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Abstract—Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can

be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to

the last attack. Our game-theoretic model follows common practice in the security literature by making worst case assumptions about

the attacker: we grant the attacker complete knowledge of the defender’s strategy and do not require the attacker to act rationally. In

this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the

best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of

information about the attacker’s incentives and knowledge.
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1 INTRODUCTION

MANY enterprises employ a Chief Information Security
Officer (CISO) to manage the enterprise’s information

security risks. Typically, an enterprise has many more
security vulnerabilities than it can realistically repair. Instead
of declaring the enterprise “insecure” until every last
vulnerability is plugged, CISOs typically perform a cost-
benefit analysis to identify which risks to address. But what
constitutes an effective CISO strategy? The conventional
wisdom [1], [2] is that CISOs ought to adopt a “forward-
looking” proactive approach to mitigating security risk by
examining the enterprise for vulnerabilities that might be
exploited in the future. Advocates of proactive security often
equate reactive security with myopic bug-chasing and
consider it ineffective. We establish sufficient conditions
for when reacting strategically to attacks is as effective in
discouraging attackers.

We study the efficacy of reactive strategies in an
economic model of the CISO’s security cost-benefit trade-
offs. Unlike previously proposed economic models of
security (see Section 9), we do not assume the attacker acts
according to a fixed probability distribution. Instead, we
consider a game-theoretic model with a strategic attacker
who responds to the defender’s strategy. As is standard in
the security literature, we make worst case assumptions
about the attacker. For example, we grant the attacker

complete knowledge of the defender’s strategy and do not
require the attacker to act rationally. Further, we make
conservative assumptions about the reactive defender’s
knowledge and do not assume the defender knows all the
vulnerabilities in the system or the attacker’s incentives.
However, we do assume that the defender can observe the
attacker’s past actions, for example, via an intrusion
detection system or user metrics [3].

Under our theoretical model, we find that three assump-
tions are sufficient for a reactive strategy to perform as well
as the best proactive strategies:

Assumption 1. No single attack is catastrophic.

Assumption 2. The defender’s budget is liquid.

Assumption 3. The attacker’s cost for mounting an attack is
linear in the defensive allocations.

Our first assumption requires that the defender can
survive a number of attacks. This is consistent with situations
where intrusions (that, say, steal credit card numbers) are
regrettable but not business-ending. Our results do not
directly apply to settings in which catastrophic attacks are
possible, e.g., in nuclear warfare strategy.

That the defender’s budget is liquid—our second
assumption—means that the defender can reallocate re-
sources without penalty. Of course, not all defense spending
is liquid (e.g., cement walls are difficult to move or sell),
which means our results do not apply to all situations.
However, our results do apply in common situations, such
as when allocating headcount, when the defenders budget is
approximately liquid. For example, a CISO can reassign
members of the security team from managing firewall rules
to improving database access controls at relatively low-
switching costs.

Because our model abstracts many vulnerabilities into a
single edge in an attack graph, we view the act of defense as
increasing the attacker’s cost for mounting an attack instead
of preventing the attack (e.g., by patching a single bug). By

482 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

. A. Barth and M. Sundararajan are with Google, Inc., 1600 Amphitheatre
Parkway, Mountain View, CA 94043.
E-mail: adam@adambarth.com, mukunds@google.com.

. B.I.P. Rubinstein is with Microsoft Research, 1288 Pear Ave, Mountain
View, CA 94043. E-mail: benjamin.i.p.rubinstein@gmail.com.

. J.C. Mitchell is with the Department of Computer Science, Stanford
University, Stanford, CA 94305-9045. E-mail: mitchell@cs.stanford.edu.

. D. Song and P.L. Bartlett are with the Department of Electrical
Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-
1776. E-mail: {dawnsong, bartlett}@cs.berkeley.edu.

Manuscript received 16 Nov. 2010; revised 6 Apr. 2011; accepted 10 June
2011; published online 22 Aug. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number
TDSCSI-2010-11-0214.
Digital Object Identifier no. 10.1109/2011.42.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



taking this viewpoint, we choose not to study the tactical
patch-by-patch interaction of the attacker and defender.
Instead, we model enterprise security at a more abstract
level appropriate for the CISO. For example, the CISO
might allocate a portion of his or her budget to engage a
consultancy, such as WhiteHat or iSEC Partners, to find and
fix cross-site scripting in a particular web application or to
require that employees use SecurID tokens during authen-
tication. This leads to our third technical assumption that
attacker costs are linearly dependent on defense invest-
ments locally. This assumption does not reflect patch-by-
patch interaction, which would be better represented by a
step function (with the step placed at the cost to deploy the
patch). Instead, this assumption reflects the CISO’s higher
level point of view where the staircase of summed step
functions fades into a slope.

We evaluate the defender’s strategy by measuring the
attacker’s cumulative return-on-investment, the return-on-
attack (ROA), which has been proposed previously [4]. By
studying this metric, we focus on defenders who seek to “cut
off the attacker’s oxygen,” that is to reduce the attacker’s
incentives for attacking the enterprise. We do not distin-
guish between “successful” and “unsuccessful” attacks.
Instead, we compare the payoff the attacker receives from
his or her nefarious deeds with the cost of performing said
deeds. We imagine that sufficiently disincentivized attack-
ers will seek alternatives, such as attacking a different
organization or starting a legitimate business.

In our main result, we show sufficient conditions for a
learning-based reactive strategy to be competitive with the
best fixed proactive defense in the sense that the competi-
tive ratio between the reactive ROA and the proactive ROA
is at most 1þ �, for all � > 0, provided the game lasts
sufficiently many rounds (at least �ð1=�Þ). To prove our
theorems, we draw on techniques from the online learning
literature. We extend these techniques to the case where the
learner does not know all the game matrix rows a priori,
letting us analyze situations where the defender does not
know all of the vulnerabilities in advance. Although our
main results are in a graph-based model with a single
attacker, our results generalize to a model based on Horn
clauses with multiple attackers (see Section 8.1). Our results
are also robust to switching from ROA to attacker profit and
to allowing the proactive defender to revise the defense
allocation a fixed number of times.

Although myopic bug chasing is most likely an
ineffective reactive strategy, we find that in some situations
a strategic reactive strategy is as effective as the optimal
fixed proactive defense. In fact, we find that the natural
strategy of gradually reinforcing attacked edges by shifting
budget from unattacked edges “learns” the attacker’s
incentives and constructs an effective defense. Such a
strategic reactive strategy is both easier to implement than
a proactive strategy—because it does not presume that the
defender knows the attacker’s intent and capabilities—and
is less wasteful than a proactive strategy because the
defender does not expend budget on attacks that do not
actually occur. Based on our results, we encourage CISOs to
question the assumption that proactive risk management is
inherently superior to reactive risk management. When

using reactive strategies, CISOs should employ monitoring
tools to help focus on real attacks, lead a more agile security
organization, and avoid overreacting to the most recent
attacks and instead learn from past attacks while discount-
ing their importance exponentially.

1.1 Organization

Section 2 formalizes our model. Section 3 shows that
perimeter defense and defense-in-depth arise naturally in
our model. Section 4 describes the threat model and our
new learning-based reactive strategy. Section 5 presents
our main results bounding the competitive ratio of reactive
versus proactive defense strategies. Section 6 provides a
lower bound establishing the essential optimality of our
learning-based defense among all reactive strategies.
Section 7 outlines scenarios in which reactive security
outperforms proactive security. Section 8 generalizes our
results to Horn clauses and multiple attackers. Section 9
relates related work. Section 10 concludes. This paper adds
proofs and a lower bound to an earlier conference version
of this work [5].

2 FORMAL MODEL

In this section, we present a game-theoretic model of attack
and defense. Unlike traditional bug-level attack graphs, our
model is meant to capture a managerial perspective on
enterprise security. The model is somewhat general in the
sense that attack graphs can represent a number of concrete
situations, including a network (see Fig. 1), components in
a complex software system [6], or an Internet Fraud
“Battlefield” [7].

2.1 System

We model a system using a directed graph ðV ;EÞ, which
defines the game between an attacker and a defender. Each
vertex v 2 V in the graph represents a state of the system.
Each edge e 2 E represents a state transition the attacker
can induce. For example, a vertex might represent whether
a particular machine in a network has been compromised
by an attacker. An edge from one machine to another
might represent that an attacker who has compromised the
first machine might be able to compromise the second
machine because the two are connected by a network.
Alternatively, the vertices might represent different com-
ponents in a software system. An edge might represent
that an attacker sending input to the first component can
send input to the second.
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In attacking the system, the attacker selects a path a in
the graph that begins with a designated start vertex s. Our
results hold in more general models (e.g., based on Horn
clauses), but we defer discussing such generalizations until
Section 8. We think of the attack as driving the system
through the series of state transitions indicated by the
edges included in the path. In the networking example in
Fig. 1, an attacker might first compromise a front-end
server and then leverage the server’s connectivity to the
back-end database server to steal credit card numbers from
the database.

2.2 Incentives and Rewards

Attackers respond to incentives. For example, attackers
compromise machines and form botnets because they make
money from spam [8] or rent the botnet to others [9]. Other
attackers steal credit card numbers because credit card
numbers have monetary value [10]. We model the attacker’s
incentives by attaching a nonnegative reward to each vertex.
These rewards are the utility the attacker derives from
driving the system into the state represented by the vertex.
For example, compromising the database server might have
a sizable reward because the database server contains easily
monetizable credit card numbers. We assume the start
vertex has zero reward, forcing the attacker to undertake
some action before earning utility. Whenever the attacker
mounts an attack, the attacker receives a payoff equal to the
sum of the rewards of the vertices visited in the attack path
a : payoffðaÞ ¼

P
v2a rewardðvÞ. In the example from Fig. 1, if

an attacker compromises both a front-end server and the
database server, the attacker receives both rewards.

2.3 Attack Surface and Cost

The defender has a fixed defense budget B > 0, which the
defender can divide among the edges in the graph
according to a defense allocation d: for all e 2 E, dðeÞ � 0
and

P
e2E dðeÞ � B.

The defender’s allocation of budget to various edges
corresponds to the decisions made by the Chief Information
Security Officer about where to allocate the enterprise’s
security resources. For example, the CISO might allocate
organizational headcount to fuzzing enterprise web appli-
cations for XSS vulnerabilities. These kinds of investments
are continuous in the sense that the CISO can allocate 1=4 of
a full-time employee to worrying about XSS. We denote the
set of feasible allocations of budget B on edge set E by DB;E .

By defending an edge, the defender makes it more
difficult for the attacker to use that edge in an attack. Each
unit of budget the defender allocates to an edge raises the
cost that the attacker must pay to use that edge in an attack.
Each edge has an attack surface [11] w that represents the
difficulty in defending against that state transition. For
example, a server that runs both Apache and Sendmail has a
larger attack surface than one that runs only Apache because
defending the first server is more difficult than the second.
Formally, the attacker must pay the following cost to traverse
the edges of an attack: costða; dÞ ¼

P
e2a dðeÞ=wðeÞ. Allocat-

ing defense budget to an edge does not “reduce” an edge’s
attack surface. For example, consider defending a hallway
with bricks. The wider the hallway (the larger the attack

surface), the more bricks (budget allocation) required to
build a wall of a certain height (the cost to the attacker).

In this formulation, the function mapping the defender’s
budget allocation to attacker cost is linear, preventing the
defender from ever fully defending an edge. Our use of a
linear function reflects a level of abstraction more appro-
priate to a CISO who can never fully defend assets, which we
justify by observing that the rate of vulnerability discovery
in a particular piece of software is roughly constant [12],
which means an attacker with sufficient resources can often
overcome even the best defenses. At a lower level of detail,
we might replace this function with a step function,
indicating that the defender can “patch” a vulnerability by
allocating a threshold amount of budget.

2.4 Objective

To evaluate defense strategies, we measure the attacker’s
incentive for attacking using the return-on-attack [4], which
we define as follows:

ROAða; dÞ ¼ payoffðaÞ
costða; dÞ :

We use this metric for evaluating defense strategy because
we believe that if the defender lowers the ROA sufficiently,
the attacker will be discouraged from attacking the system
and will find other uses for his or her capital or industry.
For example, the attacker might decide to attack another
system. Analogous results hold if we quantify the attacker’s
incentives in terms of profit (e.g., with profitða; dÞ ¼
payoffðaÞ � costða; dÞ), but we focus our discussion on
ROA for simplicity. Results for both ROA and additive
profit are presented in Section 5.

A purely rational attacker will mount attacks that
maximize ROA. However, a real attacker might not
maximize ROA. For example, the attacker might not have
complete knowledge of the system or its defense. We
strengthen our results by considering all attacks, not just
those that maximize ROA.

2.5 Proactive Security

We evaluate our learning-based reactive approach by
comparing it against a proactive approach to risk manage-
ment in which the defender carefully examines the
system and constructs a defense in order to fend off
future attacks. We strengthen this benchmark by provid-
ing the proactive defender complete knowledge about the
system, but we require that the defender commit to a
fixed strategy. To strengthen our results, we state our
main result in terms of all such proactive defenders. In
particular, this class of defenders includes the rational
proactive defender who employs a defense allocation that
minimizes the maximum ROA the attacker can extract
from the system: argmindmaxaROAða; dÞ.

3 CASE STUDIES

In this section, we describe instances of our model to build
the reader’s intuition. These examples illustrate that some
familiar security concepts, including perimeter defense and
defense in depth, arise naturally as optimal defenses in our
model. These defenses can be constructed either by rational
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proactive attackers or converged to by a learning-based
reactive defense.

3.1 Perimeter Defense

Consider a system in which the attacker’s reward is nonzero
at exactly one vertex, t. For example, in a medical system,
the attacker’s reward for obtaining electronic medical
records might well dominate the value of other attack
targets such as employees’ vacation calendars. In such a
system, a rational attacker will select the minimum-cost
path from the start vertex s to the valuable vertex t. The
optimal defense limits the attacker’s ROA by maximizing
the cost of the minimum s-t path. The algorithm for
constructing this defense is straightforward [13]:

1. Let C be the minimum weight s-t cut in ðV ;E;wÞ.
2. Select the following defense:

dðeÞ ¼
BwðeÞ=Z; if e 2 C;
0; otherwise;

�

where Z ¼
X
e2C

wðeÞ:

Notice that this algorithm constructs a perimeter defense: the
defender allocates the entire defense budget to a single cut in
the graph. Essentially, the defender spreads the defense
budget over the attack surface of the cut. By choosing the
minimum-weight cut, the defender is choosing to defend the
smallest attack surface that separates the start vertex from the
target vertex. Real defenders use similar perimeter defenses,
for example, when they install a firewall at the boundary
between their organization and the Internet because the
network’s perimeter is much smaller than its interior.

3.2 Defense in Depth

Many experts in security practice recommend that defen-
ders employ defense in depth. Defense in depth arises
naturally in our model as an optimal defense for some
systems. Consider, for example, the system depicted in
Fig. 2. This attack graph is a simplified version of the data
center network depicted in Fig. 1. Although the attacker
receives the largest reward for compromising the back-end
database server, the attacker also receives some reward for
compromising the front-end web server. Moreover, the
front-end web server has a larger attack surface than the
back-end database server because the front-end server
exposes a more complex interface (an entire enterprise web
application), whereas the database server exposes only a
simple SQL interface. Allocating defense budget to the left-
most edge represents trying to protect sensitive database
information with a complex web application firewall
instead of database access control lists (i.e., possible, but
economically inefficient).

The optimal defense against a rational attacker is to
allocate half of the defense budget to the left-most edge and
half of the budget to the right-most edge, limiting the
attacker to a ROA of unity. Shifting the entire budget to the
right-most edge (i.e., defending only the database) is
disastrous because the attacker will simply attack the
front-end at zero cost, achieving an unbounded ROA.
Shifting the entire budget to the left-most edge is also
problematic because the attacker will attack the database
(achieving an ROA of five).

4 REACTIVE SECURITY

To analyze reactive security, we model the attacker and
defender as playing an iterative game of alternating moves.
First, the defender selects a defense, and then the attacker
selects an attack. We present a learning-based reactive
defense strategy that is oblivious to vertex rewards and to
edges that have not yet been used in attacks. We prove a
theorem bounding the competitive ratio between this
reactive strategy and the best proactive defense via a series
of reductions to results from the online learning theory
literature. Other applications of this literature include
managing stock portfolios [14], playing zero-sum games
[15], and boosting other machine learning heuristics [16].
Although we provide a few technical extensions, our main
contribution comes from applying results from online
learning to risk management.

4.1 Repeated Game

We formalize the repeated game between the defender and
the attacker as follows: In each round t from 1 to T :

1. The defender chooses defense allocation dtðeÞ over
the edges e 2 E.

2. The attacker chooses an attack path at in G.
3. The path at and attack surfaces fwðeÞ : e 2 atg are

revealed to the defender.
4. The attacker pays costðat; dtÞ and gains payoffðatÞ.

In each round, we let the attacker choose the attack path
after the defender commits to the defense allocation because
the defender’s budget allocation is not a secret (in the sense
of a cryptographic key). Following the “no security through
obscurity” principle, we make the conservative assumption
that the attacker can accurately determine the defender’s
budget allocation.

4.2 Defender Knowledge

Unlike proactive defenders, reactive defenders do not
know all of the vulnerabilities that exist in the system in
advance. For example, browser vendors would routinely
survive the Pwn2Own competition and conferences such
as Black Hat Briefings would serve little purpose if
defenders had complete knowledge of vulnerabilities.
Instead, we reveal an edge (and its attack surface) to the
defender after the attacker uses the edge in an attack. For
example, the defender might monitor the system and learn
how the attacker attacked the system by periodically
analyzing logs for intrusions. Formally, we define a
reactive defense strategy to be a function from attack
sequences faig and the subsystem induced by the edges
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contained in
S
i ai to defense allocations such that dðeÞ ¼ 0

if edge e 62
S
i ai. Notice that this requires the defender’s

strategy to be oblivious to the system beyond the edges
used by the attacker.

4.3 Algorithm

Algorithm 1 is a reactive defense strategy based on the
multiplicative update learning algorithm [15], [17]. The
algorithm reinforces edges on the attack path multiplica-
tively, taking the attack surface into account by allocating
more budget to easier-to-defend edges. When new edges
are revealed, the algorithm reallocates budget uniformly
from the already-revealed edges to the newly revealed
edges. We state the algorithm in terms of a normalized
defense allocation PtðeÞ ¼ dtðeÞ=B. Notice that this algo-
rithm is oblivious to unattacked edges and the attacker’s
reward for visiting each vertex. An appropriate setting for
the algorithm parameters �t 2 ½0; 1Þwill be described below.

Algorithm 1. A reactive defense strategy for hidden edges.

. Initialize E0 ¼ ;

. For each round t 2 f2; . . . ; Tg
- Let Et�1 ¼ Et�2 [ Eðat�1Þ
- For each e 2 Et�1, let

St�1ðeÞ ¼
St�2ðeÞ þMðe; at�1Þ if e 2 Et�2

Mðe; at�1Þ otherwise:

�
~PtðeÞ ¼ �St�1ðeÞ

t�1

PtðeÞ ¼
~PtðeÞP

e02Et
~Ptðe0Þ

;

where Mðe; aÞ ¼ �1½e 2 a�=wðeÞ is a matrix with

jEj rows and a column for each attack.

The algorithm begins without any knowledge of the
graph whatsoever, and so allocates no defense budget to the
system. Upon the tth attack on the system, the algorithm
updates Et to be the set of edges revealed up to this point,
and updates StðeÞ to be a weighted count of the number of
times e has been used in an attack thus far. For each edge
that has ever been revealed, the defense allocation Ptþ1ðeÞ is
chosen to be �

StðeÞ
t normalized to sum to unity over all edges

e 2 Et. In this way, any edge attacked in round t will have
its defense allocation reinforced.

The parameters �t control how aggressively the
defender reallocates defense budget to recently attacked
edges. If �t is infinitesimal, the defender will move the
entire defense budget to the edge on the most recent
attack path with the smallest attack surface. If �t � 1, the
defender will not be very agile and, instead, leave the
defense budget in the initial allocation. For appropriate
values of �t, the algorithm will converge to the optimal
defense strategy. For instance, the min-cut in the example
from Section 3.1.

5 MAIN RESULTS

We now describe a series of reductions establishing the main
results that bound the difference between attacker profit
under this reactive strategy and fixed proactive strate-
gies—Theorem 3—and the ratio between the corresponding

attacker ROAs—Theorem 7. First, we bound profits in the
simpler setting where the defender knows the entire graph
in Section 5.1. Second, in Section 5.2 we remove the
hypothesis that the defender knows the edges in advance.
Finally, in Section 5.3 we extend our results to ROA. To
compare strategies, we use the notion of regret from online
learning theory.

5.1 Attacker Profit (Known Edges Case)

Suppose that the reactive defender is granted full knowl-
edge of the system1 ðV ;E;w; reward; sÞ from the outset,
prior to the first round. Algorithm 2 is a reactive defense
strategy that makes use of this additional knowledge.

Algorithm 2. Reactive defense strategy for known edges

using the multiplicative update algorithm.

. For each e 2 E, initialize P1ðeÞ ¼ 1=jEj.

. For each round t 2 f2; . . . ; Tg and e 2 E, let

PtðeÞ ¼ Pt�1ðeÞ � �Mðe;at�1Þ=Zt
where Zt ¼

X
e02E

Pt�1ðeÞ�Mðe
0;at�1Þ

Lemma 1. If defense allocations fdtgTt¼1 are output by Algorithm 2

with parameter � ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEj=T

p
Þ�1 on any system

ðV ;E;w; reward; sÞ and attack sequence fatgTt¼1, then

1

T

XT
t¼1

profitðat; dtÞ �
1

T

XT
t¼1

profitðat; d?Þ

� B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

2T

r
þB log jEj

T
;

for all proactive defense strategies d? 2 DB;E .

The lemma’s proof is a reduction to the following regret
bound from online learning [15, Corollary 4].

Theorem 2. If the multiplicative update algorithm (Algorithm 2)
is run with any game matrix M with elements in ½0; 1�, and
parameter � ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEj=T

p
Þ�1, then

1

T

XT
t¼1

MðPt; atÞ � min
P?�0:P
e2E

P?ðeÞ¼1

1

T

XT
t¼1

MðP?; atÞ
( )

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

2T

r
þ log jEj

T
:

In the original game-theoretic setting of Theorem 2,
pure plays of the learner (adversary) correspond to rows
(respectively columns) of a fixed game matrix, which
records the learner’s instantaneous loss. When either or
both of the learner and adversary play mixed strategies
according to some distribution(s) P and Q, then the
expected loss (or risk) corresponding to the matrix product
PTMQ is written as MðP;QÞ for convenience. Similarly for
cases when one player plays a mixed strategy and the
other plays a pure strategy we write MðP; qÞ or Mðp;QÞ.

In our present setting we consider each edge as a
possible pure play of the learner, and each attack path as a
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pure play of the attacker. In this way, the learner’s mixed
strategies correspond to allocations of a unit budget over
subsets of edges within the graph.

Proof of Lemma 1. Due to the normalization by Zt, the
sequence of defense allocations fPtgTt¼1 output by Algo-
rithm 2 is invariant to adding a constant to all elements of
matrix M. Let M 0 be the matrix obtained by adding
constant C to all entries of arbitrary game matrix M, and
let sequences fPtgTt¼1 and fP 0tg

T
t¼1 be obtained by running

multiplicative update with matrix M and M 0, respec-
tively. Then, for all e 2 E and t 2 ½T � 1�,

P 0tþ1ðeÞ ¼
P1ðeÞ�

Pt

i¼1
M 0ðe;aiÞP

e02E P1ðe0Þ�
Pt

i¼1
M 0ðe0;aiÞ

¼ P1ðeÞ�
Pt

i¼1
Mðe;aiÞ

� �
þtC

P
e02E P1ðe0Þ�

Pt

i¼1
Mðe0;aiÞ

� �
þtC

¼ P1ðeÞ�
Pt

i¼1
Mðe;aiÞP

e02E P1ðe0Þ�
Pt

i¼1
Mðe0;aiÞ

¼ Ptþ1ðeÞ:

In particular Algorithm 2 produces the same defense
allocation sequence as if the game matrix elements are
increased by one to

M 0ðe; aÞ ¼ 1� 1=wðeÞ if e 2 a
1 otherwise:

�

Because this new matrix has entries in ½0; 1� we can apply
Theorem 2 to prove that, for the original matrix M

1

T

XT
t¼1

MðPt; atÞ � min
P?2D1;E

1

T

XT
t¼1

MðP?; atÞ
( )

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

2T

r
þ log jEj

T
:

ð1Þ

Now, by definition of the original game matrix

MðPt; atÞ ¼
X
e2E
�ðPtðeÞ=wðeÞÞ � 1 e 2 at½ �

¼ �
X
e2at

PtðeÞ=wðeÞ

¼ �B�1
X
e2at

dtðeÞ=wðeÞ

¼ �B�1costðat; dtÞ:

Thus, Inequality (1) is equivalent to

� 1

T

XT
t¼1

B�1costðat; dtÞ

� min
d?2D1;E

� 1

T

XT
t¼1

B�1costðat; d?Þ
( )

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

2T

r
þ log jEj

T
:

Simple algebraic manipulation yields

1

T

XT
t¼1

profitðat; dtÞ � min
d?2DB;E

1

T

XT
t¼1

profitðat; d?Þ
( )

¼ 1

T

XT
t¼1

payoffðatÞ � costðat; dtÞð Þ

� min
d?2DB;E

1

T

XT
t¼1

payoffðatÞ � costðat; d?Þð Þ
( )

¼ 1

T

XT
t¼1

�costðat; dtÞð Þ � min
d?2DB;E

1

T

XT
t¼1

�costðat; d?Þð Þ
( )

� B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

2T

r
þB log jEj

T
;

establishing the result. tu

5.2 Attacker Profit (Hidden Edges Case)

The following is an additive regret bound relating the
attacker’s profit under reactive and proactive defense
strategies, in the more restricted setting of a defender
observing edges and weights only after they are first
exploited by the attacker.

Theorem 3. The average attacker profit against Algorithm 1
converges to the average attacker profit against the best
proactive defense. Formally, if defense allocations fdtgTt¼1 are
output by Algorithm 1 with parameter sequence �t ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEtj=ðtþ 1Þ

p
Þ�1 on any system ðV ;E;w;

reward; sÞ revealed online and any attack sequence
fatgTt¼1, then

1

T

XT
t¼1

profitðat; dtÞ �
1

T

XT
t¼1

profitðat; d?Þ

� B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

2T

r
þBðlog jEj þ w�1Þ

T
;

for all proactive defense strategies d? 2 DB;E where w�1 ¼
jEj�1P

e2E wðeÞ
�1, the mean of the surface reciprocals.

Remark 4. We can interpret Theorem 3 as establishing
sufficient conditions under which a reactive defense
strategy is within an additive constant of the best
proactive defense strategy. Instead of carefully analyzing
the system to construct the best proactive defense, the
defender need only react to attacks in a principled
manner to achieve almost the same quality of defense in
terms of attacker profit.

We now detail the proof of this first main theorem. The
standard algorithms in online learning assume that the
rows of the game matrix are known in advance. Here, the
edges are not known in advance and so we must relax this
assumption using a simulation argument, which is perhaps
the least obvious part of the reduction. The defense
allocation chosen by Algorithm 1 at time t is precisely the
same as the defense allocation that would have been chosen
by Algorithm 2 had the defender run Algorithm 2 on the
currently visible subgraph. The following lemma formalizes
this equivalence. Note that Algorithm 1’s parameter is
reactive: it corresponds to Algorithm 2’s parameter, but for
the subgraph induced by the edges revealed so far. That is,
�t depends only on edges visible to the defender in round t,
letting the defender actually run the algorithm.
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Lemma 5. Consider arbitrary round t 2 ½T �. If Algorithms 1 and
2 are run with parameters �k ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEkj=ðkþ 1Þ

p
Þ�1

for k 2 ½t� and parameter � ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEtj=ðtþ 1Þ

p
Þ�1,

respectively, with the latter run on the subgraph induced by
Et, then the defense allocations Ptþ1ðeÞ output by the
algorithms are identical for all e 2 Et.

Proof. If e 2 Et then ~Ptþ1ðeÞ ¼ �
Pt

i¼1
Mðe;aiÞ because �t ¼ �,

and the round tþ 1 defense allocation of Algorithm 1
Ptþ1 is simply ~Ptþ1 normalized to sum to unity over edge
set Et, which is exactly the defense allocation output by
Algorithm 2. tu

Armed with this correspondence, we show that Algo-
rithm 1 is almost as effective as Algorithm 2. In other words,
hiding unattacked edges from the defender does not cause
much harm to the reactive defender’s ability to disincenti-
vize the attacker.

Lemma 6. If defense allocations fd1;tgTt¼1 and fd2;tgTt¼1 are
output by Algorithms 1 and 2 with parameters �t ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEtj=ðtþ 1Þ

p
Þ�1 for t 2 ½T � 1� and � ¼ ð1 þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log jEj=ðT Þ
p

Þ�1, respectively, on a system ðV ;E;w;
reward; sÞ and attack sequence fatgTt¼1, then

1

T

XT
t¼1

profitðat; d1;tÞ �
1

T

XT
t¼1

profitðat; d2;tÞ �
B

T
w�1:

Proof. Consider attack at from a round t 2 ½T � and consider
an edge e 2 at. If e 2 ak for some k < t, then the defense
budget allocated to e at time t by Algorithm 2 cannot be
greater than the budget allocated by Algorithm 1. Thus,
the instantaneous cost paid by the attacker on e when
Algorithm 1 defends is at least the cost paid when
Algorithm 2 defends: d1;tðeÞ=wðeÞ � d2;tðeÞ=wðeÞ. If e 62St�1
k¼1 ak then for all k 2 ½t�, d1;kðeÞ ¼ 0, by definition. The

sequence fd2;kðeÞgt�1
k¼1 is decreasing and positive. Thus

maxk<tðd2;kðeÞ � d1;kðeÞÞ is optimized at k ¼ 1 and is
equal to B=jEj. Finally since each edge e 2 E is first
revealed exactly once this leads to

XT
t¼1

costðat; d2;tÞ �
XT
t¼1

costðat; d1;tÞ

¼
XT
t¼1

X
e2at

d2;tðeÞ � d1;tðeÞ
wðeÞ

�
X
e2E

B

jEjwðeÞ :

Combined with the fact that the attacker receives the
same payout whether Algorithm 2 or Algorithm 1
defends completes the result. tu

Proof of Theorem 3. The result follows immediately from
Lemma 1 and Lemma 6. tu

Finally, notice that Algorithm 1 enjoys the same time and
space complexities as Algorithm 2, up to constants.

5.3 Attacker ROA (Hidden Edges Case)

Reactive defense strategies can also be competitive with
proactive defense strategies when we consider an attacker

motivated by return on attack. The ROA formulation is
appealing because (unlike with profit) the objective function
does not require measuring attacker cost and defender
budget in the same units. Our second main result considers
the competitive ratio between the ROA for a reactive defense
strategy and the ROA for the best proactive defense strategy.

Theorem 7. The ROA against Algorithm 1 converges to the

ROA against best proactive defense. Formally, consider the

cumulative ROA

ROA
�
fatgTt¼1; fdtg

T
t¼1

�
¼
PT

t¼1 payoffðatÞPT
t¼1 costðat; dtÞ

:

(We abuse notation slightly and use singleton arguments to

represent the corresponding constant sequence.) If defense

allocations fdtgTt¼1 are output by Algorithm 1 with
parameters �t ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jEtj=ðtþ 1Þ

p
Þ�1 on any system

ðV ;E;w; reward; sÞ revealed online, such that jEj > 1, and

any attack sequence fatgTt¼1, then for all � > 0 and
proactive defense strategies d? 2 DB;E

ROA
�
fatgTt¼1; fdtg

T
t¼1

�
ROA

�
fatgTt¼1; d

?
� � 1þ �;

provided T is sufficiently large.2

Remark 8. Notice that the reactive defender can use the same

algorithm regardless of whether the attacker is motivated
by profit or by ROA. As discussed in Section 7.2, the
optimal proactive defense is not similarly robust.

We now translate our bounds on profit into bounds on
ROA by observing that the ratio of two quantities is small if
the quantities are large and their difference is small. We
consider the competitive ratio between a reactive defense
strategy and the best proactive defense strategy after the
following technical lemma, which asserts that the quantities
are large.

Lemma 9. For all attack sequences fatgTt¼1, maxd?2DB;EPT
t¼1 costðat; d?Þ � V T where game value V is

max
d2DB;E

min
a

costða; dÞ ¼ BP
e2incðsÞ wðeÞ

> 0;

where incðvÞ � E denotes the edges incident to vertex v.

Proof. Let d? ¼ argmaxd2DB;Eminacostða; dÞ witness the
game’s value V , then maxd2DB;E

PT
t¼1 costðat; dÞ �PT

t¼1 costðat; d?Þ � TV . Consider the defensive alloca-
tion for each e 2 E. If e 2 incðsÞ, let ~dðeÞ ¼ BwðeÞ=P

e2incðsÞ wðeÞ > 0, and otherwise ~dðeÞ ¼ 0. This alloca-
tion is feasible because

X
e2E

~dðeÞ ¼
B
P

e2incðsÞ wðeÞP
e2incðsÞ wðeÞ

¼ B:

By definition ~dðeÞ=wðeÞ ¼ B=
P

e2incðsÞ wðeÞ for each edge e

incident to s. Therefore, costða; ~dÞ � B=
P

e2incðsÞ wðeÞ for

any nontrivial attack a, which necessarily includes at least

one s-incident edge. Finally, V � minacostða; ~dÞ proves
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2. To wit: T � ð 13ffiffi
2
p ð1þ ��1Þð

P
e2incðsÞ wðeÞÞÞ

2 log jEj.



V � BP
e2incðsÞ wðeÞ

:

Now, consider a defense allocation d and fix an attack a
that minimizes the total attacker cost under d. At most
one edge e 2 a can have dðeÞ > 0, for otherwise the cost
under d can be reduced by removing an edge from a.
Moreover any attack a 2 argmine2incðsÞdðeÞ=wðeÞ mini-
mizes attacker cost under d. Thus, the maximin V is
witnessed by defense allocations that maximize
mine2incðsÞdðeÞ=wðeÞ. This maximization is achieved by
allocation ~d and so Inequality (2) is an equality. tu
We are now ready to prove the main ROA theorem:

Proof of Theorem 7. First, observe that for all B > 0 and all
A;C 2 IR

A

B
� C () A�B � ðC � 1ÞB: ð3Þ

We will use this equivalence to convert the regret bound
on profit to the desired bound on ROA. Together
Theorem 3 and Lemma 9 imply

�
XT
t¼1

costðat; dtÞ

� � max
d?2DB;E

XT
t¼1

costðat; d?Þ

� �B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log jEj

p
� �Bðlog jEj þ w�1Þ

ð4Þ

� �V T � �B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log jEj

p
� �Bðlog jEj þ w�1Þ; ð5Þ

where V ¼ maxd2DB;Eminacostða; dÞ > 0. If

ffiffiffiffi
T
p
� 13ffiffiffi

2
p 1þ ��1
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log jEj
p X

e2incðsÞ
wðeÞ;

we can use inequalities V ¼ B=
P

e2incðsÞ wðeÞ, w�1 �
2 log jEj (since jEj > 1), and ð

P
e2incðsÞ wðeÞÞ

�1 � 1 to show

ffiffiffiffi
T
p
� ð1þ �ÞBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �ÞBþ 24�V½ �ð1þ �ÞB

p
2
ffiffiffi
2
p

�V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log jEj

p
;

which combines with Theorem 3 and Inequality (5) to
imply

�
XT
t¼1

costðat; dtÞ

� �V T � �B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log jEj

p
� �Bðlog jEj þ w�1Þ

� B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log jEj

p
þBðlog jEj þ w�1Þ

�
XT
t¼1

profitðat; dtÞ � min
d?2DB;E

XT
t¼1

profitðat; d?Þ

¼
XT
t¼1

�costðat; dtÞð Þ � min
d?2DB;E

XT
t¼1

�costðat; d?Þð Þ

¼ max
d?2DB;E

XT
t¼1

costðat; d?Þ �
XT
t¼1

costðat; dtÞ:

Finally, combining this equation with Equivalence (3)
yields

ROA
�
fatgTt¼1; fdtg

T
t¼1

�
mind?2DB;EROA

�
fatgTt¼1; d

?
�

¼
PT

t¼1 payoffðat; dtÞPT
t¼1 costðat; dtÞ

� max
d?2DB;E

PT
t¼1 costðat; d?ÞPT

t¼1 payoffðat; d?Þ

¼
maxd?2DB;E

PT
t¼1 costðat; d?ÞPT

t¼1 costðat; dtÞ
� 1þ �;

proving the main result. tu

6 LOWER BOUNDS

In this section we use a two-vertex, two-edge graph to
establish a lower bound on the competitive ratio of the
attacker ROA for all reactive strategies. The lower bound
shows that the analysis of Algorithm 1 is tight and that
Algorithm 1 is optimal given the information available to
the defender. The proof gives an example where the best
proactive defense (slightly) out-performs every reactive
strategy, suggesting the benchmark is not unreasonably
weak.

To construct the lower bound, we first show in the
following lemma that Algorithm 1 has optimal convergence
time for small enough �, up to constants. (For very large �,
Algorithm 1 converges in constant time, and therefore is
optimal up to constants, vacuously.) The argument con-
siders an attacker who randomly selects an attack path,
rendering knowledge of past attacks useless, in the two-
vertex graph of Fig. 3: let start vertex s be connected to a
vertex r (with reward one) by two parallel edges e1 and e2,
each with an attack surface of one. Further suppose that the
defense budget B ¼ 1.

Lemma 10. For all reactive algorithms A, the competitive ratio C
is at least ðxþ �ð

ffiffiffiffi
T
p
ÞÞ=x, i.e., at least ðT þ �ð

ffiffiffiffi
T
p
ÞÞ=T

because x � T .

Proof. Consider the following random attack sequence: For
each round, select an attack path uniform IID from the
set fe1; e2g. A reactive strategy must commit to a defense
in every round without knowledge of the attack, and
therefore every strategy that expends the entire budget of
one inflicts an expected cost of 1=2 in every round. Thus,
every reactive strategy inflicts a total expected cost of (at
most) T=2, where the expectation is over the coin-tosses
of the random attack process.

Given an attack sequence, however, there exists a
proactive defense allocation with better performance. We
can think of the proactive defender being prescient as to
which edge (e1 or e2) will be attacked most frequently
and allocating the entire defense budget to that edge. It is
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well known (for instance via an analysis of a one-
dimensional random walk) that in such a random
process, one of the edges will occur �ð

ffiffiffiffi
T
p
Þ more often

than the other, in expectation.
By the probabilistic method, a property that is true in

expectation must hold existentially, and, therefore, for
every reactive strategy A, there exists an attack sequence
such that A has a cost x, whereas the best proactive
strategy (in retrospect) has a cost xþ �ð

ffiffiffiffi
T
p
Þ. Because the

payoff of each attack is 1, the total reward in either case is
T . The prescient proactive defender, therefore, has an
ROA of T=ðxþ �ð

ffiffiffiffi
T
p
ÞÞ, but the reactive algorithm has

an ROA of T=x, establishing the lemma. tu

Given this lemma, we show that Algorithm 1 is optimal
given the information available. In this case, n ¼ 2 and,
ignoring constants from Theorem 7, we are trying to match
a convergence time T is at most ð1þ ��1Þ2, which is
approximately ��2 for small �. For large enough T , there
exists a constant c such that C � ðT þ c

ffiffiffiffi
T
p
Þ=T . By easy

algebra, ðT þ c
ffiffiffiffi
T
p
Þ=T � 1þ � whenever T � c2=�2, con-

cluding the argument.
We can generalize the above argument of optimality to

n > 2 using the combinatorial Lemma 3.2.1 from [18].
Specifically, we can show that for every n, there is an
n edge graph for which Algorithm 1 is optimal up to
constants for small enough �.

7 ADVANTAGES OF REACTIVITY

In this section, we examine some situations in which a
reactive defender outperforms a proactive defender. Proac-
tive defenses hinge on the defender’s model of the
attacker’s incentives. If the defender’s model is inaccurate,
the defender will construct a proactive defense that is far
from optimal. By contrast, a reactive defender need not
reason about the attacker’s incentives directly. Instead, the
reactive defender learns these incentives by observing the
attacker in action.

7.1 Learning Rewards

One way to model inaccuracies in the defender’s estimates
of the attacker’s incentives is to hide the attacker’s rewards
from the defender. Without knowledge of the payoffs, a
proactive defender has difficulty limiting the attacker’s
ROA. Consider, for example, the star system whose edges
have equal attack surfaces, as depicted in Fig. 4. Without
knowledge of the attacker’s rewards, a proactive defender
has little choice but to allocate the defense budget equally
to each edge (because the edges are indistinguishable).
However, if the attacker’s reward is concentrated at a
single vertex, the competitive ratio for attacker’s ROA
(compared to the rational proactive defense) is the number
of leaf vertices. (We can, of course, make the ratio worse
by adding more vertices.) By contrast, the reactive
algorithm we analyze in Section 4 is competitive with
the rational proactive defense because the reactive algo-
rithm effectively learns the rewards by observing which
attacks the attacker chooses.

7.2 Robustness to Objective

Another way to model inaccuracies in the defender’s
estimates of the attacker’s incentives is to assume the
defender mistakes which of profit and ROA actually matter
to the attacker. The defense constructed by a rational
proactive defender depends crucially on whether the
attacker’s actual incentives are based on profit or based
on ROA; whereas, the reactive algorithm we analyze in
Section 4 is robust to this variation. In particular, consider
the system depicted in Fig. 5, and assume the defender has
a budget of nine. If the defender believes the attacker is
motivated by profit, the rational proactive defense is to
allocate the entire defense budget to the right-most edge
(making the profit 1 on both edges). However, this defense
is disastrous when viewed in terms of ROA because the
ROA for the left edge is infinite (as opposed to near unity
when the proactive defender optimizes for ROA).

7.3 Catachresis

The defense constructed by the rational proactive defender
is optimized for a rational attacker. If the attacker is not
perfectly rational, there is room for outperforming the
rational proactive defense. There are a number of situations
in which the attacker might not mount “optimal” attacks:

. The attacker might not have complete knowledge of
the attack graph. Consider, for example, a software
vendor who discovers five equally severe vulner-
abilities in one of their products via fuzzing.
According to proactive security, the defender ought
to dedicate equal resources to repairing these five
vulnerabilities. However, a reactive defender might
dedicate more resources to fixing a vulnerability
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Fig. 4. Star-shaped attack graph with rewards concentrated in an
unknown vertex.

Fig. 5. An attack graph that separates the minimax strategies optimizing
ROA and attacker profit.



actually exploited by attackers in the wild. We can
model these situations by making the attacker
oblivious to some edges.

. The attacker might not have complete knowledge of
the defense allocation. For example, an attacker
attempting to invade a corporate network might
target computers in human resources without
realizing that attacking the customer relationship
management database in sales has a higher return-
on-attack because the database is lightly defended.

By observing attacks, the reactive strategy learns a defense
tuned for the actual attacker, causing the attacker to receive
a lower ROA.

8 GENERALIZATIONS

In this section, we consider several extensions to our basic
model for which results analogous to Theorems 3 and 7 can
be shown.

8.1 Horn Clauses

Thus far, we have presented our results using a graph-
based system model. Our results extend, however, to a
more general system model based on Horn clauses. Datalog
programs, which are based on Horn clauses, have been
used in previous work to represent vulnerability-level
attack graphs [19]. A Horn clause is a statement in
propositional logic of the form p1 ^ p2 ^ � � � ^ pn ! q. The
propositions p1; p2; . . . ; pn are called the antecedents, and q is
called the consequent. The set of antecedents might be
empty, in which case the clause simply asserts the
consequent. Notice that Horn clauses are negation free. In
some sense, a Horn clause represents an edge in a
hypergraph where multiple preconditions are required
before taking a certain state transition.

In the Horn model, a system consists of a set of Horn
clauses, an attack surface for each clause, and a reward for
each proposition. The defender allocates defense budget
among the Horn clauses. To mount an attack, the attacker
selects a valid proof: an ordered list of rules such that each
antecedent appears as a consequent of a rule earlier in the
list. For a given proof �,

costð�; dÞ ¼
X
c2�

dðcÞ=wðeÞ payoffð�Þ ¼
X
p2½½���

rewardðpÞ;

where ½½��� is the set of propositions proved by � (i.e., those
propositions that appear as consequents in �). Profit and
ROA are computed as before.

Our results generalize to this model directly. Essentially,
we need only replace each instance of the word “edge” with
“Horn clause” and “path” with “valid proof.” For example,
the rows of the matrix M used throughout the proof become
the Horn clauses, and the columns become the valid proofs
(which are numerous, but no matter). The entries of the
matrix become Mðc;�Þ ¼ 1=wðcÞ, analogous to the graph
case. The one nonobvious substitution is incðsÞ, which
becomes the set of clauses that lack antecedents.

8.2 Multiple Attackers

We have focused on a security game between a single
attacker and a defender. In practice, a security system might

be attacked by several uncoordinated attackers, each with
different information and different objectives. Fortunately,
we can show that a model with multiple attackers is
mathematically equivalent to a model with a single attacker
with a randomized strategy: Use the set of attacks, one per
attacker, to define a distribution over edges where the
probability of an edge is linearly proportional to the
number of attacks which use the edge. This precludes the
interpretation of an attack as an s-rooted path, but our
proofs do not rely upon this interpretation and our results
hold in such a model with appropriate modifications.

8.3 Adaptive Proactive Defenders

A simple application of an online learning result [20]
modifies our regret bounds for a proactive defender who
reallocates budget a fixed number of times. In this model,
our results remain qualitatively the same.

9 RELATED WORK

Anderson [21] and Varian [22] informally discuss (via
anecdotes) how the design of information security must
take incentives into account. August and Tunca [23]
compare various ways to incentivize users to patch their
systems in a setting where the users are more susceptible to
attacks if their neighbors do not patch.

Gordon and Loeb [24] and Hausken [25] analyze the
costs and benefits of security in an economic model (with
nonstrategic attackers) where the probability of a successful
exploit is a function of the defense investment. They use this
model to compute the optimal level of investment. Varian
[26] studies various (single-shot) security games and
identifies how much agents invest in security at equili-
brium. Grossklags et al. [27] extend this model by letting
agents self-insure.

Miura-Ko et al. [28] study externalities that appear due to
users having the same password across various websites
and discuss pareto-improving security investments. Miura-
Ko and Bambos [29] rank vulnerabilities according to a
random-attacker model. Skybox and RedSeal offer practical
systems that help enterprises prioritize vulnerabilities
based on a random-attacker model. Kumar et al. [30]
investigate optimal security architectures for a multidivi-
sion enterprise, taking into account losses due to lack of
availability and confidentiality. None of the above papers
explicitly model a truly adversarial attacker.

Fultz and Grossklags [31] generalize [27] by modeling
attackers explicitly. Cavusoglu et al. [32] highlight the
importance of using a game-theoretic model over a decision
theoretic model due to the presence of adversarial attack-
ers. However, these models look at idealized settings that
are not generically applicable. Lye and Wing [33] study the
Nash equilibrium of a single-shot game between an
attacker and a defender that models a particular enterprise
security scenario. Arguably this model is most similar to
ours in terms of abstraction level. However, calculating the
Nash equilibrium requires detailed knowledge of the
adversary’s incentives, which as discussed in the introduc-
tion, might not be readily available to the defender.
Moreover, their game contains multiple equilibria, weak-
ening their prescriptions.
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10 CONCLUSIONS

Many security experts equate reactive security with myopic
bug-chasing and ignore principled reactive strategies when
they recommend adopting a proactive approach to risk
management. In this paper, we establish sufficient condi-
tions for a learning-based reactive strategy to be competi-
tive with the best fixed proactive defense. Additionally, we
show that reactive defenders can outperform proactive
defenders when the proactive defender defends against
attacks that never actually occur. Although our model is an
abstraction of the complex interplay between attackers and
defenders, our results support the following practical
advice for CISOs making security investments:

. Employ monitoring tools that let you detect and
analyze attacks against your enterprise. These tools
help focus your efforts on thwarting real attacks.

. Make your security organization more agile. For
example, build a rigorous testing lab that lets you
roll out security patches quickly once you detect that
attackers are exploiting these vulnerabilities.

. When determining how to expend your security
budget, avoid overreacting to the most recent attack.
Instead, consider all previous attacks, but discount
the importance of past attacks exponentially.

In some situations, proactive security can outperform
reactive security. For example, reactive approaches are ill
suited for defending against catastrophic attacks because
there is no “next round” in which the defender can use
information learned from the attack. We hope our results
will lead to a productive discussion of the limitations of our
model and the validity of our conclusions.

Instead of assuming that proactive security is always
superior to reactive security, we invite the reader to
consider when a reactive approach, or a blend of reactive
and proactive elements, might be appropriate. For the parts
of an enterprise where the defender’s budget is liquid and
there are no catastrophic losses, employing reactive ele-
ments is likely to improve security.
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