TaintEraser: Protecting Sensitive Data Leaks
Using Application-Level Taint Tracking

David (Yu) Zhu'
UC Berkeley
yuzhu@cs.berkeley.edu

Tadayoshi Kohno
University of Washington
yoshi@cs.washington.edu

ABSTRACT

We present TaintEraser, a new tool that tracks the move-
ment of sensitive user data as it flows through off-the-shelf

applications. TaintEraser uses application-level dynamic taint

analysis to let users run applications in their own environ-
ment while preventing unwanted information exposure. It is
made possible by techniques we developed for accurate and
efficient tainting: (1) Semantic-aware instruction-level taint-
ing is critical to track taint accurately, without explosion or
loss. (2) Function summaries provide an interface to handle
taint propagation within the kernel and reduce the overhead
of instruction-level tracking. (3) On-demand instrumenta-
tion enables fast loading of large applications. Together,
these techniques let us analyze large, multi-threaded, net-
worked applications in near real-time. In tests on Internet
Explorer, Yahoo! Messenger, and Windows Notepad, Taint-
Eraser generated no false positives and instrumented fewer
than 5% of the executed instructions while precisely scrub-
bing user-defined sensitive data that would otherwise have
been exposed to restricted output channels. Our research
provides the first evidence that it is viable to track taint
accurately and efficiently for real, interactive applications
running on commodity hardware.

Categories and Subject Descriptors
D4.6 [Operating Systems:|: Security & Protection—In-
formation Flow Controls

General Terms
Security, Privacy, Performance, Design

Keywords

Sensitive data protection, dynamic information flow tracking

1. INTRODUCTION

Media and research papers regularly report privacy vulnera-
bilities in which sensitive information is leaked to the public
domain. Some of these incidents are due to malware that
maliciously exfiltrate data, but many are not. A confidential
document of the House ethics committee stored in a staffer’s

*This work was mostly done when the first author was at
Intel Labs Seattle.

Jaeyeon Jung
Intel Labs Seattle

jaeyeon.jung@intel.com

142

Dawn Song

UC Berkeley
dawnsong@cs.berkeley.edu

David Wetherall

University of Washington & Intel Labs Seattle

djw@cs.washington.edu

machine accidentally found its way out to peer-to-peer net-
works [26]. British companies banned the use of the Google
Desktop application on employees’ machine due to the secu-
rity risk to corporate data when the search across comput-
ers feature is enabled [13]. Tom-Skype tracks personal chat
messages [12]. An innocuous text editor may unintentionally
cause information leak via temporary copies [6].

These examples highlight the fact that legitimate commer-
cial off-the-shelf applications may expose user information in
ways that their users neither expect, nor appreciate. Many
of these leaks are not the result of a malicious intent by
the author of the application but rather are a consequence
of misconfiguration of these applications or unexpected side
effects. Unfortunately, it is not feasible for users to check
whether every single configuration option of the applications
they run meets their privacy expectations, company guide-
lines, or any other policies they have for the handling of
sensitive information. Consider Alice, who uses a messenger
client on a company laptop and wants to be sure that her
messages are not recorded in a log that may surface later.
Alice’s messenger client may archive messages locally, which
are then copied to the company’s online backup server. Or
consider Bob, who uses a text editor to view a confidential
document and wants to be sure that no temporary copies
are left around on his laptop that may be recovered later if
the laptop is lost. Bob’s text editor may create temporary
copies of a working document in a directory that is accessi-
ble by any application. Applications typically do not offer
“privacy” options for such concerns, or if they do then it re-
quires onerous searching to enable the right option. With
the lack of accessible solutions, users must simply hope for
the best once they chose to use an application.

Our long term goal is to develop systems that will help users
enforce when and where applications reveal their sensitive
data without requiring the users to fully understand the
workings or configuration options of the applications. To
be valuable in practice, we have four requirements. First,
we must be able to run on real applications. These may
be large, multi-threaded and make heavy use of operating
system services. Second, we must run in the user’s own
environment without the need for application source code.
Requiring either source code or testing environments would
greatly limit applicability. Third, while we do not target ma-
licious applications that intentionally avoid our techniques,

we must track information even when it is transformed in
the output stream. Encryption is one important transfor-
mation that is often used with sensitive data, and there are
many other ways that information is encoded in practice.
Fourth, our system must be fast enough to run networked
and interactive applications. Heavyweight mechanisms can
introduce delays that cause timeouts in client-server pro-
grams (e.g., web browsers) and prevent normal use. These
goals are ambitious, but they define what we believe to be
a highly usable and desirable system.

In this paper, we present TaintEraser, a tool that blocks
unintended data exposure to the network or to the local
file system by applications. TaintEraser is a significant step
towards our long term goal. It implements dynamic taint
analysis on applications by using dynamic binary translation
with Pin [11]. On this base, we develop a set of techniques
to track where user information goes accurately and with
enough run-time efficiency that it is plausible for end users
to run the tool. TaintEraser supports simple and intuitive
privacy policies; a user specifies sensitive input data (e.g.,
keystrokes or files) to monitor and TaintEraser blocks any
data derived from the input data from escaping to output
channels that are specified as restricted (e.g., file system,
network socket). To do this, TaintEraser monitors applica-
tions’ output to the network and the local file system and
replaces sensitive bytes with randomly chosen bytes.

As researchers pointed out earlier [15,22,23], the accuracy
of taint tracking is a key challenge. While the idea is con-
ceptually simple and has been widely applied to other prob-
lems [16,19,31], there are corner cases in which some instruc-
tions (e.g., MOV, AND) or situations (e.g., system call side-
effects) need special taint-propagation logic. As we found
when testing on Windows on a PC, failure to handle these
cases quickly results in taint explosion or loss of taint with
real applications. After finding and overcoming these spe-
cial cases, we have been able to interpose on system calls
and precisely track information between keystroke, file and
network socket input and output.

Our main contribution is developing new approaches for
taint tracking that are simultaneously accurate and efficient,
and that are broadly applicable in the context of every-
day applications. Our contribution manifests in the Taint-
Eraser tool that we built for empowering users to prevent
unexpected personal information leakage while running off-
the-shelf software packages. Specifically, TaintEraser em-
bodies the following mechanisms for accurate and efficient
personal information tracking:

Semantic-aware Taint Propagation Rules. At the in-
struction level, specialized taint routines are prescribed for
uncommon data movements (e.g., the REP MOV string copy
instruction). At the function level, pre-generated models
propagate taint to capture important side-effects for calls
into the kernel. Our evaluation results show that Taint-
Eraser is highly accurate, generating no false positives when
analyzing real world applications running on Windows. It
successfully detected exfiltration of sensitive data even when
some of these applications transformed or encrypted the
data before sending them out or writing them to a file.

143

Multi-level Instrumentation. We find that function sum-
maries speed up taint tracking eight to nine times com-
pared to instruction-level instrumentation, and their impact
is greatly multiplied by using them for frequently called func-
tions and as part of our approach to instrument the appli-
cation but not the operating system. Our on-demand in-
strumentation dramatically reduces the number of instruc-
tions that are analyzed compared to typical load-time in-
strumentation, e.g., to 5% for Internet Explorer. Together,
our techniques provide almost an order of magnitude speed
up for our experiments. Combined with our approach of ap-
plication rather than whole system instrumentation, Taint-
Eraser reaches a level of efficiency that makes taint tracking
plausible for the first time for real interactive applications
on commodity hardware.

The rest of the paper is organized as follows: §2 describes
our approach. §3 describes the techniques we developed for
accurate taint-tracking real applications. §4 presents our
optimization techniques and the performance microbench-
marks. §5 shows application evaluation results. §6 reviews
related work. We discuss remaining challenges in §7, and
then concludes in §8.

2. APPROACH

The privacy policy we want to enable is simple and intuitive.
A user specifies sensitive input data to an application and
the output channels to which the application is restricted
from exposing the sensitive data. Alternatively, a user may
specify the output channels through which the sensitive data
should be allowed to leave by the application. In either case,
TaintEraser monitors the application as it runs and enforces
the policy by (a) tracking how the sensitive input data is
processed by the application and (b) interposing when the
application attempts to write the sensitive data to restricted
output channels.

TaintEraser differs from existing tools that delete traces left
by web browsers (e.g., cookies, browser cache files) such as
Privacy Eraser [18] or limit network access (e.g., two-way
firewalls such as Little Snitch [17]). These other tools pro-
vide limited all-or-nothing protection, e.g., either block or
allow network access, or delete all or none of the files in a
temp directory. They are only useful if the user knows the
exact content that needed to be blocked. TaintEraser is able
to, for example, block network access when it derives from
sensitive data and allow it otherwise.

Moreover, simply inspecting output content for leaks quickly
fails as applications may transform input data however they
want. Previous works [4,31] have successfully used dynamic
taint analysis to track how sensitive input data is accessed
and propagated by using whole system simulation. How-
ever, instrumenting the whole system incurs significant per-
formance and analysis overheads, making this work valu-
able for offline forensic analysis but unsuitable for inspecting
interactive network applications, let alone providing online
protection.

Hence, we apply application-level dynamic taint analysis for
efficiently tracking sensitive data through an off-the-shelf
application. However, application-level taint analysis loses
track of information flow when the application moves tainted

data around via system calls. We overcome this limitation
by combining object-level taint propagation within the ker-
nel with the byte-level taint propagation at the user level.
This hybrid approach is described in further detail in §3.
Next, we will introduce some background on the basic steps
of dynamic taint analysis and how TaintEraser interposes a
target application for analysis.

2.1 Dynamic Taint Analysis

Taint analysis is a process for tracking information that may
have been influenced, or tainted, by other data. The process
is inductive. First, sensitive data is marked as tainted as it
enters the program. Then, if an instruction reads tainted
data and writes to another location in memory, the new
address is marked tainted. Figure 1 illustrates these basic
steps. Tainted data may also influence other data indirectly,
through branch instructions that change the flow of con-
trol and determine which instruction will write to a given
variable [20]. In the applications we evaluated, to prevent
taint explosion resulting from control-flow based propaga-
tion, we chose not to propagate the taint because of control
flow. Exceptions to this rule are added to handle the specific
case of table lookups using common sequence of instructions.
(See §7 for a detailed discussion on limitations).

» Backup register state
instrumentation

— + SetTaint (B, GetTaint(A))

* Restore register state
+ MOVBA

+ MOVBA

byte ptr ds[edi], al
eax, dword ptr ss[ebp+0x8]

esi
edi

virtual
memory

taint map

code snippet from IE

Figure 1: MOV instruction is instrumented for dy-
namic taint analysis. The first step brings the
tainted data (k) from memory to the register al.
The second step updates the taint map entry corre-
sponding to al. Third, the content of the register al
is copied to memory. Last, the taint map is updated
to reflect the data movement.

Taint Source. Monitoring input channels for sensitive data
involves device-level instrumentation in the OS. This re-
quires somewhat complicated interactions with the under-
lying operating systems. We focus on two common input
channels. For each input type, the following discusses cases
in which these input channels carry sensitive information
and how we detect these cases for initial tainting.

Keystroke Tracking. Users routinely type in credentials for
accessing online services. Financial data such as bank ac-
counts and credit card numbers are also frequently entered

144

by users for online transactions. These data are often a tar-
get of phishing attacks and the increasing complexity of web
pages with dynamic scripts makes it hard for users to track
exactly where the sensitive information is sent to. In other
cases, users may want to send sensitive messages via an in-
stant messenger or email client and want to make sure that
nothing is cached in the local file system. While it is straight-
forward to monitor all keyboard input data, it is challeng-
ing to automatically identify sensitive inputs and to taint
only those. TaintEraser continuously monitors keystrokes
via Windows messages and listens for designated key combi-
nations for marking the beginning/ending of sensitive key-
board input data. This way, we enable users to directly
interact with TaintEraser while using the application. We
stress that a better user interface or even automatic tagging
of sensitive data (if available) could improve the user experi-
ence of the system [3]. Improving usability of this particular
interface is not in the scope of our research. Rather, our fun-
damental goal is to determine whether personal information
tracking in the context of real applications is viable.

File Tracking. Confidential documents, company secrets
and private memo need to be protected from accidental
leaks. Even if the original document stays encrypted in
the local file system, its temporary copies can be left unen-
crypted by the editing software [6] or by the users themselves
for convenience. While the temporary copies are created on
the same machine, these copies could be leaked out if the
machine is running file sharing clients or remote backup pro-
grams. We use the extended attributes available in NTFS to
tag files as sensitive. TaintEraser automatically tracks the
file content if a tainted file is read by the application. Lever-
aging the exiting file system feature allows TaintEraser to
be deployed without requiring modification of the underly-
ing operating system.

Taint Erasing Sensitive information can escape the ap-
plication through output channels such as network sockets,
files, Windows registry keys, shared memory, and system
messages. We monitor two output channels, network sock-
ets and files, using system call interposition though Taint-
Eraser can be easily extended to monitor other output chan-
nels as necessary. When tainted data is found in the buffer
when the system call is about to enter, TaintEraser can take
any one or a combination of three actions based on user
preference. It can simply log the action, block the question-
able system call, or erase the tainted data by replacing them
with random bytes. The third option can be risky and may
break certain application logic. To reduce this risk, Taint-
Eraser masks the change to the application by restoring the
buffer to the original data when the system call is returned
to the application. We treat all leaks equally, regardless of
how data has been transformed. That is, we do not consider
the case that some input data may be reduced to a small
enough number of bits by transformations that the leak is
no longer significant.

The next two sections discuss the techniques that we de-
velop for precisely tracking tainted input data while reducing
the performance overhead of taint analysis: §3 describes the
overall system focusing on the semantic-aware taint propa-
gation rules that we added to the known taint propagation

logics [16,19] for accurate taint propagation. §4 describes the
multi-level instrumentation architecture that we develop for
improving the overall efficiency of taint analysis.

3. ACCURATE TAINT TRACKING

This section presents the design and implementation of Taint-
Eraser, especially focusing on how it interacts with the un-
derlying operating system. TaintEraser is implemented in

the framework of Pin dynamic binary transformation (DBT) [11]

for Windows XP. Our design is independent of the underly-
ing DBT system. For implementation, we chose Pin because
of its availability', well defined programming interface, effi-
cient instrumentation, and support for additional operating
systems should we also choose to support them. Because
we are aiming to create a system that end users can run on
their runtime environment, efficiency and accuracy are two
of our top concerns, and they are the driving factors in our
design.

Taint Map & Propagation. We have a statically allo-
cated taint table with a statically configurable size of 8MB.
Each bit in the table corresponds to a taint tag of a byte
in the virtual memory (4GB). We map the virtual memory
space into our tag map by left shift operations. In the case
when we use 8MB for our tag map, we left shift virtual ad-
dress by 6 bits (22L) to obtain its tag position. We chose
to use a static tag map for each process that is instrumented
instead of a shadow page table structure [31] for its simplic-
ity and efficiency in looking up of taint information. Taint
information lookups are done through a single array lookup
instead of following several pointers in a shadow page ta-
ble. It also avoids allocating memory on demand when a
new page is accessed. Static tag maps have the downside
of potential collisions, since each bit is used to record the
taint information of 64 virtual addresses. However, we ex-
pect the collision rate to be low for a couple of reasons. A
large region of the virtual memory region is either code or
unused by the application. The region of memory that is
tainted with sensitive data represents an even smaller por-
tion of the available virtual memory space. Most of them
are on the stack and have a short window for collision before
being overwritten with clean data. Our experimental results
in §5 reaffirms this assumption.

We use a combination of generic instrumentation and in-
struction specific instrumentation to implement taint prop-
agation in our tool. We use instruction analysis API pro-
vided by Pin to determine the registers and memory regions
read and written by an instruction. For the generic instru-
mentation, we adopt a taint propagation policy based on
the notion of data dependency [16,19,31]. If the output is a
direct copy or transformation of the input, then the output
will be tainted if the input is tainted. This gives us a good
coverage over all instructions and allows us to implement
taint propagation without a specific handler for each type of
instruction in the x86 instruction set, which is complex and
still growing.

'In comparison, StarDBT [27] is not publicly available and
lacks programming interface although the optimizations im-
plemented on the DBT by the LIFT tool [19] made it an
attractive choice at first.

145

However, there are a few notable exceptions to this gener-
alization. We have identified four cases in Table 1. These
instruction-specific instrumentations account for the exact
semantics of the instruction. They are used both as a perfor-
mance improvement for commonly-used instructions (MOV
and its derivatives), and an accuracy improvement for in-
structions with certain modes of operation that violates the
basic data dependency rules (REP prefix, XOR, addressing
modes with indexes etc.).

Our system generally follows data dependency and ignores
tainting of pointers. One important exception is how we
handle table lookups. As observed by [23], tainting pointers
to a tainted piece of data could lead to many false positives.
Our experience confirms those findings. However, another
finding by [23] shows that it is critical to handle table lookup
operations where tainted data is used as an index to an array.
Without propagating taint through a table lookup operation
and tainting the result accordingly, keyboard taint propaga-
tion breaks down when the input is translated from keyboard
code into an ASCII character through a table lookup. We
make an exception to our pure data dependency policy for
this case. This exception applies when both the base regis-
ter and the index registers are used in an instruction. We
mark the lookup result as tainted if the index register or the
base register is tainted. We are including the base register
in the propagation because certain compilers uses the base
register to store the array index. To avoid the problems
with full pointer tainting, we do not propagate the taint
when only the base register is used. In that case, the in-
struction is simply doing a pointer dereference. In practice,
this limited pointer tainting allows us to capture important
table lookup operations, while avoiding many pitfalls with
full pointer tainting.

Object-based Kernel Propagation. Previous taint track-
ing systems based on application level binary rewriting do
not propagate taint through system calls [16,19]. Specifi-
cally, return values from system calls are never tainted even
when the parameters to these system calls are tainted. This
problem occurs on all operating systems, but is a rather
common occurrence on Windows systems as its user inter-
face subsystem is in the kernel (GDI subsystem). Messages
are passed between user programs and the kernel frequently.
Additionally, memory management and file operations can
change the data in the memory without being tracked by
TaintEraser.

Previously taint tracking through the kernel involves in-
stalling a kernel module/ driver and it is responsible for
tracking propagation within the kernel [28]. Unfortunately,
integrating a kernel module with a dynamic binary transla-
tion framework would introduce a lot of complexity to the
system as two components need to coordinately update taint
information. It also requires additional highly privileged
code to have inserted in the kernel, potentially affecting op-
eration of other applications.

We take a hybrid approach to this problem by using byte
level propagation at the user level and object level propaga-
tion at the kernel level. Instead of having kernel component
monitoring changes in the kernel, TaintEraser maintains a
shadow list of tainted kernel level objects (often object han-

Instruction

Reason and specific handler

XOR, SUB, SBB, AND

These instructions can be used to clear register if the operands are the
same. If the source operand of an AND instruction is 0 (an immediate),
then the destination operand is set to 0. Need to special case this as a
clear operation rather than a taint propagation.

MOV

MOV instruction represents a very common case of propagating tainted
registers and memory regions. We create a shorter and faster instru-
mentation routine for the MOV instruction that bypasses the generic
instrumentation that depends on Pin to provide the list of read and
write registers.

REP prefix

A number of instructions can have the REP prefix. The operation
following REP prefix is repeated until a register counter counts down
to 0. When used with MOV instruction, it can facilitate large memory
copy efficiently. However, the counters should be excluded from taint
propagation. They should not be the source or the destination of taint,
even though they are both read and written.

Tainted index registers

When an x86 instruction addresses memory, it computes the final ad-
dress using Base + (Index * Scale) + Displacement. Base and index
value are specified using a base and an index registers. In this case, we
adopt the policy to propagate the taint in the base and index register
to the destination if both of them are present. If only base register is
used, then we ignore the propagation. Note this is also an exception
to explicit flow propagation. We found this policy necessary for taint

propagation in real world applications.

Table 1: Exception Cases to Generic Data Dependency Propagation

dles in Windows) and a few important attributes of these
objects such as size or the location in memory by interpos-
ing on kernel function calls. Example of such kernel objects
include file handles and memory mapped regions.

The following explains the object-based kernel propagation
using the file system as an example. TaintEraser monitors
operations such as CreateFile, WriteFile, and CloseHan-
dle so that it can detect the opening of a tainted file or the
writing of tainted data to a file. For each of these oper-
ations, we insert a function-level instrumentation, so that
we capture the parameters to these functions and create
a corresponding shadow object in user space for each file
that is open. Taint can flow from the memory taint map to
these objects. For example, when WriteFile is called with
a tainted buffer as parameter, the entire file object becomes
tainted.

Because files can also be mapped into user’s address space
using CreateFileMapping and MapViewOfFile, we also mon-
itor these calls and record the location where the files are
mapped. In essence, we are mirroring some kernel states and
use them to propagate taint from one kernel object (file) to
another (memory mapping). Because of this auxiliary in-
formation, we can construct accurate instrumentations for
system calls based on the semantics of the function. We are
able to capture any potentially tainted output from the ker-
nel call, as well as simulating its side effect using the shadow
data structures. We name these function-level instrumenta-
tions “kernel function summaries”, because they summarize
the taint propagation behavior of the kernel function. They
are a special class of function summary, which we use in
general to improve the performance of TaintEraser (see §4

146

for details).

Input Monitoring. We monitor user input and allow
users to indicate which keystrokes are sensitive informa-
tion. In our implementation, we intercept any calls made
to DispatchMessage and examine the message to look for
WM_KEYDOWN type messages which indicate key press. If input
tainting is turned on (between ALT+F9 and ALT+F10), these
characters will be set to be tainted and tracked through-
out application execution. We handle taint flows to the file
system using the aforementioned object level propagation.
The in-memory file handle object is tainted as soon as any
tainted information is written to the file. Furthermore, this
information is persistent, and stored in the file system. We
use extended attributes supported by NTFS to store taint
information in each file. While extended attributes are flex-
ible to use (i.e., an attribute is defined by a pair of name
and value, whose length can be variable.), a potential secu-
rity issue is that currently there is no support for controlling
access or modification of extended attributes.

Output Scrubbing. To block leaks, we monitor Send
and WriteFile system calls: Tainted network traffic can
be recorded with the socket information. Files are marked
tainted if tainted information is written to them. In addi-
tion, we provide the option for the users to scrub the output
channel so that sensitive data is never actually written to
the file or the network. This is achieved by replacing tainted
regions in the write buffer with pre-configured random char-
acter (e.g., “*”). To reduce interference with the applica-
tion operation, we restore the value of the write buffer after
these system calls complete. This option is used to ensure
that temporary files are not accidentally leaking private data

and sensitive data is not accidentally sent to the network as
shown in §5.

4. EFFICIENT TAINT TRACKING

As shown in the previous works [2,16,19], instruction-level
taint tracking introduces significant slow down when imple-
mented in a straightforward way. Although these previous
solutions were built on a different DBT, we also experience a
similar performance overhead (e.g., taking a couple of min-
utes to sign in to Yahoo! Messenger as opposed to seconds)
when running a testing application with an early version of
TaintEraser. This section discusses the new features that
we developed for faster taint tracking.

Functions
wcslen, strchr, bsearch, Release-
Mutex, RtlEqualUnicodeString,
bsearch, RtlAllocateHeap, Rtl-
FreeHeap, RtlValidateUnicode-
String, GetWindowThreadPro-
cessld, GetDC, LdrGetProce-

Category
1. No patch-
ing necessary

dureAdress
2. Function- | wesepy, RtlHashUnicodeString,
level taint | tan
tracking

Table 2: Break-down of the top fifteen functions
called by Internet Explorer: These functions ac-
count for 28% of the total number of instructions
executed at runtime. They account for 26.60% and
11.50% for Notepad and for Yahoo! Messenger re-
spectively.

4.1 Function Summary

When a DBT instruments an instruction, it needs to backup
the necessary state (e.g., registers) and switch to a new exe-
cution stack before starting to execute the analysis routine.
Although much research has been done about only partially
backing up state, this switching cost can still be expensive
because it happens each time an instruction executes. We
noticed that many highly utilized functions have well de-
fined semantics, and we can completely turn off taint prop-
agation while running the function. If necessary, at the end
of the execution, we will run a patching function to prop-
agate taint information between inputs and outputs of the
function. Because we turn off taint propagation for each in-
struction inside the function, we eliminate the cost of these
context switches while running the function. The following
show the different types of summaries that can be generated
based on the types of functions:

1. No patching necessary: Functions that do not produce
output nor have side effect or functions whose only
outputs are independent of the inputs.

2. Function-level taint tracking: Functions that produce
output in output parameters or by modifying memory
region. We can still turn off the taint propagation
inside the function, but we need to modify the taint
table upon returning from this function.

147

As a first step, we currently rely on human experts to gener-
ate the summaries of highly utilized functions. To improve
scalability, we can employ static analysis to generate func-
tion summary or to statically instrument the binaries with
taint propagation logic [21]. We profiled one of our test ap-
plications, Internet Explorer (IE) to capture the functions
where the most of the time is spent.

For this profile, we do not count any callee’s execution time
in the caller’s time. The goal is to find functions that are
general enough to be beneficial to most applications. We
have excluded functions that are not documented or do not
have clear semantics defined for them. The functions are
sorted by the cumulative number of executed instructions
for the observation period. A noteworthy point is that these
top fifteen function calls account for over 25% of the total
instructions, suggesting that there is potential for significant
saving if these functions are summarized. Table 2 divided
these functions into the types listed above. Similar function
distributions are observed for our other test applications,
Notepad and Yahoo! Messenger. These top functions we
obtained for IE are also among the top functions in our other
experiments, which shows some empirical evidence that we
are not being too specific in our function selections.

120
100
80 T

60 T

40 -

Execution time
(microseconds)

20 A

0 -4
Instruction level
propagation

No propagation

Figure 2: Average time to run GetWindowThreadPro-
cessId measured in microseconds (category 1)

The following presents wcsncpy as an example to explain
how function summary works and its performance implica-
tions. According to MSDN [29], it has three input param-
eters, source address, destination address and length N .
The wesnepy function copies up to N wide character strings
from the source buffer to the destination buffer. After the
function terminates, the function summary will perform any
necessary taint propagation to reflect the logic of the func-
tion. Specifically, it copies 2N bytes of the taint information
from the source to the destination since each wide charac-
ter is 2 bytes. In addition to a reduction in the number of
context switches, function summaries also allow wcsnepy to
execute without interruption. This preserves any caching
locality that can be disrupted when instrumented code is
mixed with application instructions.

Fast Lookup. Because any arbitrary function can be called
within a function, we must ensure that the called function
will not propagate taint and interfere with the logic of the

10000
1000 Pz
<no
propagation
100 A

=

function level

P
fd—d—d—rrrr propagation

Execution time (microseconds)
=
o
;

=>&instruction
level
propagation

1 T T T T T T T T T T d
1 2 4 8 16 32 64 128 256 5121024

Parameter size

Figure 3: Average time to run wcsncpy measured in
u seconds (category 2). We vary N, the number
of bytes to copy, to show the increasing benefit of
function-level propagation.

function summary. In the initial implementation of function
summary, this was done by using a thread local variable to
indicate whether a particular thread is propagating taint.
However, it is expensive simply to check that state variable
due to a fixed context switch cost each time any instrumen-
tation need to run. To reduce the context-switch cost, we
leverage Pin’s conditional inlining feature which allows inlin-
ing of the frequent event of checking the conditional variable.
This led to roughly about 2x performance improvement.

Performance. We present the empirical results showing
the significant speed up when function summaries are in
place. To better understand the performance saving, we
conducted micro-benchmarking, measuring the time spent
in selected functions in each call, rather than the total time
spent to execute an entire program. However, we show that
savings from each function call can be multiplied, resulting
in a significant overall improvement.

We create an artificial workload for the benchmark. In each
experiment, we measured the time it took from hitting the
first instruction of the function to the return instruction in
microseconds. The following results are based on two specific
functions GetWindowThreadProcessId and wcsncpy selected
from each category listed above. Different instrumentations
were applied to the two functions.

Figure 2 compares the average times to run the GetWin-
dowThread ProcessId function with instruction level taint
tracking and with function summary. Because it does not
propagate taint, function summary essentially turns off the
propagation within the function. The graph also shows the
standard deviation, which is small (less than 5 usecs). The
average speed-up by skipping taint-tracking inside the func-
tion is 6.6 (97.34 vs 14.8). Note that the function is quite
simple in its logic so the number of context switches we saved
per function call is also relatively small, but the function is
frequently called to yield an overall significant performance
gain.

148

Next, we show how much overhead the patching function
incurs over the baseline where propagation is simply turned
off. Figure 3 shows that functional propagation is virtually
overlapping with the baseline case. The graph also shows
how the complexity of the operation affects the benefit of
the function summary (note the log-log scale). The benefit
of function summary improves as the function complexity in-
creases. Note that when N > 16, the speed-up is more than
10 times. This result suggests that summarizing higher-level
functions can result in a larger performance gain. However,
there is an inherent tradeoff between how much benefit we
get from each function summary and how often a function
is called and whether the function is used in a wide range of
applications. Since we are building a general framework for
evaluating different kind of applications, we chose generality
over higher level function summaries that tend to be more
application specific.

We also noticed the similar overhead reduction by the other
twelve function summaries. Since these are the functions
that are frequently called by the testing application, we ex-
pect that the performance gain gets compounded as the pro-
gram runs longer. All 15 function summaries are added to
TaintEraser and used for the application study.

4.2 On-demand Instrumentation

When the application starts up, the instrumentation code
cache is completely empty and all instructions need to be
instrumented. In addition, many initialization routines are
instrumented to propagate taint when there is no taint in the
system yet. Both factors lead to a significant delay in appli-
cation start-up. We observe that the instrumentation cost
is often unnecessary if sensitive information is never intro-
duced to the program. This observation leads us to adding
on-demand instrumentation in TaintEraser. As the appli-
cation starts, we perform no instructional instrumentation
and only limited functional instrumentation to monitor the
various input channels taint can be introduced to the pro-
cess. This includes opening of a tainted file and keyboard
input. Because there is no initial instrumentation overhead,
the application loads very quickly. When one of the trigger
condition happens, TaintEraser invalidates all existing in-
strumentations, and re-instrument instructions as necessary.
This has the added benefit of not instrumenting libraries or
functions that are only used while loading the application.

Performance. The cost of instrumentation comes from the
cost of inserting the instrumentation (instrumentation time)
and the cost of running those instrumentations (analysis
time). To evaluate the effect of on-demand instrumentation
on these two costs, we measured the number of instructions
that need to be instrumented and the number of instrumen-
tation that were executed during run-time for each of the
applications we studied. Although the number of total in-
struction instrumented only differs by a small amount, the
number of total instrumentation executed is different by an
order of magnitude.

The benefit of on-demand instrumentation is also applica-
tion dependent. As the application size and complexity in-
creases, the benefit from on-demand instrumentation also
increases. This is unsurprising because on-demand instru-

1.00E+10 4
OOnDemand Enabled

1.00E+09 ¥ OnDemand Disabled

1.00E+08 -

1.00E+07 -

1.00E+06 -

1.00E+05 -

Number of Instrumentations Executed

1.00E+04 -

1.00E+03

Notepad IE Yahoo! Messenger

Figure 4: Savings of on-demand instrumentation for
each use case

mentation localizes the instrumentation to the relevant code
of the specific use case. Figure 4 shows that as the code size
and complexity increases, the benefit of this technique is
more significant.

4.3 Macro Benchmarks

To evaluate the efficiency of TaintEraser, we performed sev-
eral macro benchmarks using Internet Explorer, arguably
the most complex application in our application study. We
specifically measured the time it took for the browser (a) to
load a page, (b) to respond to user input in a form, to con-
struct the HT'TP request, and eventually (c) to call the send
function in the socket library. We repeated the experiments
several times and found the measurements to be consistent.
The results are summarized in Table 3. The loading time
corresponds to the sum of the loading time of the browser
+ (a) and the test run time corresponds to (b) + (c).

We established a baseline for comparison by running In-
ternet Explorer with the Pin framework with a bare min-
imum instruction-level instrumentation routine that simply
returns. Since Internet Explorer has a large code size, Pin
has to perform this instrumentation on each user-level in-
struction, resulting in a significant slowdown compared to
running IE’s original binary without Pin. We chose this as
the base case to eliminate the effect on performance by our
particular choice of the DBT framework (Pin). It is also the
lower bound of our instrumentation and analysis overhead.

Due to the nature of the on-demand instrumentation, the
first time we perform a test, Pin needs to instrument the
application’s code upon the arrival of the first tainted input.
We call this the “cold cache” case. Then, the instrumenta-
tion stays in the code cache, enabling subsequent tests to
run much faster, which we call the “hot cache” case. The
“hot cache” case resulted in 1.4X slowdown only compared
to the base case. We attribute the minimal slowdown to
both our efficient implementation and the fact that kernel
code are not instrumented by Pin. We expect the use of
persistent caching [1] to reduce the initial start-up cost of
the application, allowing users to run TaintEraser with near
“hot cache” speed for frequently-used applications.

149

In comparison, previous works evaluate their taint analy-
sis system using compute intensive programs with relatively
small code size (e.g., SPECInt benchmark) [16,19]. Hence,
they are not penalized by the large instrumentation cost.
Moreover, the repetitive nature of the workload means the
instrumentation cost can be amortized over repeated analy-
sis, sometimes leading to 3x slowdown [19]?. However, since
the evaluation is done against different programs and differ-
ent workload, we do not directly compare our results with
previous studies.

Finally, although the instrumentation incurs significant over-
head (4.6x slowdown of the cold cache case of the Taint-
Eraser), we find that our on-demand instrumentation with
function summary speeds up taint analysis substantially com-
pared to the implementation without this optimization (10.7x
slowdown as shown in the last row in Table 3). As the
table shows, without on-demand instrumentation, it takes
over ten minutes to load a browser and to open up a simple
HTML page. This high latency not only affects the usability
of the tool but also causes frequent timeouts when the ap-
plication needs to communicate with a remote server. For
instance, without on-demand instrumentation, our Yahoo!
Messenger experiment often failed at the sign-in stage be-
cause of network timeout.

S. EVALUATION

This section presents the evaluation results of TaintEraser us-
ing three real applications: Notepad is a simple example of
text editing software that may create copies of potentially
sensitive information. Yahoo! Messenger carries private con-
versations and its complexity due to the use of a propriety
protocol such as YMSG makes the analysis more difficult.
Internet Explorer is a popular browser, through which users
transmit sensitive information (e.g., credit card numbers)
and interact with online services. These applications vary
in code size and complexity, but are also general enough
to represent classes of applications we are interested in. In
what follows, we first present the evaluation methodology
and show the experimental results. Then, we examine the
special taint propagation logic that TaintEraser implements
(as discussed in §3) and how it affects accuracy when ana-
lyzing real-world applications.

5.1 Application Study

Because of the interactive nature of the applications that we
evaluate, it is difficult to automate experiments and tease
apart human induced delay from the overall performance
results. However, we believe that it is important to run ex-
periments with realistic use cases and to report the overall
latency to assess the practical value of the TaintEraser sys-
tem. In this section, we run each experiment at least three
times and report the average. Each experiment starts after
the application has been running for a while in order to sep-
arate out one time instrumentation cost (i.e., we only report
hotcache numbers). However, we reset the taint map prior
to each run to isolate experiments.

Table 4 summarizes the evaluation results. Test run time
shows the average time to execute each experiment over

2We believe that this is almost equivalent to the hot cache
scenario.

Loading (sec) Test run time (sec) | Total (sec) | Slowdown
Baseline 67.7 1.0 68.7 -

. 2.1 (hot cache) 98.8 1.4
TaintEraser LT 5244 (cold cache) 316.1 16
Taint Tracking (no optimiza- | 709.9 224 723.3 10.7
tion)

Table 3: TaintEraser User-Perceived Performance Overhead in IE

three runs. We use Pin to print out timestamps in the begin-
ning and the end of an experiment to obtain the results. The
next column (# of taint map updates) shows the number of
times that tainted data is updated by instructions during
the experiment period. This value represents the low-level
movements of sensitive data during the experiment. For
accuracy, we inspect the output of each experiment (e.g.,
network or file buffers) and check the taint map for each
output byte. We use domain knowledge (given that these
applications are closed source®) to determine the accuracy.
The last column (taint map size) shows the number of bytes
in the application’s memory that are still tainted after the
experiment is done.

Windows Notepad. We use Notepad to test file taint
propagation. TaintEraser inserts the special marking in the
extended attributes of a file containing tainted (or sensi-
tive) data. In this experiment, we open a tainted file using
Notepad and then save the content to a new file. As ex-
pected, when WriteFile was called, TaintEraser correctly
carried the taint over to the buffer containing the data to
be written to the new file and updated the extended at-
tributes of the new file to reflect the change. Instead of
tainting the new file, TaintEraser also provides an option
to erase the tainted data and to write the scrubbed content
to a clean file. This experiment took longer than the rest
partly because it involves multiple user interactions (e.g.,
clicking Save As after the file is loaded then typing the new
file name).

Consistently across all the experiments, there are three strings
remaining in the taint map, two of which correspond to the
file content. For example, we used the tainted input file
that contained 7 characters, tainted. When WriteFile was
called, the taint map was 25 bytes containing the follow-
ing three strings: tainted (7 bytes), the unicode conversion
of tainted (14 bytes), and x71x00 x00x00 (4 bytes). It
is clear that the first two parts are derived from the origi-
nal tainted data, and therefore correctly tainted. Without
further knowledge of the internals of the application, it is
difficult to determine the correctness of the third string.

Take-away: This experiment shows that TaintEraser can
prevent accidental creation of temporary files that may cause
leakage of private information. Even if the user allows sen-
sitive data to be written to the file, since the taint marking
is embedded in a file’s metadata, TaintEraser can eliminate
the propagation of sensitive inputs through file system if an

3Even for an open source program, one needs to understand
both the program and the system calls used by the program
in order to fully understand all the possible paths of taint
propagation, which is challenging.

150

application copies what is in the memory (e.g., password) to
a file and later attempts to send it from the file.

Yahoo! Messenger. We first sign in using a Yahoo! Mes-
senger client then send a message, taintme to another user.
To track when and where the message leaves the client pro-
gram, we use the hotkeys mentioned in the earlier section
to tag only the message as we type each character into the
client. TaintEraser first detects that the message is sent to
a Yahoo! server (as expected). The network buffer con-
taining the message is correctly tainted: Only the 7 bytes
of taintme are marked tainted in the buffer of 118 bytes
as shown below. Each byte is shown either in ASCII or hex
(e.g., x80) if not printable. Tainted bytes are shown between
[TS] and [TE]:

...xc0x80[TS]taintme [TE]xc0x80429. ..

What was a surprise to us is that shortly after this event,
TaintEraser discovers that the tainted message is written
to a file after converted to a string of the same length as
shown in Table 4. Because of the transformation, initially we
were unsure of the result. However, the filename (20090830-
peername.dat) suggests that the file contains message archives.
We later found an option to turn on/off message archiving
and another option to display the archive. Using the option,
we confirmed that indeed the file contained tainted message.

As shown in the table, each experiment takes less than 10
seconds on average with less than 1.5 second standard de-
viation. We also checked all clean network buffers and files
that were created shortly after the message was sent and
found no confirmed false negatives.

Take-away: This experiment demonstrates that by moni-
toring both network and file outputs, TaintEraser allows
users to specify policies that govern how user input is logged
without examining each individual application’s configura-
tion and behavior. It also shows TaintEraser is able to track
the input information even if the data has been transformed
by the application.

Internet Explorer. This experiment was designed to study
TaintEraser’s ability to track sensitive data even when it is
encrypted. We set up a web page with a simple HTML
Form that sends the input data to a remote server via the
HTTP Post method. First, we enter four digits 7777 on the
form and submit it and confirm that TaintEraser correctly
taints the four digits in the post message. Again, we double
check that only the four digits out of 870 bytes of the send
buffer were tainted as shown below. ...cardnumber=[TS]
7777 [TE]&expmonth=8%&. . .

Second, we repeat the same experiment but this time we
modify the page so that the form is submitted to the same

Test details Test results Test run # of taint Talnt map
time map size
. The new file’s extended updates
Notepad &Zins:v?ltrl:lteed fle attributes has the taint tag and 22.9 (sec) | 908 25 (bytes)
P content to a new file the entire buffer of WriteFile ' Y
is correctly tainted
The network buffer containing | ¢ 5/ | 3854 148 (byes)
Yahoo! Send a tainted taintme” is correctly tainted
Messeﬁger message, “taintme” “taintme” is saved to a file as
’ x17x13x80x1Ex1Dx1bxlc. The 8.4 (sec) 3885 118 (byes)
file is marked tainted.
Post tainted data, The network buffer containing
Internet “7777” over HTTP “TT7T7” is correctly tainted. 2.1 (sec) 4884 132 (byes)
Explorer | Post tainted data, The last 41 l?yFes Sf theﬁSL
“7777 over HTTPS packet containing “7777” is 9.0 (sec) 4474 252 (byes)
correctly tainted.

Table 4: Evaluation results of TaintEraser using three applications running on Windows

server over HT'TPS. The results show that TaintEraser tainted

the last 41 bytes of the encrypted message whose length is
888 bytes. In order to confirm that the tainted part con-
tains the input string 7777, we varied the length of an input
and recorded how the length of a tainted string changes.
Two observations suggest that TaintEraser correctly taints
the segment of the encrypted message containing the input
string.

(1) The length of the (output) tainted string is directly pro-
portional to that of the input string. I.e., the length of the
tainted string increased from 41 to 45 and to 53 when the
input length increased from 4 to 8 and to 16. Our hypoth-
esis is that 41 bytes (when the input was 4 bytes) include
the input (4 bytes), the remaining message (starting from
&expmonth= as shown above), which is 21 bytes, and MAC
(16 bytes). This suggests that the data was encrypted with
a length-preserving scheme with an authenticator added at
the end.

(2) The tainted string in the output buffer always begins at
the same byte position (842'" byte in this case). We believe
that that is where the input string is inserted. However,
without knowing exactly what encryption mode is used, we
are unsure whether all the bytes after the input were cor-
rectly tainted*. However, we believe that the tainted string
correctly includes the tainted input. As shown in Table 4, it
takes also less than 10 seconds on average to run experiments
with Internet Explorer even when Internet Explorer is com-
municating with a server over SSL. For the test cases listed
here, we examined and found no false negatives in the file
and network buffers labeled clean. False negatives can arise
if the application uses control dependencies to leak data, or
if a particular user-kernel interaction is not summarized. We
discuss these limitations in further detail in §7.

Take-away: This experiment demonstrates that TaintEraser is

effective in stopping leaking of private data even when the

4For a pure stream cipher like RC4, those bytes shouldn’t
have been tainted. For CFB or GCM, they should have been
tainted, either because the cipher computes the third string
based on the previous sensitive input or the third string is
a MAC

151

applications make use of cryptography. The output from
the application is often unreadable, rendering direct exami-
nation of the data ineffective.

Accuracy. The highly accurate results demonstrate that
low-level taint propagation logic discussed in Table 1 cor-
rectly model data dependency flows. To confirm that the
exceptions are necessary (and not optional) for precise infor-
mation tracking, we repeat the above experiment with only
generic data-dependency propagation logic and register-clearing
logic on (i.e., turning off the logic implementing row 3 and
row 4 in Table 1). The result shows that the taint map gets
quickly polluted with many false positives in the output. For
instance, the same experiment with IE taints the network
buffer incorrectly as follows: [TS]paymentType=American+
Express&cardnumber=7777&expmonth=8&expyear=[TE] when
only 7777 should have been tainted. The taint map size is
5,308 bytes including large strings of random-looking bytes,
which are very likely false positives given that the input
string is only 4 byte long. Then, we reinstate the special
logic for MOV instructions but exclude the logic for han-
dling REP prefix. Taint fails to propagate to network output.
Moreover, the propagation quickly disappeared. The taint
map is only updated 195 times, which is an order of magni-
tude smaller what we see with the policy we adopted. (4,884
as shown in Table 4). This indicates special handling of REP
was necessary to maintain the chain of taint propagation.

6. RELATED WORK

There is a large body of work aimed at protecting user
privacy using information flow tracking techniques. This
section discusses how TaintEraser differs and complements
these previous approaches.

Dynamic Software Analysis for Information Leaks.
Vachharajani et al. present a runtime system for enforcing
information-flow security policies [25]. The proposed solu-
tion, RIFLE, tracks information flow using new hardware ex-
tensions with carefully designed binary translation. RIFLE
incurs low overhead and can effectively handle conditional
dependencies and loops but it requires significant hardware
support, thus not directly applicable to existing systems.

Panorama [31] and TaintBochs [4] are built on whole-system
simulation (e.g., QEMU, Bochs), capable of tracking the
propagation of sensitive data at the hardware level. De-
signed for malware analysis [31] and for data lifetime anal-
ysis [4], both systems generate detailed logs showing data
propagation across applications and the underlying operat-
ing system. While such low-level information is valuable
for understanding the complete picture of information leaks
within the system, current implementations incur high over-

head —- 20x slowdown [31], 2 to 10 times slower than Bochs [4].

Network timeouts caused by the delay often render these sys-
tems ineffective for capturing client-server interactions. Dy-
tan [5] is a generic taint analysis framework for Linux plat-
form and supports customizable taint-propagation policies.
However, our multi-level instrumentation technique would
have required significant reengineering of Dytan’s internals.
Suh et al. [24] evaluated a simulated hardware implemen-
tation of a taint tracking system on the Alpha processor,
achieving low overhead when only data and computation
dependencies are tracked. Our system is a software imple-
mentation on an x86 platform. Compared to a hardware ver-
sion, TaintEraser is more flexible and works on off-the-shelf
platforms, although incurring higher performance overhead.

Privacy Oracle [10] and TightLip [32] are lightweight tools
that are capable of analyzing applications for information
leaks without any application-level instrumentation. How-
ever, these systems are ineffective when the output is en-
crypted and not scalable to tracing multiple input data.

Optimizing Dynamic Taint Analysis. Many optimiza-
tion techniques have been proposed to improve efficiency in
dynamic taint tracking using binary instrumentation [2,9,
16,19]. Although these systems focused on software vulner-
ability analysis (by tracing incoming network data), some of
the optimization techniques are complementary to what our
current system implements and can further improve Taint-
Eraser.

LIFT [19], built on the StarDBT binary instrumentation
tool, implements three optimization techniques: fast-switch
is to reduce the overhead of context switch whereas the other
two (fast-path, and merge-check) are to reduce the number
of taint propagating instrumentations. A key difference be-
tween LIFT’s fast-path and merge-check and our function
summary is that LIFT’s optimization techniques apply at
basic block or trace levels and they require runtime checking.
Unfortunately, since neither LIFT nor StarDBT is publicly
available for testing, we cannot compare the effectiveness of
the two approaches. However, our function summary can
be implemented on top of LIFT’s three optimizations and
further reduce the taint-tracking overhead.

Ho et al. [9] implement page-granularity taint tracking for
efficiency. Their system is built on the Xen virtual ma-
chine monitor and dynamically switches from virtualization
to hardware-based emulation when a tainted page is accessed
by the processor. We believe that this optimization can be
highly effective when implemented in TaintEraser since most
taint sources are small. Although not suitable for commer-
cial software analysis, TaintPolicy [30] instruments C pro-
grams through a source-to-source transformation to perform
efficient runtime taint tracking.

152

Slowinska and Bos point out in [23] that taint policies that
propagate tainting in pointers can potentially lead to high
false positives. TaintEraser ignores pointer tainting, because
it assumes misconfigured benign software rather than mal-
ware as discussed in [23]. Similarly, Dalton et al. [7] dis-
cuss in their rebuttal that pointer tainting is only necessary
for malware analysis and general taint propagation strategy
based on data movement does not lead to high false posi-
tives.

OS Level Information Flow. Other systems have been
built to integrate the notion of information flow and taint
tracking directly into the operating system. Both Asbestos [§]
and HiStar [33] use labels to indicate the taint level of OS ab-
stractions and restrict information flow from more sensitive
object to less sensitive object without the use of a trusted
agent. Many legacy applications cannot run on these experi-
mental platforms and end users would have to run a different
operating system to benefit.

Designed as a lightweight system for preventing informa-
tion leaks, PRECIP [28] intercepts system calls and monitors
output channels (e.g., files, network sockets) in which sensi-
tive input data (e.g., files, user inputs) are written to, and
prevents malicious processes (e.g., keyloggers) from gain-
ing access to these resources. PRECIP traces information
flow at the object-level granularity similar to what Taint-
Eraser does at the kernel level. However, unlike TaintEraser,
it does not track taint propagation within an application, so
PRECIP policies can not treat send requests issued by a
single application differently and must stop all send calls if
the application has received sensitive information.

7. DISCUSSIONS

TaintEraser is the first proof-of-concept prototype showing
that the dynamic taint analysis technique can be successfully
applied for information flow tracking through off-the-shelf
applications in real-time on Windows. This section discusses
the remaining issues and promising avenues to explore in
order to improve TaintEraser.

Performance. TaintEraser markedly improved the perfor-
mance of application-level taint tracking with the two tech-
niques (function summaries, on-demand instrumentation) as
shown in §4. We expect further performance gain by adapt-
ing some of the previously explored methods for reducing
taint analysis overhead [2,9,19].

Various low-level system support for fast binary instrumen-
tation are on the horizon as well. Dynamic binary trans-
lation tools are continuously evolved with new optimiza-
tions and additional features. For instance, persistent code
caches are shown to be effective in reducing long initial-
ization sequences of applications when implemented in the
DynamoRIO DBT [1]. A simple hardware enhancement (a
dedicated interconnect with added ISA support) is shown to
drastically reduce the overhead of information flow tracking
by efficiently leveraging multicores [14].

Limitations. There are several limitations to the current
implementation of TaintEraser. Currently, sensitive data

can still be passed along (via shared memory or system mes-
sages) to other processes and then leaked by these other
processes. TaintEraser can be improved to handle this case
by constructing user-level shadow objects representing these
inter-process communication channels and taint them through
kernel function summaries. All processes involved would
need to run under the control of TaintEraser.

We chose 1-bit taint tag for speed and simplicity, but it does
not allow users to differentiate between different sensitive
input sources. In addition, for file tainting, there is no byte-
level taint information recorded. The file is treated as a
single unit of tainting. While it is rather straightforward
to extend the tag table to include multiple bit tags, larger
tags can lead to an increased memory footprint and slower
execution as a result of cache pollution.

Like many existing tools [2, 16, 19], we track only explicit
flows (also called data flows or data dependency). As a
result, TaintEraser will miss leaks if tainted data propagate
through control flows, which, we assume, is infrequent in
commercial off-the-shelf software.

TaintEraser also elects not to taint pointers. However, Slowin-
ska and Bos point out that explicit data flow tracking with-
out accounting for pointers can lose taint very easily through
table lookups [23]. We address this issue by employing spe-
cific policies regarding the use of index registers.

The simple “erasing” operation that TaintEraser implements
to block leaks could break application especially if the ap-
plication’s future operation depends on the erased data. An
alternative approach would be asking the user for a specific
action to be taken for each potential breach. However, this
places additional burden on the users and installing asyn-
chronous system handlers on Windows is unsupported by
Pin currently because it breaks Pin’s concurrency assump-
tions.

Evasion. TaintEraser is designed for evaluating off-the-
shelf software and aim to protect accidental leaks of private
information. Therefore, it is not our goal to avoid possibly
active evasion techniques one might employ. Some software
like Skype or Limewire actively probe for the presence of
instrumentation tools, debuggers, or virtual machines and
abort the program when detected. These practices are not
common and would likely alarm the user to proceed more
cautiously if such behavior is observed.

8. CONCLUSION

We present TaintEraser, a system that prevents leaks of sen-
sitive data by commercial software. It is well-known that
legitimate, popular applications can accidentally or inten-
tionally expose private user information. With TaintEraser,
users can proactively block applications from disclosing their
personal information in unexpected and undesirable manner.

TaintEraser uses dynamic binary translation techniques to
implement dynamic taint analysis on unmodified commer-
cial applications running in normal user environments. To
build our system, we developed and integrated a set of tech-
niques that include: mixed instruction and function-level

153

tainting; function summaries for efficiency and accuracy of
application-only tainting; special semantics for corner-case
instructions and kernel side-effects; and tainting on demand
rather than at load time. The result is a comprehensive
system that is efficient enough to track where sensitive in-
formation goes in large multi-threaded network applications
that include Internet Explorer and Yahoo! Messenger. In
tests, we were able to run these applications online and pre-
cisely trace and scrub where input marked as sensitive was
output with no false positives. With additional engineer-
ing effort, we believe that TaintEraser can be valuable as
a system that is widely used to discover and control how
applications behave in practice.

9. ACKNOWLEDGMENTS

We are indebted to Robert Cohn and Greg Lueck at In-
tel’s VSSAD group for sharing their technical insight on Pin
DBT. We thank Heng Yin for the details of Panorama that
we used to verify function summaries. Stuart Schechter,
Heidi Pan, and Will Enck read our early drafts and pro-
vided feedback that improved the paper. We also would like
to thank our shepherd, Petros Maniatis for his thorough re-
view and thoughtful comments.

10. REFERENCES

[1] Derek Bruening and Vladimir Kiriansky.
Process-Shared and Persistent Code Caches. In VEE,
2008.
W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige.
TaintTrace: Efficient Flow Tracing with Dynamic
Binary Rewriting. In IEEE Symposium on Computers
and Communications,, 2006.
Sonia Chiasson, P. C. van Oorschot, and Robert
Biddle. A usability study and critique of two password
managers. In USENIX Security, 2006.
Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin
Christopher, and Mendel Rosenblum. Understanding
data lifetime via whole system simulation. In USENIX
Security Symposium, 2004.
James Clause, Wanchun Li, and Alessandro Orso.
Dytan: a generic dynamic taint analysis framework. In
ISSTA ’07: Proceedings of the 2007 international
symposium on Software testing and analysis, pages
196-206, New York, NY, USA, 2007. ACM.
Alexei Czeskis, David J. St. Hilaire, Karl Koscher,
Steven D. Gribble, Tadayoshi Kohno, and Bruce
Schneier. Defeating Encrypted and Deniable File
Systems: TrueCrypt v5.1a and the Case of the
Tattling OS and Applications. In HotSec, 2008.
Michael Dalton, Hari Kannan, and Christos
Kozyrakis. Tainting is not pointless. SIGOPS Oper.
Syst. Rev., 44(2):88-92, 2010.
Petros Efstathopoulos, Maxwell Krohn, Steve
VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazieres, Frans Kaashoek, and Robert Morris.
Labels and event processes in the asbestos operating
system. In SOSP, 2005.
Alex Ho, Michael Fetterman, Christopher Clark,
Andrew Warfield, and Steven Hand. Practical
taint-based protection using demand emulation.
SIGOPS Oper. Syst. Rev., 40(4), 2006.
[10] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David

2]

[4]

[5]

[6]

[7]

8]

[9]

[11]

[20]

[21]

[22]

[23]

[24]

[25]

Wetherall, Gabriel Maganis, and Tadayoshi Kohno.
Privacy Oracle: a System for Finding Application
Leaks with Black Box Differential Testing. In CCS,
2008.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

John Markoff. Surveillance of Skype Messages Found
in China. The New York Times, October 2008.
Andy McCue. IT bosses ban Google Desktop over
security fears. http://preview.tinyurl.com/yemm68u.
Vijay Nagarajan, Ho-Seop Kim, Youfeng Wu, and
Rajiv Gupta. Dynamic Information Flow Tracking on
Multicores. In Interact, 2008.

James Newsome, Stephen McCamant, and Dawn
Song. Measuring channel capacity to distinguish
undue influence. In ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security,
2009.

James Newsome and Dawn Song. Dynamic Taint
Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity
Software. In NDSS, 2005.

Objective Development. Little Snitch.
http://wuw.obdev.at/products/littlesnitch/.
PrivacyEraser Computing. Privacy Eraser.
http://www.privacyeraser.com/.

Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim,
Yuanyuan Zhou, and Youfeng Wu. LIFT: A
Low-Overhead Practical Information Flow Tracking
System for Detecting Security Attacks. In MICRO,
2006.

Andrei Sabelfeld and Andrew C. Myers.
Language-based information-flow security. I[EEFE
JSAC, 21:2003, 2003.

Prateek Saxena, R Sekar, and Varun Puranik.
Efficient Fine-Grained Binary Instrumentation with
Applications to Taint-Tracking. In CGO, 2008.
Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic
Execution (but might have been afraid to ask). In
IEEE Symposium on Security and Privacy, 2010.
Asia Slowinska and Herbert Bos. Pointless tainting?:
evaluating the practicality of pointer tainting. In
EuroSys ’09: Proceedings of the 4th ACM European
conference on Computer systems, pages 61-74, New
York, NY, USA, 2009. ACM.

G. Edward Suh, Jae W. Lee, David Zhang, and
Srinivas Devadas. Secure program execution via
dynamic information flow tracking. In ASPLOS-XI:
Proceedings of the 11th international conference on
Architectural support for programming languages and
operating systems, pages 85-96, New York, NY, USA,
2004. ACM.

Neil Vachharajani, Matthew J. Bridges, Jonathan
Chang, Ram Rangan, Guilherme Ottoni, Jason A.
Blome, George A. Reis, Manish Vachharajani, and
David I. August. RIFLE: An architectural framework
for user-centric information-flow security. In MICRO,

154

[26]

27]

(28]

29]

(30]

(31]

32]

(33]

2004.

Jaikumar Vijayan. Leaked house ethics document
spreads on the net vis p2p.
http://preview.tinyurl.com/y97£8nb.

Cheng Wang, Shiliang Hu, Ho-Seop Kim,

Sreekumar R. Nair, Mauricio Breternitz Jr, Zhiwei
Ying, and Youfeng Wu. StarDBT: An Efficient
Multi-platform Dynamic Binary Translation System.
In Asia-Pacific Computer Systems Architecture
Conference, 2007.

XiaoFeng Wang, Zhuowei Li, Ninghui Li, and

Jong Youl Choi. PRECIP: Practical and Retrofittable
Confidential Information Protection. In NDSS,
February 2008.

Msdn documentation - wesnepy. http://msdn.
microsoft.com/en-us/library/ms860450.aspx.

Wei Xu, Sandeep Bhatkar, and R. Sekar.
Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In
USENIX Security Symposium, 2006.

Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, and Engin Kirda. Panorama: capturing
system-wide information flow for malware detection
and analysis. In CCS, 2007.

Aydan R. Yumerefendi, Benjamin Mickle, and
Landon P. Cox. TightLip: Keeping Applications from
Spilling the Beans. In NSDI, April 2007.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler,
and David Mazieres. Making information flow explicit
in HiStar. In OSDI, 2006.

