compilation
The goal of the type inference step is to convert untyped

or vanilla templates to well-typed IR. In the the qualifier in-
ference step, the CSAS engine first converts template code to
an internal SSA representation (untyped IR). The qualifier

594



inference sub-engine is also supposed to add additional type
promotions for untrusted inputs, where sanitization primi-
tives will eventually be placed. However, the qualifier in-
ference sub-engine does not apriori know where all saniti-
zations will be needed. To solve this issue, it inserts a set
of candidate type promotions, only some of which will be
compiled into sanitizers. These candidate type promotions
include type qualifier variables, i.e., variables whose values
are context types and are to be determined by the type in-
ference. They have the form v′ := (Q)e where Q is a type
qualifier variable, and its exact value is a context type to be
determined by the type qualifier inference sub-engine. Next,
the type qualifier inference step solves for these qualifier vari-
ables by generating type constraints and solving them.

Once constraint solving succeeds, the concrete context
type for each qualifier variable is known. These context
types can be substituted into the candidate type promo-
tions; the resulting IR is well-typed and is guaranteed to
conform to our type rules. In the final compilation step,
only some of the candidate type promotions are turned into
sanitizer calls. Specifically, type promotions in well-typed IR
that essentially cast from a qualified-type to itself, are redun-
dant and don’t require any sanitization, whereas those which
cast UNSAFE-qualified variables into other qualified values are
compiled into sanitizers as described in section 4.3.

5.1.1 Inserting Type Promotions with Qualifer Vari-
ables

Candidate type promotions are introduced at the follow-
ing points while converting templates to the untyped IR:

• Each print (e) statement is turned into a print (v′)
statement in the IR by creating a fresh internal pro-
gram variable v′. The CSAS engine also inserts a type
promotion (and assignment) statement v′ := (Q) e pre-
ceeding the print statement, creating a qualifier vari-
able Q.
• Each v = φ(v1, v2) statement is turned into equivalent

type promotions v := (Q1) v1 and v := (Q2) v2 in the
respective branches before the join point, by creating
new qualifier variables Q1 and Q2 .
• Parameter marshalling from actual parameter “a” to

formal parameter “v” is made explicit via a candidate
promotion operation v := (Q) a, by creating new qual-
ifier variable Q.
• A similar type promotion is inserted before the con-

catenation of a constant string expression with another
string expression.

5.1.2 Constraint Solving for Qualifier Variables
The goal of this step is to infer context type qualifiers for

qualifier variables. We analyze each template’s IR starting
with templates that are used by external code— we call these
public templates. We generate a version of compiled code
for each start and end context in which a template can be
invoked, so we try to analyze each public template for each
choice of a start and end context. Given a template T , start
context cs and end context ce, the generic type inference
procedure called TempAnalyze(T, cs, ce) is described below.
TempAnalyze(T, cs, ce) either succeeds having found a

satisfying assignment of qualifier variables to context type
qualifiers, or it fails if no such assignment is found. It oper-
ates over a call-graph of the templates in depth-first fashion
starting with T , memoizing the start and end contexts for

each template it analyzes in the process. When analyzing
the body of a template in IR form, it associates a typemap
L mapping local variables to type qualifiers at each program
location. At the start of the inference for T , all local vari-
ables are qualified as UNSAFE in L. The analysis proceeds
from the entry to the exit of the template body statement
by statement, updating the context qualifier of each program
variable. The context of the output buffer is also updated
with the analysis of each statement.

Type rules defined in Figure 8 can be viewed as inference
rules as well: for each statement or command in the con-
clusion of a rule, the premises are type constraints to be
satisfied. Similar constraints are implied by type rules for
expressions. Our type inference generates and solves these
type constraints during the statement by statement analysis
using a custom constraint solving procedure.

Several of our type rules are non-deterministic. As an
example, the rules T-CONSTSTR and T-CSTRDYN have iden-
tical premises and are non-deterministic because the lan-
guage syntax alone is insufficient to separate statically and
dynamically qualified types. Our constraint solving pro-
cedure resolves such non-determinism by backtracking to
find a satisfying solution to the constraints. Our inference
prefers the most precise (or static) qualifiers over less pre-
cise (dynamic) qualifiers as solutions for all qualifier vari-
ables during its backtracking-based constraint solving pro-
cedure. For instance, consider the non-determinism inher-
ent in the premise involving IsParseV alid used in the T-

CONSTSTR and T-CSTRDYN rules. IsParseV alid is a one-to-
many relation and a constant string may parse validly in
many start contexts. Our constraint solving procedure non-
deterministically picks one such possible context transition
initially, trying to satisfy all instances of the T-CONSTSTR

rule before that of the T-CSTRDYN rule and refines its choice
until it finds a context transition under which the static
string parses validly. If no instance of the T-CONSTSTR rule
matches, the engine tries to satisfy the T-CSTRDYN rule. Sim-
ilar, backtracking is also needed when analyzing starting and
ending contexts of templates when called via the callTem-

plate operation.

5.1.3 Resolving Context Ambiguity by Cloning
The static typing T-CALL rule for callTemplate has strin-

gent pre-conditions: it permits a unique start and end con-
text for each template. A templates can be invoked in mul-
tiple different start (or end) contexts—our inference handles
such cases while keeping the consistency with the type rules
by cloning templates. We memoize start and end contexts
inferred for each template during the inference analysis. If
during constraint generation and solving, we find that a tem-
plate T is being invoked in start and end contexts different
from the ones inferred for T previously during the inference,
we create a clone T ′. The cloned template has the same
body but expects to begin and end in a different start and
end context. Cloned templates are also compiled to sepa-
rate functions and the calls are directed to the appropriate
functions based on the start and end contexts.

6. IMPLEMENTATION & EVALUATION
We have implemented our CSAS engine design into a

state-of-the-art, commercially used open-source templating
framework called Google Closure Templates [45]. Closure
Templates are used extensively in large web applications in-
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Contexts

HTML PCDATA
HTML RCDATA

HTML TAGNAME
HTML ATTRIBNAME

QUOTED HTMLATTRIB
UNQUOTED HTMLATTRIB

JS STRING
JS REGEX

CSS ID, CLASS, PROPNAME, KEYWDVAL, QUANT
CSS STRING, CSS QUOTED URL, CSS UNQUOTED URL

URL START, URL QUERY, URL GENERAL

Figure 10: A set of contexts C used throughout the paper.

cluding Gmail, Google Docs and other Google properties.
Our auto-sanitized Closure Templates can be compiled both
into JavaScript as well as server-side Java code, enabling
building reusable output generation elements.

Our implementation is in 3045 lines of Java code, exclud-
ing comments and blank lines, and it augments the existing
compiler in the Closure Templates with our CSAS engine.
All the contexts defined in Figure 10 of the appendix are
supported in the implementation with 20 distinct sanitizers.

Subject Benchmarks. For real-world evaluation, we gath-
ered all Closure templates accessible to us. Our benchmarks
consist of 1035 distinct Closure templates from Google’s
commericially deployed applications. The templates were
authored by developers prior to our CSAS engine implemen-
tation. Therefore, we believe that these examples represent
unbiased samples of existing code written in templating lan-
guages.

The total amount of code in the templates (excluding file
prologues and comments outside the templates) is 21, 098
LOC. Our benchmarks make heavy use of control flow con-
structs such as callTemplate calls. Our benchmark’s tem-
plate call-graph is densely connected. It consists of 1035
nodes, 2997 call edges and 32 connected components of size
ranging from 2 - 12 templates and one large component with
633 templates. Overall, these templates have a total of
1224 print statements which write untrusted data expres-
sions. The total number of untrusted input variables in the
code base is 600, ranging from 0−13 for different templates.
A small ratio of untrusted inputs to untrusted print shows
that untrusted inputs are used in multiple output expres-
sions, which are one of the main reasons for context ambi-
guity that motivate our flow-sensitive design.

Evaluation Goals. The goal of our evaluation is to mea-
sure how easily our principled type-based approach retrofits
to an existing code base. In addition, we compare the secu-
rity and performance of our“mostly static”, context-sensitive
approach to the following alternative approaches:

• No Auto-Sanitization. This is the predominant strat-
egy in today’s web frameworks.
• Context-insensitive sanitization. Most remaining web

frameworks supplement each output print command
with the same sanitizer.
• Context-sensitive runtime parsing sanitization. As ex-

plained earlier, previous systems have proposed deter-
mining the contexts by runtime parsing [5]. We com-
pare the performance of our approach against this ap-
proach.

6.1 Compatibility & Precision
Our benchmark code was developed prior to our type sys-

tem. We aim to evaluate the extent to which our approach
can retrofit security to existing code templates. To per-

form this experiment, we disabled all sanitization checks in
the benchmarks that may have been previously applied and
enabled our auto-sanitization on all of the 1035 templates.
We counted what fraction of the templates that were trans-
formed to well-typed compiled code. Our analysis is im-
plemented in Java and takes 1.3 seconds for all the 1035
benchmarks on a platform with 2 GB of RAM, an Intel 2.6
MHz dual-core processor running Linux 2.6.31.

Our static type inference approach avoids imprecision by
cloning templates that are called in more than one context.
In our analysis, 11 templates required cloning which resulted
in increasing the output print statements (or sinks) from
1224 initially to 1348 after cloning.

Our main result is that all 1348 output sinks in the 1035
templates were auto-sanitized. No change or annotations to
the vanilla templates were required. We test the outputs
of the compiled templates by running them under multiple
inputs. The output of the templates under our testing was
unimpacted and remained completely compatible with that
of the vanilla template code.

Our vanilla templates, being commercially deployed, have
existing sanitizers manually applied by developers and are
well-audited for security by Google. To confirm our compat-
ibility and correctness, we compared the sanitizers applied
by our CSAS engine to the those pre-applied in the vanilla
versions of the benchmarked code manually by developers.
Out of the 1348 print statements emitting untrusted expres-
sions, the sanitization primitives on untrusted inputs ex-
actly match the pre-applied sanitizers in all but 21 cases.
In these 21 cases, our CSAS engine applies a more accurate
(escapeHtmlAttribute) sanitizer versus the more restrictive
sanitizer applied previously (escapeHTML) by the developer.
Both sanitizers defeat scripting attacks; the pre-existing san-
itizer was overly restrictive rendering certain characers in-
ert that weren’t dangerous for the context. This evaluation
strengthens our confidence that our approach does not im-
pact/alter the compatibility of the HTML output, and that
our CSAS engine implementation applies sanitization cor-
rectly.

Our type qualifier inference on this benchmark statically-
qualified expressions written to all but 9 out of the 1348
sinks. That is, for over 99% of the output sinks, our ap-
proach can statically determine a single, precise context.

In these 9 cases, the set of ambiguous contexts is small and
a single sanitizer that sanitizes the untrusted input for all
contexts in this set can be applied. In our present implemen-
tation, we have special-cased for such cases by applying a
static sanitizer, which is safe but may be over-restrictive. We
have recently implemented the CSRP scheme using an aux-
iliary data structure, as described in Section 4.3, in jQuery
templates for JavaScript [28]; we expect porting this imple-
mentation to the Google Closure compiler to be a straight-
forward task in the future.

6.2 Security
To measure the security offered by our approach as com-

pared to the context-insensitive sanitization approach, we
count the number of sinks that would be auto-sanitized cor-
rectly in our 1035 templates. We assume that a context-
insensitive sanitization would supplement the HTML-entity
encoding sanitizer to all sinks, which is the approach adopted
in popular frameworks such as Django [14]. Picking an-
other sanitizer would only give worse results for the context-
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No Context-
Saniti- Context- Sensitive Our
zation Insensitive Runtime Approach

Parsing
Chrome 9.0 227 234 (3.0%) 406 (78.8%) 234 (3.0%)
FF 3.6 395 433 (9.6%) 2074 (425%) 433 (9.6%)
Safari 5.0 190 195 (2.5%) 550 (189%) 196 (3.1%)

Server:Java 431 431 (0.0%) 2972 (510%) 431 (0.0%)

# of Sinks 0/ 1348 982 / 1348 1348 / 1348 1348 / 1348
Auto-Prot. (0%) (72%) (100%) (100%)

Figure 11: Comparing the security and runtime overhead (ms.)
comparison between our approach and alternative existing ap-
proaches for server-side Java and client-side JavaScript code gen-
erated from our benchmarks. The last line shows the number of
sinks auto-protected by each approach.
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Figure 12: Distribution of inserted sanitizers: inferred contexts
and hence the inserted sanitizer counts vary largely, therefore
showing that context-insenstive sanitization is insufficient.

insensitive scheme— we show that the most widely inserted
sanitizer in auto-sanitization on our benchmarks is also es-

capeHtml, the HTML-entity encoding sanitizer.
The last row in Figure 11 shows the number of sinks auto-

protected by existing approaches. Context-insensitive sani-
tization protects 72% of the total output prints adequately;
the auto-sanitization is insufficient for the remaining 28%
output print opertions. Clearly, context-insensitive saniti-
zation offers better protection than no sanitization strategy.
On the other hand, context-sensitive sanitization has full
protection whether the context-inference is performed dy-
namically or as in our static type inference approach. Fig-
ure 12 shows that the inferred sanitizers varied significantly
based on context across the 1348 output points, showing the
inadequacy of context-insensitive sanitization.

6.3 Performance
We measure and compare the runtime overhead incurred

by our context-sensitive auto-sanitization to other approaches
and present the results in Figure 11. Google Closure Tem-
plates can be compiled both to JavaScript as well as Java.
We measure the runtime overhead for both cases. For com-
piled JavaScript functions, we record the time across 10 trial
runs in 3 major web browsers. For compiled Java functions,
we record the time across 10 trial runs under the same in-
puts.

The baseline “no auto-sanitization” approach overhead is
obtained by compiling vanilla templates with no developer’s
manual sanitizers applied. For our approach, we enable our
CSAS auto-sanitization implementation. To compare the
overhead of context-insensitive auto-sanitization, we simply
augment all output points with the escapeHtml sanitizer
during compilation. A direct comparison to Google Au-
toEscape, the only context-sensitive sanitization approach

in templating systems we know of, was not possible be-
cause it does not handle rich language features like if-else
and loops which create context ambiguities and are perva-
sive in our benchmarks; a detailed explanation is provided in
Section 7. To emulate the purely context-sensitive runtime
parsing (CSRP) approach, we implemented this technique
for our templating langauge. For Java, we directly used
an off-the-shelf parser without modifications from the open-
source Google AutoEscape implementation in GWT [15].
For JavaScript, since no similar parser was available, we
created a parser implementation mirroring the Java-based
parser. We believe our implementation was close to the
GWT’s public implementation for Java, since the overhead
is in the same ballpark range.

Results. For JavaScript as the compilation target, the time
taken for parsing and rendering the output of all the com-
piled template output (total 782.584 KB) in 3 major web
browsers, averaged over 10 runs, is shown in Figure 11. The
costs lie between 78% and 4.24x for the pure CSRP approach
and our approach incurs between 3−9.6% overhead over no
sanitization. The primary reason for the difference between
our approach and CSRP approach is that the latter requires
a parsing of all constant string and context determination
of untrusted data at runtime— a large saving in our static
type inference approach. Our overhead in JavaScript is due
to the application of the sanitizer, which is why our sanitiza-
tion has nearly the same overhead as the context-insensitive
sanitization approach.

For Java, the pure CSRP approach has a 510% overhead,
whereas our approach and context-insensitive approach in-
cur no statistically discernable overhead. In summary, our
approach achieves the benefits of context-sensitive sanitiza-
tion at the overhead comparable to a large fraction of other
widely used frameworks.

We point out that Closure templates capture the HTML
output logic with minimal subsidiary application logic —
therefore our benchmarks are heavy in string concatena-
tions and writes to output buffers. As a result, our bench-
marks are highly CPU intensive and the runtime costs eval-
uated here may be amortized in full-blown applications by
other latencies (computation of other logic, database ac-
cesses, network and file-system operations). For an esti-
mate, XSS-GUARD reports an overhead up to 42% for the
CSRP approach [5]. We believe our benchmarks are apt for
precisely measuring performance costs of the HTML out-
put logic alone. Further performance optimizations can be
achieved for our approach as done in GWT by orthogonal
optimizations like caching which mask disk load latencies.

7. RELATED WORK
Google AutoEscape, the only other context-sensitive sani-

tization approach in templating frameworks we are aware of,
does not handle the rich language constructs we support— it
does not handle conditionals constructs, loops or call opera-
tions [3]. It provides safety in straight-line template code for
which straight-line parsing and context-determination suf-
fice. To improve performace, it caches templates and the
sanitization requirements for untrusted inputs. Templates
can then be included in Java code [15] and C code [3]. As we
outline in this paper, with rich constructs, path-sensitivity
becomes a challenging issue and sanitization requirements
for untrusted inputs vary from one execution path to the
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other. AutoEscape’s caching optimization does not directly
extend to code where sanitization requirements vary depend-
ing on executed paths. Our approach, instead, solves the
challenges arising from complex language features represen-
tative of richer templating systems like Closure Templates.

Context-inference and subsequent context-sensitive place-
ment for .NET legacy applications is proposed in our recent
work [43]. The approach proposed therein, though sound,
is a per-path analysis and relies on achieving path coverage
by dynamic testing. In contrast, the type-based approach
in this work achieves full coverage since it is based on static
type inference. The performance improvements in our re-
cent dynamic approach relies heavily on the intuition that
on most execution paths, developers have manually applied
context-sensitive sanitization correctly. The type-based ap-
proach in this work can apply sanitization correctly in code
completely lacking previous developer-supplied sanitization.
A potential drawback of our static approach is that theoret-
ically it may reject benign templates since it reasons about
all paths, even those which may be potentially infeasible. In
our present evaluation we have not seen such cases.

Analysis techniques for finding scripting vulnerabilities
has been widely researched [1, 2, 6, 18, 24, 27, 31–33, 37, 41,
42, 51, 52]. Defense architectures have targeted three broad
categories: server-side techniques [5, 32, 43, 49, 52], purely
browser-based techniques [4, 35] and client-server collabo-
rative defenses [19, 26, 36, 46]. Unlike browser-based and
client-server defenses, purely server-side approaches are ap-
plicable to the server code without requiring modifications
to web browsers. Our techniques are an example of this fact.

Among server-side approaches, strong typing has been
proposed as a XSS defense mechanism in the work by Robert-
son et. al [39]. Our approach significantly contrasts theirs in
that it does not require any annotations or changes to the ex-
isting code, does not rely on strong typing primitives in the
base language such as monads and is a mixed static-dynamic
type system for existing web templating frameworks and for
retrofitting to existing code.

8. CONCLUSIONS
We present a new auto-sanitization defense to secure web

application code from scripting attacks (such as XSS) by
construction. We introduce context type qualifiers, a key
new abstraction, and develop a type system which is directly
applicable to today’s commercial templating languages. We
have implemented the defense in Google Closure Templates,
a state-of-the-art templating system that powers GMail and
Google Docs. We find that our mostly static system has
low performance overheads, is precise and requires no addi-
tional annotations or developer effort. We hope that our ab-
stractions and techniques can be extended to other complex
languages and frameworks in the future towards the goal of
eliminating scripting attacks in emerging web applications.
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[29] A. Kieżun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. HAMPI: A solver for string constraints. In International
Symposium on Software Testing and Analysis, 2009.

[30] kses - PHP HTML/XHTML filter.
http://sourceforge.net/projects/kses/.

[31] B. Livshits and M. S. Lam. Finding security errors in Java
programs with static analysis. In Proceedings of the Usenix
Security Symposium, 2005.

[32] B. Livshits, M. Martin, and M. S. Lam. SecuriFly: Runtime
protection and recovery from Web application vulnerabilities.
Technical report, Stanford University, Sept. 2006.

[33] M. Martin and M. S. Lam. Automatic generation of XSS and
SQL injection attacks with goal-directed model checking. In
17th USENIX Security Symposium, 2008.

[34] The Mason Book: Escaping Substitutions.
http://www.masonbook.com/book/chapter-2.mhtml.

[35] L. Meyerovich and B. Livshits. ConScript: Specifying and
enforcing fine-grained security policies for JavaScript in the
browser. In IEEE Symposium on Security and Privacy, May
2010.

[36] Y. Nadji, P. Saxena, and D. Song. Document structure
integrity: A robust basis for cross-site scripting defense. In
NDSS, 2009.

[37] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening web applications using
precise tainting. 20th IFIP International Information Security
Conference, 2005.

[38] XSS Prevention Cheat Sheet. http://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet.

[39] W. Robertson and G. Vigna. Static Enforcement of Web
Application Integrity Through Strong Typing. In Proceedings
of the USENIX Security Symposium, Montreal, Canada,
August 2009.

[40] Ruby on Rails Security Guide.
http://guides.rubyonrails.org/security.html.

[41] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for JavaScript.
Technical Report UCB/EECS-2010-26, EECS Department,
University of California, Berkeley, 2010.

[42] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic discovery of client-side validation vulnerabilities in
rich web applications. In 17th Annual Network & Distributed
System Security Symposium, (NDSS), 2010.

[43] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD:
Automatic context-sensitive sanitization for large-scale legacy
web applications. In Proceedings of the ACM Computer and
communications security(CCS), 2011.

[44] Smarty Template Engine: escape. http:
//www.smarty.net/manual/en/language.modifier.escape.php.

[45] Google Closure Templates.
http://code.google.com/closure/templates/.

[46] S. Stamm. Content security policy, 2009.

[47] Z. Su and G. Wassermann. The essence of command injection
attacks in web applications. 2006.

[48] Template::Manual::Filters.
http://template-toolkit.org/docs/manual/Filters.html.

[49] Ter Louw, Mike and V.N. Venkatakrishnan. BluePrint: Robust
Prevention of Cross-site Scripting Attacks for Existing
Browsers. In Proceedings of the IEEE Symposium on Security
and Privacy, 2009.

[50] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and

D. Song. A Systematic Analysis of XSS Sanitization in Web
Application Frameworks. In Proceedings of the European
Symposium on Research in Computer Security, 2011.

[51] Y. Xie and A. Aiken. Static detection of security vulnerabilities
in scripting languages. In Proceedings of the Usenix Security
Symposium, 2006.

[52] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks. USENIX Security Symposium, 2006.

[53] Yii Framework: Security. http:
//www.yiiframework.com/doc/guide/1.1/en/topics.security.

[54] Zend Framework: Zend Filter.
http://framework.zend.com/manual/en/zend.filter.set.html.

APPENDIX
A. OPERATIONAL SEMANTICS

We have discussed the static type rules in Section 4. In
this section, we describe the various runtime parsing checks
that our CSAS engine inserts at various operations to achieve
type safety. We do this by first presenting a big-step opera-
tional semantics for an abstract machine that evaluates our
simple templating language. We sketch the proof for the
soundness of our type system based on the operational se-
mantics.

c ∈ C

M ` const(n) ⇓ 〈n, c ↪→ c〉
e-cint

c ∈ C

M ` const(b) ⇓ 〈b, c ↪→ c〉
e-cbool

IsParseV alid(s, c1, c2)

M ` const(s) ⇓ 〈s, c1 ↪→ c2〉
e-const

M ` const(s) ⇓ /s.
e-string-dyn

M ` e1 ⇓ 〈b1, c ↪→ c〉
M ` e2 ⇓ 〈b2, c ↪→ c〉

M ` e1 � e2 ⇓ 〈b1 � b2, c ↪→ c〉
e-bl

M ` e1 ⇓ 〈n1, c ↪→ c〉
M ` e2 ⇓ 〈n2, c ↪→ c〉

M ` e1 ⊕ e2 ⇓ 〈n1 ⊕ n2, c ↪→ c〉
e-int

M ` e1 ⇓ 〈s1, c1 ↪→ c2〉 M ` e2 ⇓ 〈s2, c3 ↪→ c4〉 c2 = c3

M ` e1 · e2 ⇓ 〈s1 · s2, c1 ↪→ c4〉
e-cat-stat

M ` e1 ⇓ /s1. M ` e2 ⇓ /s2.

M ` e1 · e2 ⇓ /s1 · s2.
e-cat-dyn

M ` e ⇓ s SanMap(c1 ↪→ c2, f) s
′ = f(s) c1, c2 ∈ C

M ` San(f, e) ⇓ 〈s′, c1 ↪→ c2〉
e-san

M ` e ⇓ s SanMap(c1 ↪→ c2, f) s
′ = f(s) c1, c2 ∈ C

M ` v := (STATICc1↪→c2 )e ⇓ M[v 7→ 〈s′, c1 ↪→ c2〉]
e-prom-st

M ` e ⇓ s

M ` v := (DYNS)e ⇓ M[v 7→ /LsM.〉]
e-prom-dyn

M ` e ⇓ 〈s, c1 ↪→ c2〉

M ` v := (STATICc1↪→c2 )e ⇓ M
e-cast-1

M ` e ⇓ /s.

M ` v = (DYNS)e ⇓ M
e-cast-2

M ` e ⇓ 〈s, c1 ↪→ c2〉 M ` ρ ⇓ ‖s′, c‖ c = c1

M ` print(e) ⇓ M[ρ 7→ ‖s′ · s, c2‖]
e-prn-stat

M ` e ⇓ /s. M ` ρ ⇓ ‖s′, c‖ (s′′, c2) = CSRP (c, /s.)

M ` print(e) ⇓ M[ρ 7→ ‖s′ · s′′, c2‖]
e-prn-dyn

M ` e ⇓ true M ` S1 ⇓ M
′

M ` if(e)thenS1elseS2 ⇓ M
′ e-if

M ` e ⇓ false M ` S2 ⇓ M
′

M ` if(e)thenS1elseS2 ⇓ M
′ e-el

M ` e ⇓ true
M ` S; while(e)S ⇓ M′

M ` while(e)S ⇓ M′
e-whltrue

M ` e ⇓ false

M ` while(e)S ⇓ M
e-whlfalse

M ` e ⇓ x

M ` v := e ⇓ M[v 7→ x]
e-assign

M ` c ⇓ M′ M
′ ` S ⇓ M′′

M ` c;S ⇓ M′′
e-seq

Figure 13: Operational Semantics for the typed language.
Sanitization routines inserted by the CSAS engine after in-
ference are shown Underlined. Runtime parsing and other

checks inserted are shown Boxed , which may produce run-
time errors evaluating to CFail.
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The evaluation rules are shown in Fig 13. Commands op-
erate on a memory M mapping program variables to values.
Each premise in an evaluation rule has the form M ` e ⇓ v
which means that the expression e evaluates to a final value
v under the state of the memory M . Command evaluation
judgements have the form M ` c ⇓ M ′ which states that
under the memory M evaluation of the command c results
in a memory M ′. We omit the rules for template calls and
returns here which follow standard call-by-value semantics
for brevity.

Values. The values produced during the evaluation of the
language are mainly of two kinds: (a) Vβ values for the data
elements of base type β and (b) Vη for objects of base type
η. Runtime errors are captured by a third, explicit CFail

value. The syntax of values is described in Figure 14.

V alue ::= Vβ |Vη|CFail

Vβ ::= 〈V al, CTran〉| / Expr . |V al
Ctran ::= C ↪→ C
V al ::= b|i|s
Expr ::= V al|Expr · Expr|LV alM

Vη ::= ‖s, EmbCtx‖
EmbCtx ::= C

Figure 14: Syntax of Values

The universe of string, int or bool base typed values is
denoted by the letters s,i, and b letters respectively in the
syntax above and the standard concatenation operation is
denoted by “·”. The Vβ values are of three kinds:

1. Untrusted or unsanitized values are raw untrusted string,
integer or boolean values.

2. Other values which are auto-sanitized statically or cor-
respond to program constants are tuples of the form
〈v, Ctran〉 where Ctran is a metadata field. The Ctran
metadata field indicates that the value v safely induces
a context transition Ctran .

3. The remaining values are a special data-structure /Expr.,
called the CSRP-expression, which is used for dynam-
ically sanitized values. The data structure stores con-
catenation expressions, conceptually separating the un-
trusted peices from trusted peices. In our syntax, we
separate untrusted substrings of string expressions by
delimiting them with special delimiters, L and M, which
are assumed to be outside the string alphabet of the
base language.

The global output buffer has a value of the form ‖s, EmbCtx‖,
where s is the string buffer consisting of the application’s
output. The EmbCtx metadata field is the context as a
result of parsing s according to our canonical grammar.

Type Safety. Note that the operational semantics ensure
the 3 security properties outlined in section 2.2. The CR

is explicit in the representation of output buffer values—
parsing the output buffer at any point results in a permit-
ted context defined in C. Property NOS is similarly ensured
in the E-CONST rule, which evaluate to values of the form
〈v, Ctran〉. Such values are never sanitized.

Property CSAN is immidiate for E-PRN-STAT evaluation rule
which ensures that the output buffer’s context matches the
start context in the Ctran field of the written string ex-
pression. For the evaluation rule E-PRN-DYN, the soundness

relies on the procedure CSRP shown boxed which takes a
CSRP-expression and a start context to parse the expression
in. This procedure parses the string expression embedded
in the CSRP-expression, while sanitizing all and only the
untrusted substrings delimited by LM context-sensitively. If
it succeeds it returns a tuple containing the sanitized string
expression and the end context.

In order to formalize and sketch the proof of the sound-
ness of our type system, we first define a relation R mapping
types to the set of valid values they correspond to. At any
given point in the program, if the type of a variable or ob-
ject is Q under the typing environment Γ, then its value
must correspond to the typing constraints. The relation R
is defined as follows, assuming U is the universe of strings,
integer and boolean values:

Definition 2. (Relation R)

R(UNSAFE) = {v|v ∈ U}
R(STATICc1↪→c2) = {〈v, c1 ↪→ c2〉|v ∈ U, IsParseV alid(v, c1, c2)}
R(DYNS) = {/v . |v ∈ U}
R(CTXSTATc) = {‖s, c‖|c ∈ C}
R(CTXDYNS) = {‖s, c‖|c ∈ C, c ∈ S}

At any program location, we define a notion of a well-
typed memory M as follows:

Definition 3. (Well-Typedness) A memory is well-typed
with respect to a typing environment Γ, denoted by M |= Γ,
iff

∀x ∈ Dom(M),M [x] ∈ R(Γ[x])

We define the two standard progress and preservation
theorems that establish soundness our type system below.
Progress states that if the memory if well-typed, then the
abstract machine defined in the operational semantics does
not get “stuck”— that is, there is at least one evaluation
rules that can be applied to the well-typed terms. Preser-
vation states that at any evaluation step if all the subterms
(used in the premises) are well-typed then the deduced term
is also well-typed.

The machine may get stuck for several reasons. It may be
due to the runtime boxed checks failing. This is intended
semantics of the language and such behavior is safe. The
machine may also get stuck because no evaluaion rule may
apply, or in other words, the memory state is such that the
semantics do not define how to evaluate further. To distin-
guish these two cases, we define a value called CFail, which
the boxed procedure CSRP evaluates to when it fails. Other
stuck states may result from reaching an inconsistent mem-
ory states for which no evaluation rule applies. We point out
the abstract operational semantics we describe here are non-
deterministic. Therefore, only when all non-deterministic
evaluations of an instance of the procedure CSRP fail, does
the boxed check fail and the print statement evaluate to
the CFail runtime error.

Theorem 1. (Progress and Preservation for Expressions).
If Γ ` e : T and M |= Γ, then either M ` e ⇓ CFail or
M ` e ⇓ v and v ∈ R(T ).

Proof. By induction on the derivation of Γ ` e : T .

Theorem 2. (Progress and Preservation for Commands).
If M |= Γ and Γ ` c =⇒ Γ′, then either M ` c ⇓ CFail or
M ` c ⇓M ′ where M ′ |= Γ′.

Proof. By induction on the derivation of Γ ` c =⇒ Γ′.
The definition of relation R serves as the standard inversion
lemma.
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