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Abstract

The effects of social influence and network autocorrelation suggest that both network structure and
node attribute information should inform the tasks of link prediction and node attribute inference. How-
ever, the algorithmic question of how to efficiently incorporate these two sources of information remains
largely unanswered. We propose a Social-Attribute Network (SAN) model that gracefully integrates node
attributes with network structure to predict network links and infer node attributes. We adapt leading
supervised and unsupervised link prediction algorithms to the SAN model and demonstrate performance
improvement for each algorithm. We then show that link prediction accuracy is further improved by
first inferring missing attributes. We evaluate these algorithms on a novel Google+ network dataset and
achieve state-of-the-art link prediction and attribute inference performance.

Keywords Link prediction, Predicting new links, Predicting missing links, Inferring attributes, Social-
Attribute Network (SAN)

1 Introduction

Online social networks (e.g., Facebook, Google+) have become increasingly important resources for inter-
acting with people, processing information and diffusing social influence. Understanding and modeling the
mechanisms by which these networks evolve are therefore fundamental issues and active areas of research.

The classical link prediction problem [19] has attracted particular interest. In this setting, we are given
a snapshot of a social network at time t and aim to predict links (e.g., friendships) that will emerge in the
network between t and a later time t′. Alternatively, we can imagine the setting in which some links existed
at time t but are missing at t′. In online social networks, a change in privacy settings often leads to missing
links, e.g., a user on Google+ might decide to hide her family circle between time t and t′. The missing link
problem has important ramifications as missing links can alter estimates of network-level statistics [12], and
the ability to infer these missing links raises serious privacy concerns for social networks. Since the same
algorithms can be used to predict new links and missing links, we refer to these problems jointly as link
prediction.
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Another problem of increasing interest revolves around node attributes [31]. Many real-world networks
contain rich categorical node attributes, e.g., users in Google+ have profiles with attributes including em-
ployer, school, occupation and places lived. In the attribute inference problem, we aim to populate attribute
information for network nodes with missing or incomplete attribute data. This scenario often arises in
practice when users in online social networks set their profiles to be publicly invisible or create an account
without providing any attribute information. The growing interest in this problem is highlighted by the
privacy implications associated with attribute inference as well as the importance of attribute information
for applications including people search and collaborative filtering.

In this work, we simultaneously use network structure and node attribute information to improve perfor-
mance of both the link prediction and the attribute inference problems, motived by the observed interaction
and autocorrelation between network structure and node attributes. The principle of social influence [8],
which states that users who are linked are likely to adopt similar attributes, suggests that network struc-
ture should inform attribute inference. Other evidence of interaction [14, 11] shows that users with similar
attributes, or in some cases antithetical attributes, are likely to link to one another, motivating the use of at-
tribute information for link prediction. Additionally, previous studies [13, 8] have empirically demonstrated
those effects on real-world social networks, providing further support for considering both network structure
and node attribute information when predicting links or inferring attributes.

However, the algorithmic question of how to simultaneously incorporate these two sources of information
remains largely unanswered. Link prediction methods that aim to leverage attribute information have ap-
peared in the relational learning community [28, 22], but they suffer from scalability issues. More recently, [2]
presented a Supervised Random Walk (SRW) algorithm for link prediction that combines network structure
and edge attribute information, but this approach does not fully leverage node attribute information as it
only incorporates node information for neighboring nodes. For instance, SRW cannot take advantage of the
common node attribute San Francisco of u2 and u5 in Fig. 1 since there is no edge between them.

In this work, we propose a Social-Attribute Network (SAN) model that integrates network structure
and node attributes in one unified network and extends the model described in [29, 30]. We generalize
leading unsupervised and supervised link prediction algorithms [19, 10] to the SAN model to both predict
links and infer missing attributes. We demonstrate that the generalized algorithms achieve state-of-the-art
link prediction and attribute inference performance via evaluating them on a novel Google+ social network
dataset. We then show further improvement of link prediction accuracy by using the SAN model in an
iterative fashion, first to infer missing attributes and subsequently to predict links.

2 Problem Definition

In our problem setting, we use an undirected1 graph G = (V,E) to represent a social network, where
edges in E represent interactions between the N = |V | nodes in V . In addition to network structure, we
have categorical attributes for nodes. For instance, in the Google+ social network, nodes are users, edges
represent friendship (or some other relationship) between users, and node attributes are derived from user
profile information and include fields such as employer, school, and hometown. In this work we restrict our
focus to categorical variables, though in principle other types of variables, e.g., live chats, email messages,
real-valued variables, etc., could be clustered into categorical variables via vector quantization, or directly
discretized to categorical variables.

We use a binary representation for each categorical attribute. For example, various employers (e.g.,
Google, Intel and Yahoo) and various schools (e.g., Berkeley, Stanford and Yale) are each treated as separate
binary attributes. Hence, for a specific social network, the number of distinct attributes M is finite (though
M could be large). Attributes of a node u are then represented as a M -dimensional trinary column vector
~au with the ith entry equal to 1 when u has the ith attribute (positive attribute), −1 when u does not have
it (negative attribute) and 0 when it is unknown whether or not u has it (missing attribute). We denote by
A = [~a1 ~a2 · · · ~aN ] the attribute matrix for all nodes. Note that certain attributes (e.g. Female and Male)

1Our model and algorithms can also be generalized to directed graphs.
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are mutually exclusive. Let L be the set of all pairs of mutually exclusive attributes. This set constrains the
attribute matrix A so that no column contains a 1 for two mutually exclusive attributes.

We define the link prediction problem as follows:

Definition 1 (Link Prediction Problem) Let Ti = (Gi, Ai, Li) and Tj = (Gj , Aj , Lj) be snapshots of
a social network at times i and j. Then the link prediction problem involves using Ti to predict the social
network structure Gj. When i < j, new links are predicted. When i > j, missing links are predicted.

In this paper, we work with three snapshots of the Google+ network crawled at three successive times,
denoted T1 = (G1, A1, L1), T2 = (G2, A2, L2) and T3 = (G3, A3, L3). To predict new links, we use various
algorithms to solve the link prediction problem with i = 2 and j = 3 and first learn any required hyper-
parameters by performing grid search on the link prediction problem with i = 1 and j = 2. Similarly, to
predict missing links, we solve the link prediction problem with i = 2 and j = 1 and learn hyperparameters
via grid search with i = 3 and j = 2.

For any given snapshot, several entries of A will be zero, corresponding to missing attributes. The
attribute inference problem, which involves only a single snapshot of the network, is defined as follows:

Definition 2 (Attribute Inference Problem) Let T = (G,A,L) be a snapshot of a social network. Then
the attribute inference problem is to infer whether each zero entry of A corresponds to a positive or negative
attribute, subject to the constraints listed in L.

Our goal is to design scalable algorithms leveraging both network structure and rich node attributes to
address these problems for real-world large-scale networks.

3 Model and Algorithms

3.1 Social-Attribute Network Model

Given a social network G with M distinct categorical attributes, an attribute matrix A and mutex attributes
set L, we create an augmented network by adding M additional nodes to G, with each additional node
corresponding to an attribute. For each node u in G with positive or negative attribute a, we create an
undirected link between u and a in the augmented network. For each mutually exclusive attribute pair (a, b),
we create an undirected link between a and b. We call this augmented network the Social-Attribute Network
(SAN) since it includes the original social network interactions, relations between nodes and their attributes
and mutex links between attributes.

Nodes in the SAN model corresponding to nodes in G are called social nodes, while nodes representing
attributes are called attribute nodes. Links between social nodes are called social links, and links between
social nodes and attribute nodes are called attribute links. Attribute link (u, a) is a positive attribute link
if a is a positive attribute of node u, and it is a negative attribute link otherwise. Links between mutually
exclusive attribute nodes are called mutex links. Intuitively, the SAN model explicitly describes the sharing of
attributes across social nodes as well as the mutual exclusion between attributes, as illustrated in the sample
SAN model of Fig. 1. Moreover, using the SAN model, the link prediction problem reduces to predicting
social links while the attribute inference problem involves predicting attribute links.

We also place weights on the various nodes and edges in the SAN model. These node and edge weights
describe the relative importance of individual nodes or relationships across nodes and can also be used in a
global fashion to balance the influence of social nodes versus attribute nodes and social links versus attribute
links. We use w(u) and w(u, v) to denote the weight of node u and the weight of link (u, v), respectively.
Additionally, for a given social or attribute node u in the SAN model, we denote by Γ+(u) and Γs+(u)
respectively the set of all neighbors and the set of social neighbors connected to u via social links or positive
attribute links. We define Γ−(u) and Γs−(u) in a similar fashion. This terminology will prove useful when
we describe our generalization of leading link prediction algorithms to the SAN model in the next section.

The fact that no social node can be linked to multiple mutually exclusive attributes is encoded in the
mutex property, i.e., there is no triangle consisting of a mutex link and two positive attribute links in any
social-attribute network, which enforces a set of constraints for all attribute inference algorithms.

3
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Figure 1: Illustration of a Social-Attribute Network (SAN). Nodes and edges can have different
weights. The link prediction problem reduces to predicting social links while the attribute inference
problem involves predicting attribute links.

In this work, we focus primarily on node attributes. However, we note that the SAN model can be
naturally extended to incorporate edge attributes. Indeed, we can use a function (e.g., the logistic function)
to map a given set of attributes for each edge (e.g., edge age) into the real-valued edge weights of the SAN
model. The attributes-to-weight mapping function can be learned using an approach similar to the one
proposed by Backstrom and Leskovec [2].

3.2 Algorithms

Link prediction algorithms typically compute a probabilistic score for each candidate link and subsequently
rank these scores and choose the largest ones (up to some threshold) as putative new or missing links. In the
following, we extend both unsupervised and supervised algorithms to the SAN model. Furthermore, we note
that when predicting attribute links, the SAN model features a post-processing step whereby we change the
lowest ranked putative positive links violating the mutex property to negative links.

3.2.1 Unsupervised Link and Attribute Inference

Liben-Nowell and Kleinberg [19] provide a comprehensive survey of unsupervised link prediction algorithms
for social networks. These algorithms can be roughly divided into two categories: local-neighborhood-based
algorithms and global-structure-based algorithms. In principle, all of the algorithms discussed in [19] can be
generalized for the SAN model. In this work we focus on representative algorithms from both categories and
we describe below how to generalize them to the SAN model to predict both social links and attribute links.
We add the suffix ‘-SAN’ to each algorithm name to indicate its generalization to the SAN model. In our
presentation of the algorithms, we only consider positive attribute links, though many of these algorithms
can be extended to signed networks [27].

Common Neighbor (CN-SAN) is a local algorithm that computes a score for a candidate social or at-
tribute link (u, v) as the sum of weights of u and v’s common neighbors, i.e. score(u, v) =

∑
t∈Γ+(u)∩Γ+(v) w(t).

Conventional CN only considers common social neighbors.

Adamic-Adar (AA-SAN) is also a local algorithm. For a candidate social link (u, v) the AA-SAN score
is

score(u, v) =
∑

t∈Γ+(u)∩Γ+(v)

w(t)

log |Γs+(t)|
.

Conventional AA, initially proposed in [1] to predict friendships on the web and subsequently adapted by
[19] to predict links in social networks, only considers common social neighbors. AA-SAN weights the
importance of a common neighbor proportional to the inverse of the log of social degree. Intuitively, we
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want to downweight the importance of neighbors that are either i) social nodes that are social hubs or ii)
attribute nodes corresponding to attributes that are widespread across social nodes. Since in both cases this
weight depends on the social degree of a neighbor, the AA-SAN weight is derived based on social degree,
rather than total degree.

In contrast, for a candidate attribute link (u, a), the attribute degree of a common neighbor does influence
the importance of the neighbor. For instance, consider two social nodes with the same social degree that are
both common neighbors of nodes u and a. If the first of these social nodes has only two attribute neighbors
while the second has 1000 attribute neighbors, the importance of the former social node should be greater
with respect to the candidate attribute link. Thus, AA-SAN computes the score for candidate attribute link
(u, a) as

score(u, a) =
∑

t∈Γs+(u)∩Γs+(a)

w(t)

log |Γ+(t)|
.

Low-rank Approximation (LRA-SAN) takes advantage of global structure, in contrast to CN-SAN
and AA-SAN. Denote XS as the N × N weighted social adjacency matrix where the (u, v)th entry of XS

is w(u, v) if (u, v) is a social link and zero otherwise. Similarly, let XA be the N ×M weighted attribute
adjacency matrix where the (u, a)th entry of XA is w(u, a) if (u, a) is a positive attribute link and zero oth-
erwise. We then obtain the weighted adjacency matrix X for the SAN model by concatenating XS and XA,
i.e., X = [XS XA]. The LRA-SAN method assumes that a small number of latent factors (approximately)
describe the social and attribute link strengths within X and attempts to extract these factors via low-rank
approximation of X, denoted by X̂. The LRA-SAN score for a candidate social or attribute link (u, t) is
then simply X̂ut, or the (u, t)th entry of X̂. LRA-SAN can be computed efficiently via truncated Singular
Value Decomposition (SVD).

CN + Low-rank Approximation (CN+LRA-SAN) is a mixture of local and global methods, as it first
performs CN-SAN using a SAN model and then performs low-rank approximation on the resulting score
matrix. After performing CN-SAN, let SS be the resulting N × N score matrix for all social node pairs
and SA be the resulting N ×M score matrix for all social-attribute node pairs. By virtue of the CN-SAN
algorithm, note that SS includes attribute information and SA includes social interactions. CN+LRA-SAN
then predicts social links by computing a low-rank approximation of SS denoted ŜS , and each entry of ŜS

is the predicted social link score. Similarly, ŜA is a low-rank approximation of SA, and each entry of ŜA is
the predicted score for the corresponding attribute link.2

AA + low-rank Approximation(AA+LRA-SAN) is identical to CN+LRA-SAN but with the score
matrices SS and SA generated via the AA-SAN algorithm.

Random Walk with Restart (RWwR-SAN) is a global algorithm. In the SAN model, a Random Walk
with Restart [5, 23] starting from u recursively walks to one of its neighbors t with probability proportional
to the link weight w(u, t) and returns to u with a fixed restart probability α. The probability Pu,v is the
stationary probability of node v in a random walk with restart initiated at u. In general, Pu,v 6= Pv,u. For
a candidate social link (u, v), we compute Pu,v and Pv,u and let score(u, v) = (Pu,v + Pv,u)/2. Note that
RWwR for link prediction in previous work [19] computes these stationary probabilities based only on the
social network. For a candidate attribute link (u, a), RWwR-SAN only computes Pu,a, and Pu,a is taken as
the score of (u, a).

We finally note that for predicting social links, if we set the weights of all attribute nodes and all attribute
links to zero and we set the weights of all social nodes and social links to one, then all the algorithms

2An alternative method for combining CN-SAN and LRA-SAN under the SAN model that was not explored in
this work involves defining S = [SS SA], approximating S with Ŝ and using the (u, t)th entry of Ŝ as a score for link
(u, t).
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Figure 2: The fraction of users as a function of the number of node attributes in the Google+ social
network.

described above reduce to their standard forms described in [19].3 In other words, we recover the link
prediction algorithms on pure social networks.

3.2.2 Supervised Link and Attribute Inference

Link prediction can be cast as a binary classification problem, in which we first construct features for links,
and then use a classifier such as SVMs or Logistic Regression.

Supervised Link Prediction (SLP-SAN) For each link in our training set, we can extract a set of
topological features F (e.g. CN, AA, etc.) computed from pure social networks and the similar features
F SAN computed from the corresponding social-attribute networks. We explored 4 feature combinations:
i) SLP-I uses only topological features F computed from social networks; ii) SLP-II uses topological features
F as well as an aggregate feature, i.e., the number of common attributes of the two endpoints of a link;
iii) SLP-SAN-III uses topological features F SAN ; and iv) SLP-SAN-VI uses topological features F and
F SAN . SLP-SAN-III and SLP-SAN-VI contain the substring ‘SAN’ because they use features extracted
from the SAN model. SLP-I and SLP-II are widely used in previous work [10, 20, 2].

Supervised Attribute Inference (SAI-SAN) Recall that attribute inference is transformed to attribute
link prediction with the SAN model. We can extract a set of topological features for each positive and
negative attribute link. Moreover, the positive attribute links are taken as positive examples while the
negative attribute links are taken as negative examples. Hence, we can train a binary classifier for attribute
links and then apply it to infer the missing attribute links.

3.2.3 Iterative Link and Attribute Inference

In many real-world networks, most node attributes are missing. Fig. 2 shows the fraction of users as a
function of the number of node attributes in Google+ social network. From this figure, we see that roughly
70% of users have no observed node attributes. Hence, we will also investigate an iterative variant of the
SAN model. We first infer the top attributes for users without any observed attributes. We then update the
SAN model to include these predicted attributes and perform link prediction on the updated SAN model.
This process can be performed for several iterations.

3For LRA-SAN this implies that XA is an N × M matrix of zeros, so the truncated SVD of X is equivalent to
that of XS except for M zeros appended to the right singular vectors of XS .
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4 Google+ Data

Google launched its new social network service named Google+ in early July 2011. We crawled three snap-
shots of the Google+ social network and their users’ profiles on July 19, August 6 and September 19 in 2011.
They are denoted as JUL, AUG and SEP, respectively. We then pre-processed the data before conducting
link prediction and attribute inference experiments.

Preprocessing Social Networks In Google+, users divide their social connections into circles, such as a
family circle and a friends circle. If user u is in v’s circle, then there is a directed edge (v, u) in the graph,
and thus the Google+ dataset is a directed social graph. We converted this dataset into an undirected graph
by only retaining edges (u, v) if both directed edges (u, v) and (v, u) exist in the original graph. We chose
to adopt this filtering step for two reasons: (1) Bidirectional edges represent mutual friendships and hence
represent a stronger type of relationship that is more likely to be useful when inferring users’ attributes from
their friends’ attributes (2) We reduce the influence of spammers who add people into their circles without
those people adding them back. Spammers introduce fictitious directional edges into the social graph that
adversely influence the performance of link prediction algorithms.

Collecting Attribute Vocabulary Google+ profiles include short entries about users such as Occupation,
Employment, Education, Places Lived, and Gender, etc. Among these entries, Employment, Education and
Places Lived are informative with respect to link formation. Since Employment and Education already imply
Places Lived to some extent, we use Employment and Education to construct a vocabulary of attributes in
this paper. We treat each distinct employer or school entity as a distinct attribute. Google+ has predefined
employer and school entities, although users can still fill in their own defined entities. Due to users’ changing
privacy settings, some profiles in JUL are not found in AUG and SEP, so we use JUL to construct our
attribute vocabulary. Specifically, from the profiles in JUL, we list all attributes and compute frequency of
appearance for each attribute. Our attribute vocabulary is constructed by keeping attributes with frequency
of at least 3.

Constructing Social-Attribute Networks In order to demonstrate that our SAN model leverages node
attributes well, we derived social-attribute networks in which each node has some positive attributes from the
above Google+ social networks and attribute vocabulary. Specifically, for an attribute-frequency threshold
k, we chose the largest connected social network from JUL such that each node has at least k distinct positive
attributes. We also found the corresponding social networks consisting of these nodes in snapshots AUG and
SEP. Social-attribute networks were then constructed with the chosen social networks and the attributes
of the nodes. Specifically, we chose k = {2, 4} to construct 6 social-attribute networks whose statistics are
shown in Table 1. Each social-attribute network is named by concatenating the snapshot name and the
attribute-frequency threshold. For example, ‘JUL4’ is the social-attribute network constructed using JUL
and k = 4. These names are indicated in the first column of the table.

In the crawled raw networks, some social links in JULi are missing in AUGi and SEPi, where i = 2, 4.
These links are missing due to one of two events occurring between the JUL and AUG or SEP snapshots:
1) users block other users, or 2) users set (part of) their circles to be publicly invisible after which point
they cannot be publicly crawled. These missed links provide ground truth labels for our experiments of
predicting missing links. However, these missing links can alter estimates of network-level statistics, and
can have unexpected influences on link prediction algorithms [12]. Moreover, it is likely in practice that
companies like Facebook and Google keep records of these missing links, and so it is reasonable to add
these links back to AUGi and SEPi for our link prediction experiments. The third column in Table 1 is the
number of all social links after filling the missing links into AUGi and SEPi. The second column #soci links
is used for experiments of predicting missing links, and column #all soci links is used for the experiments
of predicting new links.

From these two columns, the number of new links or missing links can be easily computed. For example,
if we use AUG2 as training data and SEP2 as testing data for link prediction, the number of new links is
354572 − 339059 = 15513, which is computed with entries in column #all soci links. If we use AUG2 as

7



Table 1: Statistics of social-attribute networks.

#soci links #all soci links #soci nodes #pos attri links #attri nodes

JUL4 7062 7062

5200 24690 9539AUG4 7430 7813

SEP4 7422 8100

JUL2 287906 287906

170002 442208 47944AUG2 328761 339059

SEP2 332398 354572

training data and JUL2 as testing data in predicting missing links, the number of missing links is 339059−
328761 = 10298, which is computed with corresponding entries in column #soci links and #all soci links.

To continue this line of work, and to encourage further research of integrating network structure and rich
node attributes, we will make our dataset publicly available.

5 Experiments

Table 2: Results for predicting new links. (a)AUC of hop-2 new links on the train-test pair AUG4-
SEP4. (b)AUC of hop-2 new links on the train-test pair AUG2-SEP2. (c) (d) AUC of any hop new
links on the train-test pair AUG4-SEP4. The numbers in parentheses are standard deviations.

(a)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.6730 0.7315
AA-SAN 0.7109 0.7476

LRA-SAN 0.6003 0.6262
CN+LRA-SAN 0.6969 0.7671
AA+LRA-SAN 0.7118 0.7471

RWwR-SAN 0.6033 0.6143

(b)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.6936 0.7508
AA-SAN 0.7638 0.7895

LRA-SAN 0.6410 0.6385
CN+LRA-SAN 0.5642 0.6373
AA+LRA-SAN 0.6032 0.6557

RWwR-SAN 0.6788 0.6912

(c)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.7482 0.8298
AA-SAN 0.7483 0.8324

LRA-SAN 0.8075 0.8237
CN+LRA-SAN 0.7857 0.8651
AA+LRA-SAN 0.8193 0.8552

RWwR-SAN 0.9363 0.9548

(d)

Alg AUC
SLP-I 0.9128(0.0140)
SLP-II 0.9580(0.0017)

SLP-SAN-III 0.9450(0.0007)
SLP-SAN-VI 0.9706(0.0004)

SRW 0.9383

5.1 Experimental Setup

In our experiments, the main metric used is AUC, Area Under the Receiver Operating Characteristic (ROC)
Curve, which is widely used in the machine learning and social network communities [6, 2]. AUC is computed
in the manner described in [9], in which both positive and negative examples are required. In principle, we
could use new links or missing links as positive examples and all non-existing links as negative examples.
However, large-scale social networks tend to be very sparse, e.g., the average degree is 4.17 in SEP2, and, as
a result, the number of non-existing links can be enormous, e.g., SEP2 has around 2.9 × 1010 non-existing
links. Hence, computing AUC using all non-existing links in large-scale networks is typically computationally
infeasible. Moreover, the majority of new links in typical online social networks close triangles [15, 2], i.e.,
are hop-2 links. For instance, we find that 58% of the newly added links in Google+ are hop-2 links. We
thus evaluate our large network experiments using hop-2 link data as in [2], i.e., new or missing hop-2 links
are treated as positive examples and non-existing hop-2 links are treated as negative examples.

In a social-attribute network, there are two categories of hop-2 links: 1) those with two endpoints sharing
at least one common social node, and 2) those with two endpoints sharing only common attribute nodes.
Local algorithms applied to the original social network are unable to predict hop-2 links in the second

8



category. Thus, we evaluate only with respect to hop-2 links in the first category, so as not to give unfair
advantage to algorithms running on the social-attribute network. To better understand whether the AUC
performance computed on hop-2 links can be generalized to performance on any-hop links, we additionally
compute AUC using any-hop links on the smaller Google+ networks.

In general, different nodes and links can have different weights in social-attribute networks, representing
their relative importance in the network. In all of our experiments in this paper, we set all weights to be
one and leave it for future work to learn weights.

We compare our link prediction algorithms with Supervised Random Walk (SRW) [2], which leverages
edge attributes, by transforming node attributes to edge attributes. Specifically, we compute the number of
common attributes of the two endpoints of each existing link. As in [2], we also use the number of common
neighbors as an edge attribute. We adopt the Wilcoxon-Mann-Whitney (WMW) loss function and logistic
edge strength function in our implementations as recommended in [2].

We compare our attribute inference algorithms with two algorithms, BASELINE and LINK, introduced
by Zheleva and Getoor [31]. Using only node attributes, BASELINE first computes a marginal attribute
distribution and then uses an attribute’s probability as its score. LINK trains a classifier for each attribute
by flattening nodes as the rows of the adjacency matrix of the social networks.4 Zheleva and Getoor [31]
found that LINK is the best algorithm when group memberships are not available.

We use SVM as our classifier in all supervised algorithms. For link prediction, we extract six topological
features (CN-SAN, AA-SAN, LRA-SAN, CN+LRA-SAN, AA+LRA-SAN and RWwR-SAN) from both pure
social networks and social-attribute networks. Hence, SLP-I, SLP-II, SLP-SAN-III and SLP-SAN-VI use
6, 7, 6 and 12 features, respectively. For attribute inference, we extract 9 topological features for each
attribute link. We adopt two ranks (detailed in 5.2.2) for each low-rank approximation based algorithms,
thus obtaining 6 features. The other three features are CN-SAN, AA-SAN and RWwR-SAN. To account for
the highly imbalanced class distribution of examples for supervised link prediction and attribute inference we
downsample negative examples so that we have equal number of positive and negative examples (techniques
proposed in [20, 7] could be used to further improve the performance).

We use the pattern dataset1 -dataset2 to denote a train-test or train-validation pair, with dataset1 a
training dataset and dataset2 a testing or validation dataset. When conducting experiments to predict new
links on the AUGi-SEPi train-test pair, SRW, classifiers and hyperparameters of global algorithms, i.e.,
ranks in LRA-SAN, CN+LRA-SAN, and AA+LRA-SAN and the restart probability α in RWwR-SAN, are
learned on the JULi-AUGi train-validation pair. Similarly, when predicting missing links on train-test pair
AUGi-JULi, they are learned on train-validation pair SEPi-AUGi, where i = 2, 4.

The CN-SAN and AA-SAN algorithms are implemented in Python 2.7 while the RWwR-SAN algorithm
and Supervised Random Walk (SRW) are implemented in Matlab, and all of them are run on a desktop
with a 3.06 GHz Intel Core i3 and 4GB of main memory. LRA-SAN, CN+LRA-SAN and AA+LRA-SAN
algorithms are implemented in Matlab and run on an x86-64 architecture using a single 2.60 Ghz core and
30GB of main memory.

5.2 Experimental Results

In this section we present evaluations of the algorithms on the Google+ dataset. We first show that in-
corporating attributes via the SAN model improves the performance of both unsupervised and supervised
link prediction algorithms. Then we demonstrate that inferring attributes via link prediction algorithms
within the SAN model achieves state-of-the-art performance. Finally, we show that by combining attribute
inference and link prediction in an iterative fashion, we achieve even greater accuracy on the link prediction
task.

4The original LINK algorithm [31] trained a distinct classifier for each attribute type. In our setting an attribute
type, (e.g., Education) can have multiple values, so we train a classifier for each binary attribute value.
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Figure 3: ROC curves of the CN+LRA-SAN algorithm for predicting new links. AUG4-SEP4 is the
train-test pair. JUL4-AUG4 is the train-validation pair.

5.2.1 Link Prediction

To demonstrate the benefits of combining node attributes and network structure, we run the SAN-based link
prediction algorithms described in Section 3.2 both on the original social networks and on the corresponding
social-attribute networks (recall that the SAN-based unsupervised algorithms reduce to standard unsuper-
vised link prediction algorithms when working solely with the original social networks).

Predicting New Links Table 2 shows the AUC results of predicting new links for each of our datasets.
We are able to draw a number of conclusions from these results. First, the SAN model improves every
unsupervised learning algorithm on every dataset, save for LRA-SAN on AUG2-SEP2. Second, Table 2d
shows that attributes also improve supervised link prediction performance since SLP-SAN-VI, SLP-SAN-III
and SLP-II outperform SLP-I. Moreover, SLP-SAN-VI, which adopts features extracted from both social
networks and social-attribute networks, achieves the best performance, thus demonstrating the power of the
SAN model. Third, comparing RWwR-SAN in Table 2c and SRW in Table 2d, we observe that the SAN
model is better than SRW at leveraging node attributes since RWwR-SAN with attributes outperforms SRW.
This result is not surprising given that SRW is designed for edge attributes and when transforming node
attributes to edge attributes, we lose some information. For instance, as illustrated in Fig. 1, node u2 and
u5 share the attribute San Francisco. When transforming node attributes to edge attributes, this common
attribute information is lost since u2 and u5 are not linked.

Fig. 3 shows the ROC curves of the CN+LRA-SAN algorithm. We see that curve of CN+LRA-SAN
with attributes dominates that of CN+LRA-SAN without attributes, demonstrating the power of the SAN
model to effectively incorporate the additional predictive information of attributes.

Predicting Missing Links Missing links can be divided into two categories: 1) links whose two endpoints
have some social links in the training dataset. 2) links with at least one endpoint that has no social links in
the training dataset. Category 1 corresponds to the scenarios where users block users or users set a part of
their friend lists (e.g. family circles) to be private. Category 2 corresponds to the scenario in which users hide
their entire friend lists. Note that all hop-2 missing links belong to Category 1. In addition to performing
experiments to show that the SAN model improves missing link prediction, we also perform experiments to
explore which category of missing links is easier to predict. Table 3 shows the results of predicting missing
links on various datasets. As in the new-link prediction setting, the performance of every algorithm is
improved by the SAN model, except for LRA-SAN on AUG4-JUL4 and RWwR-SAN on AUG4-JUL4 for
hop-2 missing links.

When comparing Tables 3d and 3e or Tables 3c and 3f, we conclude that the missing links in Category
2 are harder to predict than those in Category 1. RWwR-SAN without attributes performs poorly when
predicting any-hop missing links in both categories (as indicated by the entry with 0.2000 in Table 3d).
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Table 3: Results for predicting missing links. (a) AUC of hop-2 missing links on the train-test pair
AUG4-JUL4. (b) AUC of hop-2 missing links on the train-test pair AUG2-JUL2. (c)-(f) AUC of
any-hop missing links on the train-test pair AUG4-JUL4. Missing links in both categories 1 and 2 are
used in (c) and (d). Missing links in Category 1 are used in (e) and (f). The numbers in parentheses
are standard deviations.

(a)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.7180 0.7925
AA-SAN 0.7437 0.7697

LRA-SAN 0.6569 0.6237
CN+LRA-SAN 0.7147 0.7986
AA+LRA-SAN 0.7410 0.7668

RWwR-SAN 0.5731 0.5676

(b)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.6938 0.7309
AA-SAN 0.7633 0.7796

LRA-SAN 0.6044 0.6059
CN+LRA-SAN 0.5816 0.6266
AA+LRA-SAN 0.6212 0.6569

RWwR-SAN 0.6595 0.6706

(c)

Alg AUC
SLP-I 0.5453(0.0120)
SLP-II 0.6991(0.0065)

SLP-SAN-III 0.7161(0.0030)
SLP-SAN-VI 0.8481(0.0022)

(d)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.5460 0.7012
AA-SAN 0.5460 0.7033

LRA-SAN 0.5495 0.6177
CN+LRA-SAN 0.5547 0.7048
AA+LRA-SAN 0.5640 0.7325

RWwR-SAN 0.2000 0.7619

(e)

Alg w/o Attri With Attri
Random 0.5000 0.5000
CN-SAN 0.7329 0.7765
AA-SAN 0.7330 0.7784

LRA-SAN 0.7316 0.7401
CN+LRA-SAN 0.7515 0.7510
AA+LRA-SAN 0.8104 0.8116

RWwR-SAN 0.7797 0.8838

(f)

Alg AUC
SLP-I 0.8023(0.0088)
SLP-II 0.8403(0.0033)

SLP-SAN-III 0.8620(0.0080)
SLP-SAN-VI 0.8854(0.0324)
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Figure 4: Performance of various algorithms on attribute inference on SEP4. (a) AUC under ROC
curves. (b) Pre@2,3,4.

This poor performance is due to the fact that RWwR-SAN without attributes assigns zero scores for all
the missing links in Category 2 (positive examples) and positive scores for most non-existing links (negative
examples), making many negative examples rank higher than positive examples and resulting in a very low
AUC.

5.2.2 Attribute Inference

In this section, we focus on inferring attributes using the SAN model. In our next set of experiments in Section
5.2.3, we use the results of these attribute inference algorithms to further improve link prediction, and the
results of this iterative approach further validate the performance of the SAN model for attribute inference.
Since the first step of iterative approach of Section 5.2.3 involves inferring the top attributes for each node, we
employ an additional performance metric called Pre@K in our attribute inference experiments. Compared
to AUC, Pre@K better captures the quality of the top attribute predictions for each user. Specifically, for
each sampled user, the top-K predicted attributes are selected, and (unnormalized) Pre@K is then defined
as the number of positive attributes selected divided by the number of sampled users. We address score
ties in the manner described in [21]. Since most Google+ users have a small number of attributes, we set
K = 2, 3, 4 in our experiments.

When evaluating algorithms for the inference of missing attributes, we require ground truth data. In
general, ground truth for node attributes is difficult to obtain since it is often not possible to distinguish
between negative and missing attributes. However, for most users the number of attributes is quite small,
and so we assume that users with many positive attributes have no missing attributes. Hence, we evaluate
attribute inference on users that have at least 4 specified attributes, i.e., we work with users in SEP4 and
assume that each attribute link in SEP4 is either positive or negative.

In our experiment, we sample 10% of the users in SEP4 uniformly at random, remove their attribute
links from SEP4, and evaluate the accuracy with which we can infer these users’ attributes. All removed
positive attribute links are viewed as positive examples, while all the negative attribute links of the sampled
users are treated as negative examples. We run a variety of algorithms for attribute inference, and for each
algorithm we average the results over 10 random trials. As noted above, we evaluate the performance of
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attribute inference using both AUC and Pre@K.
For the low-rank approximation based algorithms, i.e., LRA-SAN, CN+LRA-SAN and AA+LRA-SAN,

we report results using two different ranks, 100 and 1000, and indicate which was used by the number
following the algorithm name in Fig. 4. We choose these two small ranks for computational reasons and
also based on the fact that low-rank approximation methods assume that a small number of latent factors
(approximately) describe the social-attribute networks. For RWwR-SAN, we set the restart probability α to
be 0.7.5

Fig. 4 shows the attribute inference results for various algorithms. Several interesting observations can be
made from this figure. First, under both metrics, all SAN-based algorithms perform better than BASELINE,
save LRA100-SAN and LRA1000-SAN under Pre@2,3,4 metric, which indicates that the SAN model is good
at leveraging network structure to infer missing attributes. Second, we find that AUC and Pre@K provide
inconsistent conclusions about relative algorithm performance. For instance, the mean AUC values suggest
that SAI-SAN beats all other algorithms. However, several unsupervised algorithms outperform SAI-SAN
with respect to Pre@2,3,4. The inconsistencies between the two metrics are expected since AUC is a global
measurement while Pre@K is a local one. Our SAI-SAN algorithm dominates LINK under both AUC and
Pre@2,3,4 metrics, thus demonstrating the power of mapping attribute inference to link prediction with the
SAN model.

Table 4: Results for iteratively inferring attributes and predicting links. (a) on the AUG4-SEP4
train-test pair. (b) on the AUG4-JUL4 train-test pair. Results are averaged over 10 trials. The
numbers in parentheses are standard deviations.

(a)

Alg w/o Attri With Attri With Inferred Attri
Random 0.5000(0) 0.5000(0) 0.5000(0)
CN-SAN 0.6730(0) 0.7174(0.0077) 0.7291(0.0063)
AA-SAN 0.7109(0) 0.7408(0.0063) 0.7440(0.0026)

LRA-SAN 0.6003(0) 0.6274(0.0052) 0.6320(0.0055)
CN+LRA-SAN 0.6969(0) 0.7497(0.0134) 0.7534(0.0084)
AA+LRA-SAN 0.7111(0) 0.7373(0.0050) 0.7442(0.0032)

(b)

Alg w/o Attri With Attri With Inferred Attri
Random 0.5000(0) 0.5000(0) 0.5000(0)
CN-SAN 0.7180(0) 0.7780(0.0173) 0.7856(0.0100)
AA-SAN 0.7437(0) 0.7626(0.0100) 0.7661(0.0045)

LRA-SAN 0.6569(0) 0.6189(0.0105) 0.6134(0.0157)
CN+LRA-SAN 0.7147(0) 0.7838(0.0256) 0.7969(0.0059)
AA+LRA-SAN 0.7410(0) 0.7591(0.0118) 0.7673(0.0051)

5.2.3 Iterative Attribute and Link Inference

Section 5.2.1 demonstrated that knowledge of a user’s attributes can lead to significant improvements in link
prediction. However, in real-world social networks like Google+, the vast majority of user attributes are
missing (see Fig. 2). To increase the realized benefits of social-attribute networks with few attributes, we
propose first inferring missing attributes for each user whose attributes are missing and then performing link
prediction on the inferred social-attribute networks. Recall that SAI-SAN achieves the best AUC, RWwR-
SAN achieves the best Pre@K in inferring attributes (see Fig. 4) and AA-SAN achieves comparable Pre@K
results while being more scalable. Thus, in the following experiments, we use AA-SAN to first infer the
top-K missing attributes for users, and subsequently perform link prediction using various methods.

In our experiments, when we are working on the pair train-test, we sample 10% of the users of train
uniformly at random and remove their attributes. We then run three variants of link prediction algorithms:

5We find that RWwR-SAN performs consistently across different restart probabilities (results omitted due to space
constraints).
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i) without attributes, ii) with only the remaining attributes, and iii) with the remaining attributes along
with the inferred attributes. The top-4 attributes are inferred for each sampled user by AA-SAN. We report
the results averaged over 10 trials. The hyperparameters of the global algorithms are the same as those in
(Section 5.2.1), which are learned from the corresponding train-validation pair.

Table 4a shows the results of first inferring attributes and then predicting new links on the AUG4-SEP4
train-test pair. Table 4b shows the results of first inferring attributes and then predicting missing links on the
AUG4-JUL4 train-test pair. We see that the inferred attributes improve the performance of all algorithms
except LRA-SAN on predicting missing links, which is unable to make use of attributes as demonstrated
earlier in Table 3a. The AUCs obtained with inferred attributes for all other algorithms are very close to
those obtained with all positive attributes as shown in Table 2a. This further demonstrates that AA-SAN
is an effective algorithm for attribute inference.

6 Related Work

A wide range of link prediction methods have been developed. For instance, models of complex networks,
such as Preferential Attachment [3], Forest Fire model [17], Kronecker graphs model [16] and Hierarchical
model [6] can be viewed as models for predicting links. Liben-Nowell and Kleinberg [19] comprehensively
surveyed a set of unsupervised link prediction algorithms. Li [18] proposed Maximal Entropy Random Walk
(MERW). Lichtenwalter et al. [20] proposed the PropFlow algorithm which is similar to RWwR but more
localized. However, none of these approaches leverage node attribute information.

Link prediction methods leveraging attribute information first appear in the relational learning commu-
nity [28, 22, 4]. However, these approaches suffer from scalability issues. For instance, the largest network
tested in [28] has about 3K nodes and the largest network tested in [22] has only 234 nodes. Recently,
Backstrom and Leskovec [2] proposed the Supervised Random Walk (SRW) algorithm to take advantage of
edge attributes. Although working quite well, SRW does not handle the scenario in which two nodes share
common attributes (e.g. nodes u2 and u5 in Fig. 1), but no edge already exists between them. Mapping link
prediction to a classification problem [10, 20, 7] is another way to incorporate attributes. We have shown
that classifiers using features extracted from our SAN model perform very well. Yin et al. [29, 30] applied
RWwR to an augmented graph to incorporate node attributes. The SAN model is an extension of their
augmented graph model, and moreover, we show that our model works for a variety of unsupervised and
supervised link prediction algorithms (and not just RWwR).

Previous works in [24, 25, 26] aim at inferring node attributes (e.g., ethnicity and political orientation)
using supervised learning methods with features extracted from user names and user-generated texts. Zhel-
eva and Getoor [31] map attribute inference to a relational classification problem. They find that methods
using group information achieve good results. These approaches are complementary to ours since they use
additional information apart from network structure and node attributes. In this paper, we transform the
attribute inference problem into a link prediction problem with the SAN model. Therefore, any link pre-
diction algorithm can be used to infer missing attributes. More importantly, we demonstrate that attribute
inference can in turn help link prediction with the SAN model.

7 Conclusion and Future Work

We have proposed the Social-Attribute Network (SAN) model to integrate network structure and node
attributes and extend several existing leading link prediction algorithms to operate on the SAN model. Our
evaluation with a Google+ social network dataset demonstrates performance improvement with the SAN
model when predicting both new links and missing links, and significant accuracy in inferring node attributes.
Moreover, we demonstrate a further improvement of link prediction accuracy by using the SAN model in an
iterative fashion, first to infer missing attributes and subsequently to predict links. Interesting avenues for
future research include devising an iterative algorithm that alternates between attribute and link prediction,
learning node and edge weights in the SAN model using, for example, the Supervised Random Walk (SRW)
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algorithm [2], and incorporating edge attributes, negative node attributes and mutex edges into large-scale
experiments.
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