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The pigmentation patterns of shells in the genus Conus can be gen-
erated by a neural-network model of the mantle. We fit model
parameters to the shell pigmentation patterns of 19 living Conus
species for which a well resolved phylogeny is available. We infer
the evolutionary history of these parameters and use these results
to infer the pigmentation patterns of ancestral species. Themethods
we use allow us to characterize the evolutionary history of a neural
network, an organ that cannot be preserved in the fossil record.
These results are also notable because the inferred patterns of an-
cestral species sometimes lie outside the range of patterns of their
living descendants, and illustrate how development imposes con-
straints on the evolution of complex phenotypes.

pattern formation | developmental evolution | phylogenetics | ancestral
inference

Pigmentation patterns on mollusk shells are typical complex
phenotypes. They differ substantially among closely related

species, but the complexity of the patterns makes it difficult to
characterize their similarities and differences. Consequently, it has
proven difficult to describe the evolution of pigmentation patterns
or to draw inferences about how natural selection might affect
them. In this report, we present an attempt to resolve this problem
by combining phylogenetic methods with a realistic developmental
model that can generate pigmentation patterns of shelledmollusks
in the diverse cone snail genus Conus. The model is based on the
interactions between pigment-secreting cells and a neuronal net-
work whose parameters are measurable physiological quantities.
The neural model used here is a generalization of models pro-
posed earlier by Ermentrout et al. (1) and Boettiger et al. (2).
Furthermore, the species have a well supported phylogeny that
allows us to infer rates and patterns of parameter evolution.
We chose 19 species in the genus Conus for which Nam et al.

have presented a resolved phylogeny (3). For each species, we
found a model parameter set that matched the observed pig-
mentation pattern. Then we applied likelihood-based phylogenetic
methods to measure phylogenetic signal in the model parameters,
compare possible evolutionary models, estimate the model
parameters of ancestral species, and then use these to infer the
pigmentation patterns of ancestral species.

Neural Model
Fig. 1 shows a schematic of themantle geometry and illustrates the
basic principle of the neural model. The mathematical details are
described in SI Appendix, Supplement A. The model is built on two
general properties of neural networks: spatial lateral inhibition
(also called center-surround), and “delayed temporal inhibition.”
The latter can be viewed as “lateral inhibition in time” (4–6), as
illustrated in Fig. 1C, Center.
The neural field equations describe the local pattern of neuron

spiking. Local activity of excitatory neurons induces the activity of
inhibitory interneurons in the surrounding tissue. The net spatial
activity has “Mexican hat” shape, as shown in Fig. 1C (5–7). As
shell material and pigment are laid down in periodic bouts of se-
cretion, the surface pigment pattern is a space–time record of the
animal’s secretory activity, in which distance from the shell aper-
ture is proportional to the number of bouts of secretion. Excitation

of a cell during a bout inhibits its excitation for some future
number of bouts, so that an active neuron will eventually be
inhibited and remain inactive for a “refractory” period. Thus,
“delayed inhibition” is equivalent to “half a Mexican hat backward
in time.” Finally, the secretory activity of pigment granule secre-
tory cells depends sigmoidally on the difference between the ac-
tivities of the excitatory and inhibitory cells, as shown in Fig. 1C.
The logic of the model is that the sensory cells read the history of
pigmentation and send this to the neural net that uses this history
to “predict” the next increment of pigmentation and instruct the
secretory cells to deposit accordingly. This feedback from output
to input distinguishes the neural model from models whose future
state depends only on their current state (e.g., diffusible morph-
ogens and cellular automata).
The neural field model is characterized by 17 free parameters,

each of which has a concrete physiological interpretation, as de-
scribed in Fig. 2. In effect, there are four cell types: sensory cells,
excitatory neurons, inhibitory neurons, and secretory cells; their
effective connectivity relationship is shown in SI Appendix, Sup-
plement A. The behavior of each cell type is given by its input/
output relationships, as shown in Fig. 2. Each excitatory and in-
hibitory neuron is described by a Gaussian spatial synaptic weight
kernel described by two parameters (amplitude and width), and
a temporal kernel described by four parameters. As several of the
parameters appear in products with other parameters, we can
normalize their magnitudes and thereby reduce them to three free
parameters each describing the spatial and temporal ranges of
excitation and inhibition. The precise parameter reduction pro-
cedure is described in SI Appendix, Supplement A.
Imbued with these properties, the neural network drives se-

cretory cells to lay down both the shell material and pigment.
Thus, the model can reproduce both the shell shape and the
surface pattern for many shelled mollusk species, as described
previously (2). The present model differs in several essential
ways from that proposed previously (2); this is also discussed in
SI Appendix, Supplement A.
The basic neural model consists of a simple feedback circuit that

spatially and temporally filters previous activity and feeds the re-
sult through a nonlinear function to produce the next bout of
pigment. One needs 17 parameters to specify the shape of the
functions in Fig. 2. By varying the 17 parameters in the model, we
were able to produce a wide variety of cone shell patterns. Some of
these patterns are very sensitive to the initial conditions (i.e.,
“chaotic dynamics”), and thus small changes in the initial pattern
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or small amounts of noise give rise to diversity among individuals
while still maintaining the same qualitative pattern. Fig. 3A pro-
vides an example showing multiple instances of a simulation of
Conus crocatus such that there are small differences in initial data
or the addition of a small amount of noise. The overall look of the
pattern is the same, but there are clear individual differences.
Somewhat surprisingly, the regions of parameter space that cor-

respond to cone shell patterns are fairly restricted and almost always
require that the effective spatial interaction be lateral inhibition.
When we chose parameters outside this range, we produced shell
patterns that do not correspond to any known species (Fig. 3B).
Although our basic model is capable of producing many of the

observed patterns, there are some species (e.g., Conus textile) in
which we had to assume that some of the parameters were mod-
ulated in space and “time” to specify prepatterns. The prepatterns
generally are periodic or consist of a localized region where the
parameter is greater or smaller than that of the surrounding re-
gion. Such prepatterns could be hard-wired into the network or
could themselves be produced by another neural network in the
central ganglia (further details are provided in SI Appendix, Sup-
plement A).
Finally, we should point out some important differences be-

tween the morphogen models for shell patterns developed by
Meinhardt and coworkers (8, 9) and the neural network model
used here (1, 2). Structural studies provide strong evidence that

shell patterns are a neurosecretory phenomenon rather than
a diffusing morphogen phenomenon (2). However, from a theo-
retical viewpoint, morphogen models can be viewed as an ap-
proximation to the neural net model when the range of
communication between neurons is short (9, 10). Therefore, in
principle, morphogen models could have been used instead of
the neural model (11). From a practical viewpoint, however, this
would be considerably more difficult because a separate mor-
phogen model is required for each shell pattern, whereas the
neural model has a single set of parameters that are varied to
match each pattern. Also, as the neural models are more general,
they can generate a wider variety of patterns than can diffusible
morphogen models. One other difference is fundamental. Mor-
phogen models described by diffusion-reaction dynamics unfold
with no “memory” of the system state other than the current
state. The neural model, however, is a sensory feedback system
in which the current secretion depends on sensing the history of
the pattern before the current state.

Phylogenetic Analyses
Inferred Parameter Values for Each Species. We chose 19 species
from the phylogeny published by Nam et al. (3) based on mito-
chondrial cytochrome C oxidase subunit I and rDNA sequences
and on internal transcribed spacer 2 sequences from nuclear ri-
bosomal DNA. There were sufficient data that the order of
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Fig. 1. The neural-network model of the mantle. (A) Rough anatomy of a generic shelled mollusk. Note the “brain,” where the neural patterns are
processed consists of a ring of ganglia. (B) Cross-section of the mantle showing how the sensory cells “taste” the previously laid pigment patterns that are
processed by the central ganglion and sent to the mantle network that controls the pigment-secreting cells. (C) Simple pattern on a Conus shell and how
the model extrapolates the previous pattern to produce the current day’s pigment secretion. The pigmentation pattern is read by the sensory cells in the
mantle. This activity is then passed through the space–time filter of neural activation and inhibition. Here, time represents the pigmentation pattern that
was laid down in previous bouts, whereas space is the dimension along the growing edge of the cell. The resulting filtered activity is passed through
nonlinearities for excitation and inhibition, and this net activity drives the secretory cells that lay down the new pigmented shell material. The spatial filter,
shown in top and perspective views, has the form of a Mexican hat, in which excitatory activity stimulates a surrounding inhibitory field. The temporal filter
that implements delayed inhibition is half a Mexican hat. It generates a refractory period following a period of activity. The pigment secreting cells have
a sigmoidal stimulus response curve. Feedback occurs as the current pigment deposition becomes part of the input to the sensory cells for the next se-
cretion bout.
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branching events in the phylogeny could be completely de-
termined with a high degree of statistical confidence.
The neural network model was fit to each living species in the

phylogenetic tree. Nine species can be reproduced using the basic
model (i.e., a single neural network). Six species (Conus tessulatus,
Conus aurisiacus, Conus ammiralis, Conus orbignyi, Conus ster-
cusmuscarum, and Conus laterculatus) require a spatial prepattern
(generated by a “hidden” network), and four species (Conus dalli,
C. textile, Conus aulicus, and Conus episcopatus) require spatio-
temporal prepatterns (generated by one or two hidden networks).
In phylogenetic analyses of these shell parameters, we focus on the
primary network, which can be compared across all species. The
fitted parameters for each species are shown in SI Appendix,
Supplement C. Images of real shells and their corresponding
simulated ones are shown in Fig. 4.

Test for Phylogenetic Signal in Estimated Parameter Values. Pheno-
typic traits like body size and shape typically exhibit a substantial
degree of “phylogenetic signal,” meaning that they are inherited,
and the phenotypes of closely related species are strongly corre-
lated (12). One purpose of the present study is to determine
whether parameters of the neural-network model exhibit a phylo-
genetic signal. They will if the construction of themodel accurately
approximates the real developmental process of shell patterning.
Therefore, we tested for a phylogenetic signal when the model
parameters are fitted to the observed pigmentation patterns. A
basic test for phylogenetic signal in traits is to compare the ob-
served data to a null model in which all phylogenetic signal are
obliterated by randomly shuffling the species names or trait values
at the tips of the phylogenic tree (13). To test for a phylogenetic
signal in the neural network parameters, we constructed a neighbor-
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Fig. 2. Definition of cell specific model parameters. (A) Gaussian excitation and inhibition kernels whose difference creates the Mexican-hat spatial field. (B)
Temporal filter implementing delayed inhibition. β1 (β2) is the strength of the temporal excitation (inhibition) and c1 (c2) is the decay in “time” of the ex-
citation (inhibition), wherein time is measured discretely in secretory bouts, denoted by n (0 < c1 < c2 < 1, so that the inhibition decays more slowly in time;
thus, the most recent activity is excitatory and more distant activity is inhibitory). (C) Sigmoid response function of the secretory cells; ν is the sharpness of the
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Fig. 3. (A) Both noise and chaos generate within-species pattern diversity. a, Three real C. crocatus shells. b, Three shells generated with 1% noise only.
c, Three shells generated with slightly different initial conditions, but no noise. d, Three shells with both 1% noise and slightly different initial conditions. (B)
Two examples of “unknown” patterns having too-wide inhibition fields.
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joining phylogeny of the 19 species based on the parameter values
alone and compared it with the DNA phylogeny of Nam et al. (3).
The parameter-based phylogeny was obtained as described in
SI Appendix, Supplement B.
For each method of measuring distances between trees, we

constructed a null distribution on tree-to-tree distances by taking
the parameter-based tree and randomly reshuffling the species
names. The distances between the randomized null-parameter
tree and the DNA tree were then calculated. This procedure was
repeated 10,000 times to produce the null distribution.
The trees are compared in Fig. 5. Despite several dissimilarities

between the DNA- and parameter-based trees, the observed dis-
tance between the trees is much less than expected under the null
hypothesis of only random similarity between the trees (SI Ap-
pendix, Fig. S7). The differences are statistically significant—P =
0.0146 for the topology-based distance measure and P = 0.0001
the branch-length-based distance measure—indicating that the
observed distance was smaller than all the 10,000 null distances

generated. We conclude that there is a phylogenetic signal in the
parameter values, despite the fact that they do not perfectly reflect
the phylogenetic relationships of the group.

Similarity of DNA- and Parameter-Based Trees. Looking more closely
at the parameter and DNA trees, we can see there is broad simi-
larity but with notable exceptions. In both trees, there are two large
clades, called arbitrarily clade 1 (C. stercusmuscarum,C. aurisiacus,
Conus pulicarius, Conus arenatus, and C. laterculatus) and clade 2
(C. gloriamaris, C. dalli, C. textile, Conus omaria, C. episcopatus,
andC. aulicus), that are nearly the same in both trees, although the
detailed branching order differs slightly. In addition, Conus ban-
danus and Conus marmoreus are sister groups in both trees. There
are some conspicuous differences, however. Most notably, Conus
furvus, C. tessulatus, and C. orbignyi form a tight clade in the pa-
rameter tree yet are widely separated in the DNA tree. In fact, in
the DNA tree, C. orbignyi is a well supported out-group to the
other 18 species. C. ammiralis is part of clade 2 on the DNA tree

Fig. 4. Maximum-likelihood estimates of ancestral shell patterns. Shells of living species are displayed at the tips; to the right of these are shells “grown” in
the computer by using the neural-network model and the fitted parameters. By using a Brownian motion model for the evolution of continuous traits, the
maximum-likelihood value was estimated for each neural network parameter at each node. The neural network model was used to produce the shells using
the estimated parameters for each node. Color is not part of the neural network model, so it was added independently to the models of living shells, and then
mapped onto the phylogeny (using maximum likelihood) as a binary trait (black/white or brown/white). The text includes further details.
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but is quite separate on the parameter tree.C. crocatus is in clade 2
on the DNA tree and in clade 1 on the parameter tree (Fig. 5).
The overall similarity of the DNA-based and parameter-based

trees is consistent with the hypothesis that the parameters of the
developmental model evolved sufficiently slowly that sets of
parameters in closely related species are similar. However, there
are some exceptional lineages on which more rapid evolution of
parameters seems to have occurred. The three species C. furvus,
C. tessulatus, and C. orbignyi appear to have converged not only in
pattern but in the developmental process that produces that pat-
tern. C. crocatus appears to have shifted its pattern to become
similar to species in clade 2, and both C. ammiralis and C. consors
have undergone relatively rapid evolution that resulted in quite
distinct patterns. The apparently higher rate of parameter evolu-
tion on these lineages is consistent with the action of natural se-
lection either directly on pigmentation pattern or indirectly as
a correlated response to selection on physiological processes that
affect parameter values. In the absence of knowledge of the
physiological basis of parameter values, we have no way to directly
test for natural selection.
Parametric and nonparametric tests of the Brownian motion model. The
estimation of parameter values for ancestral species in the phy-
logeny is most easily done if the Brownian motion model of con-
tinuous trait evolution can be used. Therefore, when we had
established that detectable phylogenetic signal existed in the
neural network parameters, we conducted a series of tests to assess
the utility of Brownian motion versus other models for modeling
the evolution of neural network parameters, as recommended by
Blomberg et al. (14). We concluded that Brownian motion was an
overall reasonable first approximation for the evolution of neural
network parameters (SI Appendix, Supplement B).

Discrete Characters. Hidden Networks Treated as Discrete Characters.
We can treat the presence or absence of a hidden neural network
as a binary discrete character. Then, the presence or absence of
this character can be mapped onto the phylogeny by using par-
simony and maximum-likelihood reconstruction for discrete
characters. The two methods give identical results. The presence
of hidden networks was restricted to small subclades of the full
clade. The presence/absence of hidden networks (Fig. 6 A and B
show the presence of a space–time-dependent hidden network and
space-dependent hidden network, respectively) showed strong
phylogenetic clustering. Relatively few transitions from simple
models (i.e., no hidden networks) to complex models (i.e., con-
taining a hidden network) were needed for either character. For
the space–time-dependent network, species in two small clades

(C. episcopatus/C. aulicus and C. textile/C. dalli) are complex. For
the space-dependent hidden network, a complex pattern is more
dispersed in the phylogeny.
Discrete phenotypic characters. Other discrete characters were also
mapped for comparison with the results for hidden networks. We
mapped several discrete phenotypic characters on the phylogeny
(SI Appendix, Supplement B). Cone shape is fairly scattered but
shows some uniformity in small clades. Strikingly, prey prefer-
ence shows extremely high conservation [as was clear in the
discussion of Nam et al. (3)] compared with shell pattern char-
acters. Each major clade is almost completely restricted to
a certain prey, and the entire pattern is explained by the mini-
mum possible number of transitions.
Fig. 6 shows the distributions of stripes and triangles in this

group and the maximum-likelihood assignment of ancestral states.
The presence and absence of stripes, in particular, is scattered
throughout the phylogeny, indicating that they are evolutionarily
labile, although triangle presence/absence shows some correlation
with large clades. These observations are confirmed by standard
parsimony statistics and their comparisonwith randomized-tip null
models; presence/absence of stripes, despite these being visually
striking patterns used in identification, appear to lack significant
phylogenetic signal in that they do not show significantly more
congruence with the phylogeny than is expected under the null
model in which character states have been randomly shuffled
among the phylogeny tips.

Inference of Ancestral Shell Patterns. We used a Brownian motion
model to estimate parameter values in the species ancestral to the
living species. We then ran the neural-network model with these
estimated parameter values to predict the pigmentation patterns
in the ancestral species. Those patterns are shown at the nodes in
Fig. 4. Ancestral states for each parameter common to all species
were estimated by using maximum-likelihood estimation on the
tree inferred from DNA sequences, modeling the evolution of
each parameter as an independent Brownian motion process (15,
16). Two other available methods—generalized least-squares and
phylogenetically independent contrasts—gave similar estimates.
For the additional parameters used in the hidden networks,

ancestral character estimation was performed as follows. Phylo-
genetically independent contrasts were applied to reconstruct
the ancestral states of the hidden networks because it works from
the tips downward, and so, unlike maximum likelihood, can be
used when parameters for hidden networks are not available in
the rest of the clade.

Fig. 5. Comparison of the DNA-based phylogeny of cone snails (Left, after Nam et al. (3), unrooted for display) and the parameter-based tree (Right, present
study). Species labeled in blue exhibit major changes in topological position in the parameter-based tree. The observed tree-to-tree distances are significantly
shorter than expected under a null hypothesis of random similarity (SI Appendix, Fig. S7).

E238 | www.pnas.org/cgi/doi/10.1073/pnas.1119859109 Gong et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119859109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119859109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119859109/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1119859109


The ancestral shell patterns are shown in Fig. 4. Each estimate
has an associated variance and confidence intervals. To test the
robustness of the ancestral patterns to uncertainty in parameter
estimates, we randomly generated sets of parameters from the
distribution of each parameter and generated ancestral patterns
from each set. We found that some ancestral patterns are quite
robust to uncertainty in estimated parameters whereas others are
not. Fig. 7 shows two examples of each kind. The ancestral patterns
for nodes 25 and 29 are quite similar for different sets of estimated
parameters, whereas those for nodes 27 and 31 differ greatly
among sets of estimated parameters, although various detailed
similarities can still be detected even among these shells because of
the underlying similarity of neural network parameters.

Discussion and Conclusions
We have taken a step in applying modern phylogenetic methods to
understanding the development of complex phenotypic characters.
The pigmentation patterns of Conus shells can be generated by
a neural-network model that has a sound anatomical and physio-
logical basis. The model parameters fitted to observed patterns
show a substantial phylogenetic signal, indicating that the pro-
cesses governing evolutionary change in shell patterns are, to some
extent, gradual across the phylogeny. Our analyses have allowed us
to estimate the shell pigmentation patterns of ancestral species,

identify lineages in which one or more parameters have evolved
rapidly, and measure the degree to which different parameters
correlate with the phylogeny.
Our results are summarized in Fig. 4. This figure shows that

pigmentation patterns in living species are well approximated by
the neural-network model presented in this study. It also shows
the inferred ancestral shell patterns. Often, recent ancestors of
sister species show recognizable similarity to the pigmentation
patterns in living species (e.g., nodes 26–27 and 31–32). Nodes
more remote from the present often show ancestors that are
generally similar to the living species (nodes 21, 22, 24, and 33).
However, some ancestors are strikingly different from any of the
living species in the group we analyzed. Interestingly, such pat-
terns can be found in other living species. For example, the
strong striping perpendicular to the axis of coiling of the shell
found in node 37 is quite similar to that of Conus hirasei, Conus
papuensis, or Conus mucronatus (17). Striping parallel to the axis
of coiling of the shell, observed in other estimated ancestors, can
also be found in living species, for example in some specimens of
Conus hyaena and Conus generalis (ref. 17, pp. 354 and 392).
A unique feature of our results is that the inferred pigmentation

patterns of ancestors may be quite different from the patterns of
their descendants. The patterns generated by the neural-network
model are not necessarily smooth functions of the parameter val-

Fig. 6. Maximum-likelihood estimates of selected discrete characters. The relative simplicity of the inferred evolution of pattern complexity is in striking
contrast to what can be inferred about the evolution of specific features of the patterns when they are described as discrete characters, as illustrated in A–D.
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ues. Instead, they can vary discontinuously when parameter values
move into a different bifurcation region that produces qualitatively
different patterns. The role of bifurcation boundaries in evolution
was recognized in earlier studies of limb morphogenesis (18, 19).
This feature of our results is quite different from what is usually
found when inferring ancestral states of continuously variable
characters. A well known limitation of methods for estimating
ancestral states is that it is impossible for estimates to fall outside
the range of the living species analyzed. This limitation does not
apply to pigmentation patterns. Although the same averaging
procedure is being used on each parameter of the neural-network
model, it is possible, and even likely, that a set of estimated
parameters will be in a region of parameter space not inhabited by
any living species. In addition, the sensitivity of the neural network
to perturbations means that small, gradual evolutionary shifts in
one or a few parameters of the neural network can shift a shell
from one pattern regime into an entirely dissimilar one.
We have necessarily made simplifying assumptions in our anal-

ysis to illustrate the overall logic of our method in a straightfor-
ward way. Although the DNA-based tree used in this study has
strong statistical support, an important assumption is that the
branch lengths inferred from the DNA sequence data are known
without error, and that they have been accurately renormalized
to an absolute time scale. A more formal analysis would begin
with the raw DNA sequence alignment and fossil calibration
points, and then integrate ancestral state estimates and param-
eters of evolutionary models, over the space of data-supported
chronogram phylogenies (20).
A second assumption is that the set of parameter values for

each species is unique and estimated without error. Given the

number of parameters involved, a formal proof of uniqueness
seems impossible; however, extensive experience with the nu-
merical properties of the model suggests that each pattern is
determined by a unique optimal (in the sense of a best fit to the
observed pattern) set of parameters.
A third assumption is that the parameters evolved in-

dependently of one another on the phylogeny. That assumption is
largely supported by our analysis of phylogenetically independent
contrasts. Correlation in parameters could be accounted for by
using a model of correlated Brownian motion on the phylogeny,
but such a model was not needed for our analysis.
In estimating parameters of ancestral species and predicting

their pigmentation patterns, we have not taken into account the
range of parameters consistent with estimated values for living
species. Parameter values estimated by using maximum likelihood
and a Brownian motion model have associated confidence inter-
vals that could make more than one qualitatively different pig-
mentation pattern for each ancestral species consistent with
patterns in living species. Application of our method to a group of
cone snails with a detailed fossil record—for example, those in
southeastern North America (21)—might allow a more rigorous
assessment of the accuracy of these techniques, and of what degree
of uncertainty should be assigned to them. Usefully and re-
markably, shell pigmentation patterns in fossil Conus can be vi-
sualized under UV light (21). Application of this technique to
Conus fossils could provide a partial validation of our predicted
ancestral patterns.
Our analysis is somewhat similar to that of Allen et al. (11), who

examined spotted patterns in felids by using a morphogen-diffu-
sion model of pattern formation. Allen et al. showed that there is
little phylogenetic signal in the model parameters, indicating that
spotting patterns in felids evolve convergently under ecological
influences. One difference between their study (11) and the
present one is that we found phylogenetic signal in most of the
neural network parameters that produce shell pigmentation pat-
terns. This allowed us to infer ancestral patterns and to identify
lineages in which relatively rapid evolution of some parameters
have taken place.
We found phylogenetic signal in the continuous parameters of

the primary neural network and in the presence/absence of a hid-
den network, suggesting that the model reasonably approximates
the developmental processes underlying pigmentation patterns
in theConus species we considered. In contrast, various features of
the pigmentation patterns, such as the presence of stripes and dots,
do not have significant phylogenetic signal (SI Appendix, Tables
S2–S4). This is in agreement with the conclusion of Hendricks.*
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