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1 Data Protection But Not For All
Do you know where your data are? Who can see them?
Who can modify them without a trace? Who can aggre-
gate, summarize, and embed them for purposes other than
yours? We don’t, and we suspect neither do you. The
problem is that we do not have a widely-available mech-
anism to answer these questions, and yet, paradoxically,
all evidence shows that it should have been solved long
ago. The problem is critical; incidents involving sensitive
data leakage, unauthorized access, and integrity violations
(accidental or not) are a daily occurrence [1]. It is well
known, as evidenced by the volume of relevant govern-
ment regulation and pontification from privacy advocates.
It is interesting, since it has inspired much research into
data confidentiality, integrity, and authorization. Yet pub-
licizing it, regulating it, and talking about it have not led
to solving the problem effectively for the vast majority of
users. Why?

We believe the root of this paradox lies in the discon-
nect between research, policy, and industry objectives,
and the needs of the real world. Research has largely fo-
cused on elegance and intellectual exploration, while in-
dustry has built expedient solutions for media content pro-
tection and enterprise rights management, guided by pro-
jected revenue. In either case, the problem is solved for
some users, under narrow scenarios, but neither research
results nor rights management systems have resulted in
broad applicability and deployment. In this paper, we ex-
amine the problem of protecting data for all users, and not
just for some. We use broad applicability as the driving
goal, and explore the challenges and promises of reaching
towards that goal with efficiency and high assurance.

To be broadly applicable, a data protection mechanism
must support, first and foremost, backward compatibility.
Any mechanism must seamlessly integrate with unmod-
ified applications and data formats. Even in the face of
vulnerabilities, pragmatic concerns make it tough to argue
for the wholesale migration of systems from existing in-
frastructure and legacy programs to something completely
new. Research proposals that require completely new op-
erating systems [11, 32], languages [21], or both [25], do
not apply to legacy systems and therefore contribute only
indirectly to solving our problem.

Beyond the ability to support existing applications, a
data protection mechanism should be flexible. Solutions
based on a centrally vetted, closed set of applications

are incompatible with today’s diverse, dynamic systems.
A prime example are commercially available enterprise
rights management (ERM) solutions. Although techni-
cal details and scrutiny are scarce, ERM products appear
to be based on a common proprietary application frame-
work [3,20] or on application-specific modifications [12].
Consumerization, which fosters individual choice, leads
many users to find the “walled gardens” of ERM sys-
tems unacceptable. On the other hand, the limited set
of supported applications inhibits interoperability among
enterprises—a cost organizations often refuse to bear.
When an organization does decide to move to a different
application platform, it may risk losing continuity within
its own documents, at a potentially astronomical cost.

As a motivating example, consider protecting the pri-
vacy and integrity of a patient’s—we will call him
Owen—personal health records. In the USA, the privacy
of these records is a requirement laid down by statute,
with significant penalties for violations [2]. Their in-
tegrity is also critical: unauthorized modifications could
be fatal—consider the inadvertent removal of Owen’s
alergies from his record. Current usage exhibits signifi-
cant complexity. Owen’s record may be handled by all
the physicians who treat or advise him, all of his insurers
over time and employment changes, and all the hospitals
and clinics where he is seen. This usually large set of peo-
ple and organizations view and modify Owen’s record on
varied platforms (clinic PCs, mobile tablets, web forms),
managed by IT staff of varying skill. It is unreasonable to
expect such a diverse conglomeration of users and sys-
tems to change en masse into a new, common OS and
a small set of blessed applications. At the same time,
restrictive solutions like ERMs are too specific, and do
not work seamlessly across hospitals with distinct infras-
tructures (e.g., when Owen is treated while on vacation
abroad). Although representative in criticality and com-
plexity, this example is by no means unique. From social
networking to advertising systems, from financial transac-
tions to email records, examples abound, each with vary-
ing privacy and integrity requirements.

2 The Secure Data Capsules Vision
To bring deployable data protection to a broader base,
we envision an evolutionary conceptual architecture based
on secure data encapsulation. A sensitive data object is
kept in a secure data capsule, cryptographically bundled
with its data-use controls (DUCs) policy and provenance.



Owen’s health record, in our example, would be contained
within a capsule with a DUC specifying “allow any doc-
tor to view and Charlie to modify,” among other restric-
tions, and provenance with entries like “Charlie appended
a prescription on May 11th.” DUCs may cover confiden-
tiality, integrity, non-repudiation, logging, access control,
etc. Maintaining integrity, with appropriate evidence, al-
lows a user of a capsule to place trust in its veracity. Main-
taining confidentiality affords the data owner or author an
assurance of privacy.

It is a fundamental principle of our vision that, unless
explicitly prohibited, any application may perform oper-
ations on a capsule, as long as those operations are as-
suredly compliant with policy and appropriately recorded
in provenance. Untrusted applications operate on cap-
sules confined within a secure execution environment,
which tracks sensitive information flows and enforces pol-
icy upon externalization from the application. In our ex-
ample, anyone would be able to use any application on
Owen’s record. However, when trying to write to a file
or send over the network, only modifications by Charlie
would be allowed (and recorded in provenance); the se-
cure execution environment would reject all modifications
by others on Owen’s health record. What is more, this re-
striction would apply not only to the original record file,
but also to any data object derived from Owen’s record—
say if Charlie copied an MRI image from Owen’s record
to a new image file; if allowed, the derivative data object
would also be encapsulated with the same data-use con-
trols as Owen’s record.

Our threat model consists of untrusted OSes and ap-
plications operating on capsules. We consider an adver-
sarial Charlie, human or organization, but limit his so-
phistication. We wish to prevent him from accidentally,
intentionally, or unknowingly violating policy or evading
provenance. We are not concerned here with fixing the
“analog hole” (where Charlie takes a photograph of pro-
tected capsule contents from the screen and types them in
anew), or closing all possible covert channels that might
leak information. Those are important considerations, but
they require social as well as technical assistance.

Although this conceptual architecture reaches the prac-
ticality goal by definition, the challenge of achieving that
goal with efficiency (no more than 2x slowdown of appli-
cations) and high assurance (a Trusted Computing Base
orders of magnitude smaller than commodity OSes) en-
tails a number of research questions, and opportunities.
In what follows, we define practical data protection and
substantiate gaps in current theory and practice.

3 Why Is It Unsolved?
We now briefly address why prior research efforts have
not achieved practicality, efficiency and high assurance.

Practicality is not satisfied by systems that have no

legacy support. Systems such as Asbestos and HiS-
tar [11, 32] aim for a small TCB but offer new system in-
terfaces and require applications to be rewritten. A hybrid
system such as Flume [17], which provides standard OS
abstractions for an Asbestos-like kernel, is more practical,
but suffers from a large TCB—including the entire Linux
kernel—reducing assurance. Similarly, approaches that
require new languages [21] or recompilation from source
with annotations [31] imply universal application porting,
an uncommon and error-prone process. Finally, commer-
cial ERM systems that require per-application modifica-
tions or a single proprietary framework fail on interoper-
ability and openness grounds, and are proprietary so offer
few opportunities to assess assurance.

Our high-assurance goal is most helped by approaches
that minimize the TCB, most notably by removing from
it the OS and application, primarily via virtualization.
TrustVisor [19] has a very small TCB, but still requires
trusted pieces of application logic to register themselves
via hypercalls. Proxos [27] proxies sensitive system calls
to a stub OS, but requires non-trivial application porting.
Overshadow [7] extends a VMM to present an encrypted
and integrity-protected version of an application’s mem-
ory to the OS without application modifications, but re-
quires application trust. While closer, these approaches
still do not achieve our practicality goal.

Bringing together practicality and a small TCB, ap-
proaches that use dynamic information-flow tracking to
precisely protect sensitive data and their derivatives, while
trusting only a small information-flow tracker, seem to be
the closest to our goals, in principle. In practice, most
information-flow tracking solutions that require no appli-
cation modifications are inefficient. Overhead reductions
have been achieved by systems like Neon [33], which uses
on-demand emulation of tainted instructions to track fine-
grained information flow for multiple principals’ sensi-
tive data across applications and kernel. PIFT [13] fur-
ther reduces overhead by tracking information flow asyn-
chronously. Unfortunately, these tools dynamically an-
alyze the whole image of a virtual machine (kernel and
user space), which leads to significant loss in precision
and safety due to kernel complexity [26]. What is more,
to improve efficiency, they must trust applications some-
what (e.g., not to leak information via control flows).

4 A Conceptual Architecture
Our constraints of practicality, efficiency and high assur-
ance induce a number of properties on any solution.

First, dealing with arbitrary legacy binaries entails ref-
erence monitor-like isolation mechanisms; redesign or re-
compilation are inapplicable. Secondly, efficient support
for applications handling sensitive and insensitive data in
complex variegated flows necessitates information flow
tracking. The inclusion of OSes and commodity appli-
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Figure 1: Conceptual architecture. Gray borders demarcate
trusted components. Diagonal borders mark capsule boundaries
enforced cryptographically. Thick arrows are secure channels.

cations into the TCB is incompatible with our high assur-
ance goal. In their absence, validation of components like
the reference monitor and flow tracker will require mech-
anisms like remote attestation and authentication, prefer-
ably with a hardware root of trust. Fourth, cryptographic
protection of confidentiality and integrity of stored data is
necessary to exclude systems that only traffic data (e.g.,
networks, storage) from the TCB. Finally, since cryptog-
raphy among distinct parties will be employed, a trusted,
isolated component that deals with credentials, authenti-
cation, and key-material storage is required, which we call
the Authentication Manager (AM).

The above constraints naturally lead to the conceptual
architecture in Figure 1. The data unit in this architecture
is the secure data capsule, a container comprising a data
object, its DUC, and its history. The capsule is crypto-
graphically protected for confidentiality and integrity.

Systems manipulate capsules via three trusted logical
components. Besides the AM mentioned above, the Cap-
sule Manager (CM) deals with making policy decisions
and accordingly releasing clear-text data objects to the ap-
plication and re-packaging outgoing data. The Secure Ex-
ecution Environment (SEE) is the reference monitor and
information flow tracker that performs a controlled exe-
cution of untrusted applications. It interposes on system
calls, and interacts with the user via a trusted I/O channel.
Outside the TCB are the OS, user (Charlie), and applica-
tion. Recall that our threat model treats Charlie as a sink,
as we place the “analog hole” problem out of scope.

Continuing with our example, if Charlie (Owen’s doc-
tor) wants to access Owen’s health records, he launches
the application of his choice in a SEE. The SEE authen-
ticates Charile (via the AM) and starts execution. It traps
any attempt by the application to read a capsule and trans-
parently queries the CM for authorization. The CM evalu-

ates the capsule’s DUC against Charlie’s credentials, and
if the read is permitted, decapsulates the object and pro-
vides it to the SEE over a secure channel. Execution can
then proceed as normal inside the SEE. A similar protocol
is followed for other actions (e.g., writes).

Ensuring confidentiality requires the SEE to track flow
of sensitive information to any externalization point (e.g.,
disk writes, network output). The SEE must send any sen-
sitive data (or their derivatives) to the CM before external-
ization. The CM subjects them to the originating capsule’s
policy, and can even default to a restrictive policy. For ex-
ample, a sensible default would be for the CM to compute
a new policy from the DUCs of all sensitive inputs to the
application, update the history based on the tracked opera-
tions and return a new capsule to the SEE to complete the
externalization. In our example, that would mean com-
posing both Owen’s and Pam’s (another patient) policies
on a report Charlie puts together from their records.

The broad architecture outlined above achieves practi-
cality. The TCB can be implemented in commodity OSes
and support arbitrary applications. It leaves, however, a
number of design and implementation challenges open,
particularly given our goals of efficiency and assurability.
We explore challenges, and articulate promising research
directions in the next section.

5 Challenges and Agenda
We present the major challenges and questions elicited by
our architecture, and directions we plan to explore.

5.1 Efficient Information Flow Tracking

The most significant challenge implied by the conceptual
architecture is how to perform the tracking task of the
SEE at a fine granularity yet with high performance. Fine-
grained information flow tracking has a poor performance
track record, but we anticipate opportunities for signifi-
cant overhead reductions along several fronts. Achieving
them without compromising correctness and assurance is
a challenging research direction.

Restriction. Limiting information flow analysis to a
part of the running system can improve performance by
reducing taint-spread and tracking overhead. For exam-
ple, information flow tracking can be restricted to only
user space if we can ensure that the kernel can never
read sensitive data (e.g., via a security visor [7]). Track-
ing can be restricted further within the application, if
one can isolate application pieces that touch sensitive
data (where flow tracking is needed) from those that do
not (where tracking is unnecessary). As with all isola-
tion, this compartmentalization might increase communi-
cation overheads across application compartments. Ques-
tion 1: Is it possible to automatically and efficiently iden-
tify pieces of an application binary for which tracking is
unnecessary? Question 2: Is it possible to, dynamically



or statically, optimize the overhead of this partitioning?
Granularity. A related opportunity comes with gran-

ularity adjustment. Several proposals have shown the
(relative) performance benefits of dynamically switch-
ing the tracking granularity from page-level to byte-
level [13, 14, 33], or even to module-level. As above, it
would be interesting to partition an application into com-
ponents that benefit from tracking at different granulari-
ties. As tracking granularity only affects performance, not
safety, this can even be a dynamic, adaptive process over
the course of execution. Furthermore, the choice of granu-
larity might be decided by the intrinsic structure of an ap-
plication’s information flow graph. Applications consist-
ing of components shared across principals, leading to a
“high-mixing” information flow graph, might necessitate
finer granularity. Question 3: Can an application binary
be automatically partitioned into components tracked at
different granularities so as to balance the cost of “over-
protection” with the overhead of precise tracking? Ques-
tion 4: Can the information flow graph of an application
be characterized in a concise manner sufficient for mod-
eling the cost of tracking granularity?

Asynchrony. Benefits of asynchronously tracking in-
formation flow have been demonstrated for both hard-
ware [6, 16] and software [13] systems. The idea is to
buffer a trace of the instructions executed as well as their
inputs and outputs, and perform the analysis of that trace
at a later time, before a policy enforcement decision must
be taken (e.g., at system calls). The performance bene-
fit comes from reduction in contention (e.g., of the cache)
between the application and the tracking instructions. A
natural question is whether this duality between tracing
and tracking can be stretched, e.g., deferring the track-
ing computation on a trace until a capsule is about to be
read, possibly at a different machine. This may be use-
ful for expensive analyses [4, 18]. Question 5: Can the
computation-storage trade-off between eager and lazy in-
formation flow tracking be harnessed for good?

Hardware. Direct hardware support and optimizations
have been shown, for some research architectures, to im-
prove overall performance significantly [6,8,16,28]. Prag-
matic questions remain however. Question 6: Is hard-
ware acceleration for information flow tracking relevant
to modern hardware architectures? Three factors ap-
pear encouraging. First, off-loading flow tracking sup-
port to a co-processor [16] may avoid main CPU modifi-
cations. Second, some popular architectures already con-
tain considerable structures for tracking data and control
dependencies [15, 22]. Use of these may limit the de-
gree of hardware modifications required for implementing
flow tracking. Third, hybrid designs of popular architec-
tures, such as Transmeta’s Crusoe, use binary emulation
in firmware [9], a natural place “close to the metal” to pro-
vide information flow tracking with amortized overheads.

5.2 Effective Isolation

It is essential that trusted components maintain their in-
tegrity and confidentiality despite user or OS tampering.
Prior isolation mechanisms [5, 24, 27, 29] mostly treat an
entire virtual machine as the unit of isolation, which is
coarser than our problem definition requires. In princi-
ple, per-application VMs might be an acceptable com-
promise [23, 24], but would require the SEE to “touch”
OS instructions, which appears to be expensive and un-
necessary. There is no need for an OS to know the
contents of an application’s memory pages. It appears
that cryptography-based memory-masking techniques—
e.g., Overshadow’s does not even require application
modifications—are the most promising, but have only
been shown for standard VMMs with significant code
size. Question 7: Is fine-granularity, efficient, small-
TCB isolation possible? We see two opportunities. First,
we require significantly less functionality than a general-
purpose VMM: only a single guest, which means no
need for optimized VM switches, inter-VM communi-
cation, memory deduplication, etc. Removing applica-
tion trust from small security visors [19] might prove
sufficient. Second, extending existing virtualization sup-
port in hardware to deal with threads or thread pieces,
rather than VMs is plausible. Isolation is usually im-
plemented with hardware range registers guarding page
ranges, which should be extensible to finer-granularity
ring-3 functionality. Some public announcements from
microprocessor manufacturers seem to foreshadow effi-
cient, fine-granularity, hardware-enforced isolation [30].

5.3 Protecting The Sum of Many (Protected) Parts

Many important computations, especially in web services,
analyze myriad inputs, possibly from distinct users’ cap-
sules. While in theory the output of such massive com-
putations over large data sets reveals little of the input
information, enforcing data owners’ DUCs effectively is
challenging and insufficiently defined.

A common proposed solution is differential pri-
vacy [10], in which, conceptually, a query engine takes
a data capsule and adds appropriate noise to the output of
a computation on those contents. Since data may come
from different owners, with possibly different privacy re-
quirements, one challenge is how to manage and opti-
mize for potentially heterogenous privacy budgets. Ques-
tion 8: How can we manage and reconcile different users’
privacy requirements in a common computation? One
promising idea is to manage or auction the privacy budget
as a form of resource. Another idea is to exploit the fact
that many real-world databases are constantly evolving,
and queries tend to focus on the latest trends. In these set-
tings, we can periodically time out stale data, and always
use the latest data in queries. This potentially bounds the
number of queries on each data item, and thereby avoids



depletion of the privacy budget.
Another question is how the differential privacy engine

can decide how to sanitize the data based on the history
of the data object. A popular approach for noise addi-
tion is to add noise proportional to the sensitivity of the
statistic. Question 9: Can we automatically determine the
sensitivity of a legacy program and transform it into its
differentially private counterpart?

5.4 What Is the Policy About?

The semantic richness of policy impacts the design of any
policy language, tracker, and enforcer. For example, it is
moot for Owen to control properties of his data (e.g., “do
not shrink” for an image) unless the CM (the enforcer) and
the SEE (the tracker) understand shrinking. In the sim-
plest case—which requires the least application-specific
understanding within the TCB—policy is in terms of in-
formation flow properties, such as read, update, and for-
ward, excerpt (propagate the object partly), and paste
(embed the object in another). When application-specific
properties must be controlled, e.g., image shrinking, the
trusted components must be extended with new property
semantics, even after deployment (as per the practicality
goal). Question 10: Is extensible policy semantics feasi-
ble without TCB inflation?

One promising insight is that a property checker can
be simpler than a full-blown application; a proof-carrying
implementation of a property checker may be feasible.
Another compromise is to make the safety of application-
specific properties optional; while information-flow pol-
icy is guaranteed, an owner with application-specific de-
mands might only obtain guarantees conditioned on the
correctness of associated checkers. However, making this
distinction evident to the user may be challenging. Ques-
tion 11: Can an extensible, variable-trust policy frame-
work be intuitive to unsophisticated users?

An easier problem may be tracker extensibility. In
the shrinking example, a particular application can be
piece-meal instrumented to provide (untrusted) hints
about shrinking, subsequently checked by the enforcer.
Question 12: Is it feasible to instrument binaries for
application-specific tracking, without source code?

5.5 The Road Ahead

Our discussion here has focused on challenges with ma-
jor, open research questions. But many other engineer-
ing challenges must be addressed to get from theoretical
practicality to practical practicality. First, OSes deal in
memory pages and buffers, not in objects; identifying ob-
ject boundaries will require careful design, as will dealing
with complex system call semantics and other OS com-
munication abstractions. Second, cryptographic overhead
could be significant, fragmented across many small op-
erations, and spread over large numbers of keys. Clever

caching and transcryption might help reduce the cost.
Third, the precise cryptographic design of our approach—
e.g., what keys to use to encrypt capsules—is itself in-
triguing; one may seal capsules only to the trusted compo-
nents without requiring a PKI for principals, but naming
authorities might still be necessary (e.g., defer to a hospi-
tal to define Owen’s assigned physicians).

On a more theoretical level, solving our problem in the
face of covert channels (between a colluding application
and the OS, for example) is probably beyond feasibil-
ity. We hope, however, to study mitigating mechanisms
at the SEE to reduce the capacity of known covert chan-
nels (e.g., timing, memory contention, etc.).

Our agenda is ambitious. We are optimistic that
progress along any of the open questions will bring us
closer to practical data protection for all.
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