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ABSTRACT
The widespread deployment of sensor networks is on the
horizon. One of the main challenges in sensor networks is to
process and aggregate data in the network rather than wast-
ing energy by sending large amounts of raw data to reply to
a query. Some efficient data dissemination methods, partic-
ularly data-centric storage and information aggregation, rely
on efficient routing from one node to another. In this paper
we introduce GEM (Graph EMbedding for sensor networks),
an infrastructure for node-to-node routing and data-centric
storage and information processing in sensor networks. Un-
like previous approaches, it does not depend on geographic
information, and it works well even in the face of physical
obstacles. In GEM, we construct a labeled graph that can
be embedded in the original network topology in an efficient
and distributed fashion. In that graph, each node is given a
label that encodes its position in the original network topol-
ogy. This allows messages to be efficiently routed through
the network, while each node only needs to know the labels
of its neighbors.

To demonstrate how GEM can be applied, we have devel-
oped a concrete graph embedding method, VPCS (Virtual
Polar Coordinate Space). In VPCS, we embed a ringed
tree into the network topology, and label the nodes in such
a manner as to create a virtual polar coordinate space. We
have also developed VPCR, an efficient routing algorithm
that uses VPCS. VPCR is the first algorithm for node-
to-node routing that guarantees reachability, requires each
node to keep state only about its immediate neighbors, and
requires no geographic information. Our simulation results
show that VPCR is robust on dynamic networks, works well
in the face of voids and obstacles, and scales well with net-
work size and density.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; H.3 [Information Storage and Retrieval]:
Miscellaneous
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1. INTRODUCTION
The widespread deployment of sensor networks is on the

horizon. Networks of thousands of miniature sensors may
present an economical solution to some of our challenging
problems: real-time traffic monitoring, safety monitoring
(structural, fire, and physical security monitoring), mili-
tary sensing and tracking, measurement of seismic activity,
real-time pollution monitoring, wildlife monitoring, wildfire
tracking, etc. However, these sensor networks introduce
new research challenges. On one hand, large sensor de-
ployments could provide an unprecedented volume of mea-
surements across wide areas. On the other hand, because
such deployments are likely to consist of devices with lim-
ited computation, memory, storage, communication range,
and most importantly, battery power, many traditional tools
and techniques do not apply to sensor networks. The lack of
tools and techniques to enable communication among sensor
nodes and retrieval of useful information from sensor net-
works limits the use of sensor networks and impedes large
sensor network deployments.

One crucial problem in sensor networks is how to retrieve
sensed data. Previous solutions can be classified into three
categories [31]: local storage, external storage, and the data-
centric approach. In local storage, each node keeps the data
it senses locally. To retrieve data in local storage, a query
must be flooded through the network, causing nodes with
data relevant to the query to send data back to the base
station. In external storage, data is sent to the base station
without waiting for a user to send a query. While external
storage saves having to flood the network with a query, it
may waste energy when data that the user is not interested
in is sent to the base station.

In the third approach, data-centric storage[31, 34], events
are named, and sensors cooperate locally to detect named
events, such as elephant sightings. When a node detects a
named event, it determines what node is responsible for that
name, and then stores the data at that node. Which node is
responsible for storing a type of data is typically determined
by taking a hash of the name, and mapping that hash onto
a node in the network. When a user wishes to query the



network, he can send the query only to the node or nodes
responsible for the data relevant to the query. Note that
in this approach, queries do not need to be flooded through
the network, nor does data that the user does not ask about
get sent to the base station. Additionally, the query may be
partially processed at the nodes storing the data, allowing
a small message consisting of aggregated data to be sent to
the base station instead of all individual records relevant to
the query.

Data-centric storage was first explored in distributed hash
tables designed for internet use, such as CAN[31], Chord[35],
Pastry[33], and Tapestry[38]. These systems are not suit-
able for sensor networks, because routing is done through
an overlay network. Each hop in the overlay network can
be several hops in the actual network. As a result, it is
necessary to have an underlying routing mechanism in addi-
tion to the overlay routing. More importantly, packets may
cross the physical network multiple times, wasting energy
and bandwidth1. The only previous system which provides
data-centric information processing and aggregation in sen-
sor networks is GHT [31]. Instead of using an overlay net-
work, GHT uses the geographic coordinates of the sensor
motes to map them onto a 2-dimensional distributed hash
table. It uses a geographic routing algorithm, GPSR [18],
to route from one node to another. Geographic routing has
several desirable properties: nodes can route to each-other
knowing only the coordinates of their immediate neighbors,
it is possible to perform broadcasts constrained to a ge-
ographic region, and dealing with node failures is largely
trivial. Unfortunately, such an approach may not apply to
many sensor networks. First, this approach requires each
sensor node to know its exact geographic location. Current
methods of determining geographic location[3, 7, 10, 12, 28]
consume much energy and may not be possible in many
sensor network scenarios. Second, GPSR works best when
geographic locality accurately represents network topology.
For many sensor networks, geographic locality may differ
significantly from network topology. For example, physical
obstacles can easily prevent two geographically close nodes
from communicating directly, causing them to be far apart
in the network topology. Third, GPSR’s perimeter-mode
forwarding does not work in three-dimensional topologies,
such as may be found in an office building.

In this paper we propose Graph EMbedding for sensor
networks, or GEM. The GEM framework provides an effi-
cient infrastructure for data-centric information processing
and storage by jointly addressing the issues of routing and
mapping from data names to nodes. In GEM, we label the
sensor nodes in a distributed and efficient manner such that
(1) Nodes can efficiently route messages addressed to la-
bels, knowing only the labels of their neighbors, and (2)
we can efficiently map data names to labels, in order to do
data-centric storage. By using graph embedding and a node
labeling method, GEM enables efficient node-to-node com-
munication and data-centric aggregation and storage.

GEM is a new systematic approach to provide infras-
tructure support for node-to-node communication and data-
centric applications in sensor networks. Our approach does
not rely on geographic information. When geographic infor-
mation is imprecise, or when geographic locality differs from

1There has been work in constructing overlay networks close
to the network topology, such as [30], which could alleviate
this effect.

the network topology, our approach has significant advan-
tages over previous work such as GPSR [18] and GHT [31].

To demonstrate how GEM can be applied, we have de-
veloped VPCS (Virtual Polar Coordinate Space), a graph
embedding technique that embeds a virtual polar coordi-
nate space onto the network topology. The VPCS works
correctly when constructed without any regard to physical
layout, though we have developed two techniques to im-
prove performance by aligning the virtual space with the
network topology. The first scheme requires nodes to find
the distances between themselves and their neighbors, but
the second scheme (which we show to be more effective)
does not require this capability. We have also developed
VPCR (Virtual Polar Coordinate Routing), an algorithm
for routing within the virtual polar coordinate space. We
could build data-centric applications such as data-centric
routing, data-centric storage, and data-centric aggregation
using VPCS, and enable general node-to-node communica-
tion using VPCR. VPCS and VPCR are extremely light
weight. Our experiments and evaluations show that VPCR
is extremely efficient in terms of both total energy usage and
hotspot energy usage.

Our contributions are as follows:

• We introduce the GEM framework, in which a graph
is labeled in a manner to provide efficient routing and
data-centric storage, and is then embedded in actual
sensor network topologies.

• We have developed VPCS, an instance of GEM that
embeds a ringed tree into the network topology, using
a virtual polar coordinate system. VPCS is efficient
to construct and is robust to network dynamics such
as node failures and additions.

• We have developed VPCR, a routing algorithm that
makes use of VPCS. VPCR is the first node-to-node
routing algorithm that requires each node to keep state
only about its immediate neighbors and requires no
geographic information. VPCR routes packets along
nearly the shortest path, adapts to network dynamics
well, and scales to large networks.

We begin by further examining graph embedding in Sec-
tion 2. Next we describe an instance of GEM, VPCS, in Sec-
tion 3. In Section 4 we describe how VPCS can be used to
enable VPCR, an efficient node-to-node routing algorithm.
In Section 5 we show how VPCS heals itself after node fail-
ures and accommodates node additions. In Section 6 we
evaluate VPCS and the routing performance of VPCR, and
show that they scale well to increasing network sizes and
densities, and continue to work in the face of network dy-
namics and irregular topologies. Next we cover a few re-
maining issues and potential areas of future work in Section
7. In Section 8 we discuss related work. Finally, we conclude
in Section 9. Acknowledgments to those who have helped
make this work possible are in Section 10.

2. THE GEM FRAMEWORK
Graph embedding is a technique in graph theory in which

a guest graph G, is mapped into a host graph H. It has been
applied to many different problems[32]. In particular, it has
been used to map one interconnection network on another[4,
13, 19, 20], e.g. to simulate one topology using another. In



GEM, we use graph embedding to take a network topology
that is convenient to work with, and map that onto real
network topologies.

Graph embedding is defined in [32] as follows. An embed-
ding of the graph G (the guest graph), consists of two map-
pings: (1) The node-assignment function α maps the set of
nodes in G one-to-one into the set of nodes in H. (2) The
edge-routing function ρ assigns to each edge {u, v} ∈ E(G)
a path in H that connects nodes α(u) and α(v).

In GEM, we apply the idea of graph embedding to sensor
networks in two steps. First, we must choose a labeled guest
graph G that can be used for efficient routing and data-
centric storage. The second step is to embed the guest graph
G on the actual sensor network topology, H.

Choosing a Guest Graph The first step is to choose a
guest graph that we can use for efficient routing and data-
centric storage. The graph should have the following prop-
erties:

• Routing: The labeled graph G should have the prop-
erty that it enables nodes to route messages efficiently
from one label to another label when each node only
knows the labels assigned to its neighbors. Thus, the
labels of nodes implicitly contain information about
the network topology.

• Mapping for distributed hash table: We can develop a
function f that efficiently maps a key k to a label in
the label space L.

• Low embedding overhead: We must be able to embed
the graph G into the topology H in a distributed man-
ner, and without incurring unnecessary overhead. For
details, see the embedding step, below.

• Fault tolerance: Nodes in the sensor network will fail-
either the guest graph must be able to route around
failed nodes, or it must be feasible to dynamically re-
construct the graph embedding to repair the guest
graph.

The second step is to develop an embedding to efficiently
simulate the guest graph G using the actual network topol-
ogy, H. There are several metrics for graph embeddings[32],
but the one we will focus on optimizing is dilation. To put it
simply, we wish for the edge-routing function ρ to map the
edges in G to paths that are as short as possible in H. Ideally,
each edge in G would simply be mapped to a corresponding
edge in H. However, when the appropriate connection does
not exist in H, the edge must be simulated by a path.

We show that using graph embedding in this manner could
serve as an underlying infrastructure and enable many ap-
plications efficiently:

Enabling Data-Centric Storage To support data-centric
storage, a data item of a certain name k, can be mapped
to a label f(k) and then routed to and stored at the node
with that label. A querier for data of that name can like-
wise compute f(k) and send a query to the same node. Be-
cause the labeled graph G is embedded in the connectivity
graph H, routing in the label space can be almost as efficient
as shortest-path routing in the original network topology
graph. This is significantly different from the distributed
hash table work for distributed systems over the Internet,
as we mentioned in the introduction.

Enabling Node-to-Node Routing To enable general
node-to-node routing, we can implement a lookup mecha-
nism to find a node’s current label using data-centric stor-
age. Assume that a node has a permanent identifier n, and
its label is L(n). Node n can store its label in the distributed
hash table, at the node corresponding to f(n) in the same
manner that it would store a piece of data. When another
node wishes to communicate with n, it can send a lookup re-
quest to the node with label f(n), retrieving n’s label L(n).
Once the node has n’s label L(n), it can address messages to
L(n) and they will be routed through the embedded graph
to n.

3. VPCS (VIRTUAL POLAR COORDINATE
SPACE)

In order to demonstrate how graph embedding can be ap-
plied in sensor networks, we have designed and developed
Virtual Polar Coordinate Space, or VPCS. In VPCS, we
embed a ringed tree2 graph into the network topology. We
do this by assigning each node a level, which is the number
of hops to the root of the tree, and a virtual angle range,
which uniquely identifies a node within a level. We also
develop efficient mechanisms which enable us to assign the
virtual angles to be consistent with the network topology.
As a result, the labels can be thought of as defining a vir-
tual polar coordinate space. In Section 4 we show that this
property enables us to use greedy forwarding to achieve ef-
ficient routing.

3.1 Building the Virtual Polar Coordinate Space:
The Basic Scheme

The first step to build the virtual polar coordinate space,
or VPCS, is to embed a ringed tree. Essentially, we can
follow the well known algorithm to build a spanning tree.
The cross-links to make the tree a ringed tree largely take
care of themselves3.

To build the spanning tree, we first choose a root node.
Any node may perform this role, though a base station
would be a logical choice if there is one present. The root
broadcasts a message stating that it is at level 0 of the tree.
Any nodes that are within radio range of the root become
children of the root. These nodes then each broadcast a
message advertising that they are at level 1 of the tree. The
root node hears these messages and marks the senders as its
children. Nodes that haven’t joined the tree yet that hear
these messages make the sender their parent. If a node hears
more than one such message, it may pick any of the senders
as its parent. One logical choice in this case is to choose the
parent whose message was received with the greatest signal
strength. This process continues recursively until all nodes
reachable from the base station have joined the tree.

After the tree is built, information about the size of each
subtree is propagated back upward towards the root. Leaf
nodes initiate this by reporting to their parent a subtree size

2The ringed tree is a type of x-tree. X-trees and ringed
trees were first proposed in [9]. An x-tree is a tree with
extra connections added for more efficient and load-balanced
routing. In the ringed tree, cross-edges are added to connect
“adjacent” nodes of the same level: siblings and “cousins”.
3Nearby nodes of the same level can form cross-links, though
some nodes that would have cross-links in a proper ringed
tree will not be within radio range of each other.



of one. When a node has received a message from each of
its children reporting its subtree size, it adds one for itself
and reports its subtree size to its parent.

Once the root of the tree has received the subtree size
of each of its children, it has enough information to begin
assigning virtual angles. To begin, the root is assigned the
entire angle range being used. In a geometric polar coor-
dinate system this would be 0 to 2π. However, we wish to
be able to subdivide the range many times without dealing
with fractions, so a range such as 0 to 216 −1 or 0 to 232 −1
is more appropriate.

The root then assigns each child a subset of its range. The
size of the subset assigned to each child is proportional to
the size of that child’s subtree. For example, if the children
have subtrees of sizes 10, 20, and 15, they should be as-
signed 10

45
, 20

45
, and 15

45
of the angle range respectively. This

balancing gives larger (wider) subtrees a wider angle range
to match. It also helps to ensure that the angle space is not
exhausted before reaching all the leaves of the tree. Each
child then assigns each of its children a subset of its angle
range, continuing recursively until every node is assigned an
angle range. For an example of this numbering, see Figure
1(a).

The energy cost for this construction is fairly low. All
together, each node must send three messages during the
construction of the virtual space. Each node sends a message
when building the tree, another when propagating the size
of the subtrees, and a third when assigning virtual angle
ranges.

3.2 Consistency Requirements
In order for VPCS to function correctly, the following con-

ditions must hold:

1. Each node must have a parent (except the root node).

2. Each node must be assigned a level equal to its parent’s
level plus one.

3. Each node must be assigned a virtual angle range that
is a subset of its parent’s virtual angle range.

4. No node may have two children with overlapping angle
ranges.

It is clear that the algorithm in Section 3.1 satisfies the
above consistency requirements. As we will later show, these
conditions enable effective routing and data-centric storage.

3.3 Aligning VPCS with Network Topology
Without Geographic Information

The method described so far for assigning the virtual
space is sufficient to provide reliable node to node routing, as
described in Section 4.1 and Section 4.2. However, in order
to take advantage of the extra cross-links in the ringed-tree
structure, we need to label the nodes in such a way that a
node can know which cross-link it should use, if any. To
accomplish this, we attempt to align the virtual coordinate
space more closely with the network topology. Specifically,
if one were to follow a “ring” along a level of the tree, the
angles should be strictly increasing or decreasing (until they
wrap around). For an illustration of this, see Figure 1(b).
We show in Section 4.3 how this allows us to use the cross
links to perform more efficient routing.

To perform this alignment in a distributed fashion, each
parent must determine the order of its children in the ring.
There are potentially many ways to do this; we describe two
ways below. The naive scheme requires nodes to be able to
find the distances between themselves and their neighbors,
and use that information to build a local coordinate system.
The improved scheme does not rely upon any localization
assumptions, and achieves better results.

Naive Scheme: Using distance information First we
explore the case where nodes can estimate the distance be-
tween themselves and their neighbors. Some previously pro-
posed range finding techniques are by observing radio signal
attenuation[3], or by measuring the arrival time difference
between radio and ultrasonic pulses[28]. Each node can then
use this information to determine the coordinates of each of
its neighbors in a local coordinate system, as described in
[8]. It can then put its children in order by geometric angle.

Unfortunately, as we show in the evaluation, even small
errors in the distance estimates prevent the children from
being ordered correctly. Additionally, subtrees may occa-
sionally cross, in which case it would make more sense to
consider the angle to the child’s entire subtree, rather than
just the angle to the child itself.

Improved Scheme: Using a global coordinate sys-
tem We now describe how to use a global coordinate system
to solve both these problems, and how one can be built with-
out localization data.

We build a global coordinate system by using triangula-
tion from the root and two other reference nodes. The root
node uses some simple heuristics to select the other refer-
ence nodes such that the three nodes are not colinear, and
are not too close together. In order for each node to calcu-
late its position, it needs to know its distance to each refer-
ence node, and the distances between the reference nodes.
Instead of measuring distances directly as in the local coor-
dinate system method, we measure distances as the number
of network hops on the shortest path between nodes. We
first build a temporary spanning tree from each of the two
reference nodes. Every node then knows its distance in net-
work hops from each reference node: it is equal to the node’s
level in the reference node’s spanning tree. One of the ref-
erence nodes can then send the distance between itself and
the other reference node to the root node. The root node
then floods the network with the distances in network hops
between itself and the two other reference nodes. Using this
information, each node can calculate its position in the net-
work.

Note that because the distances are measured in network
hops, the resulting position estimates are not highly accu-
rate, and have a coarse granularity. This makes it impracti-
cal for nodes to order their children by the angles to children
themselves. In fact, because of the low granularity of this
method, some siblings are likely to have exactly the same co-
ordinates. We solve this problem by sorting the children by
the angles to their centers of mass. The center of mass can
be thought of as the point in the “center” of a node’s sub-
tree. We define a node’s center of mass as the average of the
coordinates in that node’s subtree, including its own. A leaf
node’s center of mass is simply its own coordinates. A non-
leaf node’s center of mass is the average x and y coordinates
of the centers of mass of each of its children, weighted by
the sizes of their subtrees. Sorting children by the angles to
their centers of mass helps solve the problem of inaccuracy,
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Figure 1: Sample angle range assignments.

because the errors in each node’s individual coordinates will
tend to average out in the center of mass. It also helps solve
the problem of low granularity, because siblings’ centers of
mass will be further apart in the coordinate system than the
nodes themselves.

In Section 6, we show that this scheme, which uses no geo-
graphic information performs better than the naive scheme,
which assumed that nodes could find the distances to their
neighbors.

4. VPCR: A ROUTING ALGORITHM FOR
VPCS

In this section we describe VPCR, a routing algorithm
built on VPCS. VPCR routes from any node to any point
in the VPCS, where a point is defined by a level and angle.
In order to simplify the description of VPCR, we first de-
scribe the naive-tree routing algorithm, which does not use
the cross-links of the ringed tree structure. We next discuss
smart-tree routing, which is obtained by some simple opti-
mizations to the naive-tree algorithm. Finally, we describe
Virtual Polar Coordinate Routing algorithm (VPCR), which
uses greedy forwarding to take advantage of the ringed tree’s
cross-links.

All three algorithms are guaranteed to be correct so long
as the underlying VPCS meets the consistency requirements
listed in Section 3.2. Each successive algorithm introduces
performance optimizations over the previous one.

4.1 Naive Tree Routing
In previous work, spanning trees have been used to per-

form node to base station routing[21]. In these algorithms,
a spanning tree is built with the base station at the root.
For a message to be routed to the base station, each node
passes the message to its parent until it reaches the base
station. In this manner, a message can be sent to the base
station from any node in the network, using the minimum
number of hops.

Using VPCS, this algorithm can easily be extended to ac-
complish node to node routing. Each message is first routed
up the tree until it reaches an ancestor of the destination. It
is then routed down the tree to the destination. At each hop,
the current node can determine whether the destination is

in its subtree by checking whether the destination virtual
angle is within its angle range, and if the destination level is
greater than the current level. If not, then the destination is
not in the node’s subtree, so the packet is forwarded to the
node’s parent. If the destination is in the node’s subtree,
it uses the same method to determine which child’s subtree
the destination is in, and forwards the message to that child.
This procedure is illustrated in Figure 2(a).

Note that in this algorithm, once a packet reaches an an-
cestor of the destination, the path from that ancestor to the
destination is the shortest path possible. The inefficient part
of the algorithm is in having to route up the tree to reach an
ancestor of the destination. Hence, the paths can be made
shorter if we can avoid routing up the tree as much as pos-
sible, and instead route laterally through the tree to get to
an ancestor of the destination. Not only will this make the
paths shorter, it will also prevent nodes high in the tree from
becoming traffic hot spots.

4.2 Smart Tree Routing
The first optimization we describe is the smart tree algo-

rithm. In cases where the naive tree algorithm says to route
up the tree, the smart tree algorithm first checks nearby
nodes to see if any of them are an ancestor of the desti-
nation, or the destination itself. If so, it forwards to that
node. In Figure 2(b), the smart tree algorithm saves a hop
by doing this.

This method can be further improved if each node keeps
state about its neighbors’ neighbors, or 2-hop neighbors. In
this case, instead of only checking its set of neighbors for an
ancestor of the destination, a node can check its set of 2-hop
neighbors. If a suitable destination is found that is 2 hops
away, the packet can be forwarded to one of the neighbors
that can reach the 2-hop neighbor.

In the more general case, each node can maintain state
about all nodes up to n-hops away. We will refer to this set
of nodes as a node’s neighborhood. Routing performance can
be expected to improve substantially with larger neighbor-
hoods. However, the amount of state that must be stored
and maintained at each node grows exponentially with n. In
the extreme case that the entire network is in each node’s
neighborhood, a packet will always be routed along the short-
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Figure 2: A packet is routed from S to D using the three routing algorithms. Smart Tree and VPCR use a
1-hop neighborhood.

est path, but every node is storing the topology of the entire
network.

4.3 Virtual Polar Coordinate Routing
The smart tree optimization only provides shortcuts once

the packet reaches a node that is near an ancestor of the
destination. For nodes that are far away, it is still likely
that a packet will need to be routed several hops up the
tree before it reaches a node that can take advantage of the
smart tree optimization. VPCR attempts to use the cross-
links in the ringed tree to route laterally through the tree,
even when the current node doesn’t explicitly know about
an ancestor of the destination. It does this by assuming
that the virtual angles are assigned to be strictly increasing
or decreasing along the ringed tree’s rings. This ordering
can be accomplished as described in Section 3.3. When this
is the case, each node’s label can be thought of as defining
a space in a virtual polar coordinate system, as illustrated
in Figure 1(b).

The Virtual Polar Coordinate Routing algorithm, or VPCR,
uses this polar coordinate space for more efficient routing.
When the smart tree algorithm would be forced to route up
the tree, VPCR checks to see if any nodes in its neighbor-
hood (see Section 4.2) have an angle range that is closer4 to
the destination angle than the current node’s angle range. If
so, the packet is greedily forwarded closer to the destination
angle range. Figure 2(c) shows how this can achieve signifi-
cantly shorter path lengths than the naive tree or smart tree
algorithms.

Sometimes the packet will reach a local minimum, where
no nodes in the current neighborhood have a closer angle
range to the destination than the current node. This hap-
pens when there is a cross link missing in the embedded
ringed tree5. When this happens, we can use the tree struc-
ture to find a path to use in place of the missing link. In
practice, we accomplish this by simply routing to the node’s
parent when the packet is at a local minimum. Eventually
the packet will reach a node where the cross-link is not bro-
ken, and greedy forwarding can continue, or it will reach an

4We define the distance between an angle range R and an
angle A to be the distance between A and the angle in R
that is closest to it. If A is contained in R, then the distance
is zero.
5The link may be missing either because there is physically
a break in the ring- two consecutive nodes in the ring aren’t
close enough to have a link, or because nodes were assigned
angles in the incorrect order (see Section 3.3)

ancestor of the destination, in which case it can simply be
routed back down the tree to the destination.

If the VPCS is well aligned with the network topology,
the result will be that packets will follow a curve from the
source to the destination. For short angular distances, such
a curve is not much longer than a straight line. However,
for angles larger than about 115◦, the distance to travel to
the origin and then to the destination (i.e. up the tree to
the root, and then back down), is shorter than such a curve.
Therefore in our current implementation we forward up the
tree in such cases rather than trying to follow the curve.

Correctness An important property of this algorithm is
that as long as the VPCS is consistent (as defined in Section
3.2), packets will always reach their destinations. When a
node using VPCR cannot find a nearby node whose angles
are closer to the destination angle, it routes to its parent.
This will always cause it to eventually reach an ancestor of
the destination, at which point it can follow the tree down
to the destination.

Loop-free Another important property of VPCR is that
routing loops are impossible. At any particular routing step,
the packet is never routed to a node whose angle range is
further from the destination angle than the current range.
It will only greedily forward to a node whose angles are
closer to the destination angle than the current node’s an-
gles. When it fails to find such a node, it routes to its parent.
Because the parent’s angle range is a superset of the current
node’s angles, it is no further from the destination angle
than the current node. Note that the parent cannot forward
the packet back to the child, because the child’s angles can
be no closer to the destination than the parent’s.

5. DYNAMIC ISSUES IN VPCS
The topology of a sensor network may change over time.

In particular, nodes may fail, and new nodes may be added.
When either of these things happen, the VPCS must be
modified to remain consistent.

When making changes to the VPCS, the consistency re-
quirements in Section 3.2 must be enforced. In addition
to these requirements, there are two goals to keep in mind
when modifying the VPCS: stability, and alignment with
the network topology.

Stability Depending on how node to node communica-
tion is used, virtual coordinate changes can be expensive. In
the case of data-centric storage, virtual coordinate changes
can lead to having to move stored data from one node to
another. Additionally, the coordinate changes themselves



require communication with every node whose coordinates
must change, which uses energy. Therefore, it is desirable to
make as few changes as possible to the VPCS while keeping
it consistent.

Alignment with Network Topology When routing us-
ing VPCR, the more closely the VPCS reflects the network
topology, the more effective its greedy forwarding will be. If
changes to the VPCS damage this relationship, VPCR rout-
ing performance will suffer to some degree. Hence, it is also
desirable to preserve any correlation between the VPCS and
the network topology.

Unfortunately, it is difficult to achieve both of these goals.
One way to preserve the alignment with the network topol-
ogy would be to ’reboot’ some or all of the network. That is,
starting from some point sufficiently high in the tree, erase
all parent child relationships and addresses assigned. Then,
begin the algorithm described in Section 3.1 to rebuild that
subtree. This is likely the best way to keep the VPCS coor-
dinates correlated with physical space, but it requires many
nodes to be assigned new virtual coordinates. As mentioned
above, this is expensive in itself, and can also be expensive
for applications running on top of VPCS. Because of this
expense, this method is unlikely to be acceptable except in
cases where the topology changes very infrequently. In that
case, improved routing performance may offset the cost of
having to rebuild part of the VPCS when the topology does
change.

The algorithms we have implemented put more emphasis
on minimizing the number of nodes that must be assigned
new addresses than on preserving the correlation between
VPCS and physical space. As a result, relatively few nodes
should have to change their addresses after the failure or
addition of a node, but the correlation between VPCS and
physical space may degrade after repeated changes.

5.1 Dealing with Node Failures
Individual sensor nodes tend to be unreliable. The most

common reason for failure is likely to be energy depletion,
though some may fall prey to a hostile environment. In any
case, for VPCS to be a practical solution, it must be able to
deal with failures with minimum overhead.

When a node P fails, its children are left without a parent,
violating consistency requirement 1 (See Section 3.2). In the
simplest case, each orphaned child C can find another node
P ′ that is connected to the tree to use as a parent. When
C makes P ′ its parent, consistency requirement 3 will be
violated, because P ′’s angle range will not contain C’s angle
range. To fix this, P ′ must add C’s angle range to its own.
The parent of P ′ must do the same. This continues up the
tree up to the lowest common ancestor between the failed
node P and the new parent P ′.

At this point, the lowest common ancestor between P
and P ′ has two children with overlapping angle ranges (an
ancestor of P , and an ancestor of P ′), violating consistency
requirement 4. To fix this, it takes C’s angle range away
from the child that was an ancestor of the failed node P .
That node must do the same, onward back down the tree
until the parent of P removes the angle range from its own6.

6In some cases, this will result in a node having no angle
range left. When this happens, the parent of the node with
no angle range must take away some of the angle range from
one of its other children’s subtrees and give it to the node.

Last, in order to satisfy consistency requirement 2, the
(previously) orphaned child C must set its level to the level
of its new parent P ′, plus one. Its children must do the
same, recursing the change through its subtree.

Sometimes an orphaned child will not be able to reach
a connected node to make its new parent, but one of its
descendants will be able to. In this case, that descendant
must reverse the portion of the tree between itself and the or-
phaned child. That is, its parent must become its child, and
that reversal must continue until it reaches the orphaned
child. While changing the parent-child relationships, the
angle ranges must be kept consistent. To do this, the con-
nected descendant (now the root of the disconnected sub-
tree) takes the angle range of the orphaned child. It then
assigns its (previous) parent the new angle range, minus the
angle ranges of its other children. The (previous) parent
follows the same procedure. Again, this process continues
until it reaches the orphaned child7.

Once the tree reversal has been performed, the new root
of the disconnected subtree makes the connected node its
parent, and performs the rest of the reconnection algorithm
as already described.

The last case possible is that no nodes in the disconnected
subtree can reach a connected node. In this case the subtree
is partitioned from the network, and there is physically no
way to rejoin it.

Issues There are a couple potential problems with the al-
gorithm as described so far. The first problem is that some
nodes may end up with discontinuous angle ranges. For ex-
ample, if a node has the range 50-100, and the range 60-70
is taken away, it is left with 50-59 and 71-100. While this
is acceptable for VPCS and VPCR, it makes the storage of
neighbor angle ranges more complex. The angle range for
any one node could be made up of any number of discontin-
uous sets.

The other problem is that during the tree repair algo-
rithm, another node involved in the algorithm may fail. Un-
less care is taken in the implementation of the repair algo-
rithm, this could cause the VPCS to become inconsistent. It
may be possible to use something akin to a two phase lock-
ing algorithm, though the details of this are left as future
work.

If the angle ranges become heavily fragmented, or if the
VPCS becomes inconsistent, the affected subtree can simply
reboot itself. That is, the parent-child relationships can be
deleted, and the angles and levels assigned to each node
forgotten. The root of the rebooted subtree can then simply
rerun the initial setup algorithm to put that part of the tree
back into a fresh state.

5.2 Adding Nodes
For many applications, it is desirable to be able to add

new nodes into the network. Some reasons for adding new
nodes are to replace failed nodes, to improve sensor coverage
area, or to incorporate new types of sensors.

In order for a new node to become part of the VPCS,
it must join the tree and be assigned a level and angle
range. As with failures, we have chosen to make the process
of adding new nodes inexpensive rather than emphasizing

7This step can also leave a node with no angle range. When
this happens, some angle range must be taken away from a
sibling’s subtree.



keeping the virtual coordinate space consistent with physi-
cal coordinates.

When new nodes are added to a VPCS network, they must
join the routing tree and be assigned a level and angle range.
In order to do this, the new node first chooses a parent from
its set of neighbors. The parent assigns the new node a level
equal to its own plus one. The parent then assigns the new
node an angle range by first taking away part of the angle
range from one of its other children. That child must take
away that angle range from its child that it is assigned to
as well. Thus, this change recurses down the tree to a leaf
node8.

If the new node is able to find a connected node to use
as a parent, and can also reach a node that was previously
partitioned from the network, the previously disconnected
node may connect via the new node. In this case, the new
node becomes its parent. The new node assigns angle ranges
to any children gained in this manner in the same way as
when the tree is first built: it attempts to put the children in
order by angle, and then assigns each a subset of its angles,
in sizes proportional to each child’s subtree.

6. EVALUATION OF VPCS AND VPCR
In this section we will evaluate the performance of the

routing algorithms that we have presented.
Simulation Parameters The parameters used for our

experiments are listed in the following table:
Range 40 m
Network Size 400 m x 400 m
Density Avg Degree 15
Nodes 509
Neighborhood 2 hops
In order to show that VPCR is effective for routing in

large networks, we chose a network size relatively large in
relation to the nodes’ radio range. A packet sent along one
side of the network would necessarily have to travel at least
10 hops. A packet sent from one corner of the network to
the other would have to travel at least 15 hops. We chose
a network density such that each node has an average of 15
neighbors. This ensures that randomly generated topologies
tend to be well connected.

We set the neighborhood size to be 2 hops for the smart
tree and VPCR algorithms. Recall from Section 4.2 that the
neighborhood is the set of nearby nodes that each node keeps
routing information about. Larger neighborhoods improve
routing performance at the cost of additional state. We
show in Section 6.9 that a 2 hop neighborhood provides a
good balance between routing performance and the amount
of state that must be maintained at each node.

Simulation Procedure We obtained these results using
a custom simulator developed by the authors. The simulator
assumes an ideal radio model and an ideal MAC layer; if
two nodes are within radio range, they can communicate
without packet loss. All results were obtained by running
the test on 5 randomly generated topologies and averaging
the results. In each topology, each node is placed randomly
except the root of the tree, which is placed at the center

8Another possibility is for each node to reserve some angle
space during the initial setup, so that if it gains a new child
it doesn’t have to take any space away from another child.
However, we did not examine this approach in detail because
the reserved space will cause a data-centric storage system
to be biased towards low-level nodes in the tree.

of the network9. When a randomly generated topology had
fewer than 95% of the nodes reachable from the root, it was
thrown away and replaced by another.

In our VPCR simulations we used both the local coor-
dinate system and global coordinate system methods, de-
scribed in Section 3.3. In the results labeled “VPCR, LC
w Dist Info” we use the naive scheme of Section 3.3, which
assumes the nodes can find the distance between neighboring
nodes, and uses that information to build a local coordinate
system at each node. In the results labeled “VPCR, GC
w/o Dist Info” we use the improved scheme, which does
not assume that nodes can find the distance between neigh-
boring nodes. Instead it uses selected reference nodes to
build a coarse grained global coordinate system. For these
experiments we place two reference nodes at the edge of the
network, 90 degrees apart.

6.1 Near Shortest Path Performance
Figure 3 shows the cumulative distribution function for

how many extra hops each packet takes over the shortest
possible path. Note that using the global coordinate method
of ordering, VPCR routes 75% of its packets with 0 or 1 extra
hops. Even without using the ringed tree’s cross-links, the
smart tree algorithm routes 70% of its packets with 0 or 1
extra hops.

6.2 Scalability to Large Networks
Next we examine how well VPCR scales with the size of

the network. For this test, we increased the number of nodes
while holding the density constant. Because the average
path length grows as the network gets bigger, we measure
the average dilation rather than the number of hops over
the shortest path. The dilation of a packet is defined as
the number of hops actually taken divided by the number
of hops on the shortest path. Figure 4 shows the average
dilation in networks from 10 to 2000 nodes. Because all
the variations of VPCR are tree-based, the overhead grows
logarithmically with the size of the network.

6.3 Comparison with GPSR
Figure 5 compares the routing algorithms we have devel-

oped with GPSR. This figure shows what fraction of packets
travel how many additional hops over the shortest path. The
test parameters and GPSR results were taken from [18]. The
network is 2250 m by 450 m, and contains 112 nodes hav-
ing radio ranges of 250 m. It is important to note that in
the GPSR simulation, nodes were moving using the random
waypoint model, while in our simulations nodes remained
stationary. We used the results with the least mobility for
this comparison, in which the pause time was 120 s.

All but the naive tree algorithm do quite well here. One
interesting thing to note is that the smart tree algorithm
does slightly better than VPCR for these network parame-
ters. This is because the network is not much wider than
the node radio range. Thus, a message being forwarded up

9We have tested the routing algorithms that we have de-
scribed to verify that they function correctly regardless of
where the root of the tree is placed. However, placing the
root at the center of the network minimizes the depth of the
ringed tree that is built, which improves the performance
of tree-based routing. Because VPCR uses the ringed tree’s
cross-links, this choice has a smaller impact on its perfor-
mance than on the performance of the Naive and Smart
Tree algorithms.
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Figure 6: Average extra hops for varying network
density.

the tree is likely to reach a node in the neighborhood of
the destination before having to go up to an ancestor of the
destination. It is difficult for VPCR’s greedy forwarding to
do much better than this, and occasionally it will make a
mistake. Even so, very few packets travel more than one
extra hop over the shortest path for either algorithm.

6.4 Scalability to Network Density
Figure 6 shows how the different algorithms perform at

different network densities. Here the network density is
measured in average degree, which is the average number
of neighbors each node has. For this experiment the size
of the network was kept constant at 400 x 400 meters, and
the number of nodes was varied to alter the density. This
experiment shows that network density has little effect on
the performance of VPCR or its variations.

6.5 Load Balancing
One problem with the naive tree algorithm is that it tends

to route a lot of packets through nodes high in the tree.
Given that each node has a finite amount of energy, this
is likely to cause those nodes to become exhausted fairly
quickly, resulting in the root of the tree becoming cut off
from the rest of the network. The smart tree and VPCR
algorithms attempt to refrain from routing up the tree as
much as the naive tree algorithm, so those algorithms should
not suffer from this problem quite as much.

In order to evaluate VPCR’s load balancing, we routed
packets to and from random nodes as in earlier tests, but
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Figure 7: Network Lifetime

allowed each particular node to forward only 200 packets be-
fore failing. Figure 7 shows the number of live nodes reach-
able from the root of the tree as packets are sent through
the network and nodes fail. As expected, the nodes reach-
able in the naive tree network drops off quite rapidly as the
nodes high in the tree fail. The smart tree and VPCR net-
works last considerably longer, though neither lasts as long
as a network where all packets are routed along the shortest
path. In future work, VPCR could be modified to incor-
porate energy awareness, which could provide better load
balancing than shortest path routing.

6.6 Adaptability to Dynamic Networks
Adding and removing nodes tends to adversely affect the

tree in several ways. As the angle space is rearranged to keep
the tree consistent, the virtual polar coordinate space may
become less consistent with the network topology. Addition-
ally, when a node chooses a new parent, it tries to minimize
the number of nodes that have to be reassigned virtual polar
coordinates, which may result in branches of the tree going
in odd directions and overlapping one another.

In order to determine the effects of repeatedly adding and
removing nodes from the tree, we performed the following
experiment. Starting with a freshly built tree, we first ran-
domly choose 20% of the nodes to fail. After performing
the tree repair algorithm, we measure the average number
of extra hops of packets routed in that network. We then
randomly place the same number of new nodes in the net-
work and have them join the tree. The average number of
extra hops is measured again at this point. This process was
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Figure 8: Average extra hops as
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repeated for 50 iterations. The results are shown in Figure
8.

Routing performance degrades for the first 10 iterations,
at which point it levels off. This is because our current
repair and addition algorithms put more emphasis on mak-
ing repairs cheap than on keeping the VPCS aligned with
the network topology. This means that the correlation be-
tween physical coordinates and the virtual polar coordinates
breaks down after repeated repairs. Additionally, many fail-
ures at once can result in voids in the network. This causes
the tree to have to ’wrap around’ these voids. Even when
new nodes are added to fill these voids, these abnormalities
in the tree remain.

In order to verify that the repair and addition algorithms
are light-weight, we also measured how many nodes had to
be relabeled during this experiment. Figure 9 shows a his-
togram of the number of nodes that needed to be relabeled
after each failure. 35% of the node failures didn’t require
any nodes to be relabeled to repair the tree. The median
number of nodes that needed to be relabeled was 3, though
there were outliers in the data where up to the entire net-
work needed to be relabeled. Figure 10 shows a histogram
of the number of nodes that needed to be relabeled to ac-
commodate each new node added to the tree. 99% of the
node additions didn’t require any nodes to be relabeled. The
most nodes that had to be relabeled for any addition was
13.

For applications where there are many packets being routed,
and nodes fail relatively infrequently, it may be desirable to
use a more heavy-weight repair algorithm to ensure that
routing stays as efficient as possible.

6.7 Irregular Network Layouts
In many real applications, sensor nodes will not be de-

ployed evenly and in an open area. There can be barriers
blocking radio transmission, or equivalently, large voids. In
order to test VPCR’s performance in the presence of these
irregularities, we simulated two types of voids. The first
type of void goes in a line from the center of the network
(the root), outward towards the perimeter. Figure 11 shows
VPCR’s performance as this void grows until it reaches the
perimeter of the network. This type of void has very little
effect on the performance of VPCR.

Next we simulated a void that is parallel to the y axis
of the network. Figure 12 shows VPCR’s performance as
this void grows until it reaches both edges of the network.
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Figure 11: Performance in the presence of a void
that extends radially through the network.

Performance degrades slightly here, because this type of void
adversely affects how the spanning tree is built.

6.8 Effect of Inaccurate Distance Information
on Routing in Scheme I

When using distance information to build local coordinate
systems (scheme I in Section 3.3), inaccurate distance infor-
mation leads to inaccurate coordinate systems, which can
lead to the VPCS not being well aligned with the network
topology. Figure 13 shows how well VPCR performs when
the local coordinate system method is being used, for vary-
ing accuracies of distance estimates. The fraction of error
here is the fraction of the radio range. Since we are using a
radio range of 40m, an error of 10% means that estimated
distances are randomly off by up to 4 m. The results of this
simulation show that VPCR’s greedy forwarding is beneficial
until the error gets worse than 10%. At that point, greedy
forwarding makes enough mistakes such that the smart tree
algorithm tends to yield shorter paths.

Note that this issue is irrelevant to scheme II, which does
not assume that nodes can find the distances between each
other.

6.9 Choosing the Neighborhood Size
Figure 14 shows the effect of different size neighborhoods

on VPCR. Each additional hop added to the network size
appears to give diminishing returns. While the 2-hop neigh-
borhood performs much better than a 1-hop neighborhood,
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Figure 12: Performance in the presence of a void
that extends vertically from one side of the network
to the other.
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Figure 13: VPCR performance using local distance
information vs the accuracy of that information.

3 and 4 hop neighborhoods provide a relatively small im-
provement. This suggests that a 2-hop wide neighborhood
may be optimal, since it provides the greatest performance
improvement for the least additional state at each node.

7. DISCUSSION AND FUTURE WORK

7.1 Load Balancing for Data-centric Storage
When using VPCS for data-centric storage, it is impor-

tant to balance where data is stored among the nodes. The
simplest goal is to design the mapping function from data
name to node such that one node is as likely as any other to
be assigned. In VPCS, we map a name to a node by hashing
the name, and mapping that hash to a level and angle. The
data is then assigned to the node that covers that point in
the virtual space. If there is no node at that level and angle,
then the highest level node that covers that angle is respon-
sible for the data. For proper load balancing to occur, each
node should have a similarly sized piece of the virtual space.

We achieve this goal in two ways. First, there are fewer
nodes at low levels of the tree than high levels of the tree.
We offset this by biasing the hash function such that the
probability of a level being chosen is proportional to the
number of nodes at that level. The bias can be determined
by actually counting the number of nodes at each level of
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Figure 14: Dilation when different size neighbor-
hoods are used.

the tree, though an estimate will often be good enough. Sec-
ond, when assigning angles, nodes with larger subtrees get a
proportionally larger piece of the angle space. This causes a
problem because nodes with large subtrees get a larger piece
of the virtual space, and are therefore more likely to be as-
signed data to store. However, this problem is somewhat
offset because a node with no children takes responsibility
for any data that maps to its angle range and level greater
than or equal to its own.

7.2 Node Mobility
In some sensor networks, sensors may move over time.

The simplest way to handle this is to use the current VPCS
healing mechanisms. When a node loses contact with its
parent, the child can treat the parent as having failed, and
use the algorithm in Section 5.1 to recover. This method
should be sufficient if nodes move slowly or infrequently
enough that neighbor relationships don’t change often. It
is also possible that, in some scenarios, most nodes will re-
main stationary and only a few nodes are mobile. When
this is the case, the mobile nodes can refrain from taking
on children. This makes the repair mechanism very cheap
when a mobile node moves; the parent of the mobile node
simply deletes that node as a child, and the mobile node can
find a new parent at its new location.

7.3 Improved Routing in the Ringed Tree
The ringed tree graph type has been studied in graph

theory and in system architecture. It is meant to be used
for load balanced, failure tolerant, and efficient routing. We
are currently researching the ringed tree itself more closely
in hopes of finding a routing algorithm that better achieves
these goals. In particular, if the routing algorithm itself were
tolerant to node failures, we may not need to perform the
tree repair algorithm described in Section 5.1. If such an
algorithm is found, we can use graph embedding to more
closely model the ringed tree structure in VPCS, and thus
gain these benefits.

7.4 Multiple Trees
Because VPCR is tree-based, nodes near the root of the

tree tend to have to route more traffic than other nodes.
This imbalance can be alleviated by using several smaller
spanning trees rather than one large one. In this case, each
node’s label would consist of a tree identifier in addition



to a level and virtual angle range. Within each tree, each
node would have to know which trees border its own. In
order to determine how to route a message to a neighbor
tree, we can use data-centric storage within the tree to map
tree id’s to the labels of nodes that border those trees. In
order to route to a node several trees away, it may be fea-
sible for every node to know the higher level topology and
use it to determine the shortest path. For example, suppose
there is a 5000 node network consisting of 10 trees of 500
nodes each. It is not unreasonable for each node to store
the neighbor relationships for 10 trees, though it would ob-
viously be infeasible to store the neighbor relationships for
5000 individual nodes.

Another possibility is to have n trees, each with different
roots, that each span the entire network. That is, each node
would belong to all n trees. When a node wishes to send a
message to another node, it could pick any of these trees to
route the message through. This would help alleviate the
hot spot at the roots of the trees. However, it still needs to
be worked out how this method would interact with data-
centric storage. One possibility would be for the mapping
function f to specify a tree in addition to a label (see Sec-
tion 2). However, this would not utilize the full benefit of
multiple trees, since data and queries of a particular name
would always be routed through the same tree.

7.5 Other Graph Types
It may be beneficial to investigate other graph types. A

tree is useful because its hierarchical structure makes it easy
to design a light weight routing algorithm that is guaranteed
to be correct. Unfortunately, the hierarchical nature tends
to overload nodes that are at low levels of the tree. An-
other possibility may be to use a grid. A grid would do
away with the hierarchical nature, which could mean better
load balancing. However, a grid would be more difficult to
construct without geographic information, and guaranteed
routing correctness would be more difficult, if not impossi-
ble.

8. RELATED WORK
Routing Algorithms Rao et al. independently proposed

another algorithm for performing node to node routing with
only neighbor information, without geographic location in-
formation[29]. This paper describes an algorithm in which
a virtual coordinate system is built by having nodes on the
perimeter of the network determine their positions relative
to each other. They then use an iterative relaxation algo-
rithm for other nodes to determine their coordinates. Once
the coordinate system is built, they use greedy forwarding
to perform all the routing. This approach has the advantage
that node failures and node mobility are more easily dealt
with. It also has demonstrated routing performance on par
with geographic routing where the physical coordinates are
known. However, there is a relatively large set-up overhead
for the perimeter nodes to find their relative positions, and
to perform several iterations of the relaxation algorithm.

There has also been work on informative labeling schemes.
The idea of labeling each node such that the distance be-
tween two nodes could be determined using only their la-
bels was proposed in [24]. In particular, a distance labeling
scheme for n-vertex trees was proposed, using O(log3n) bit
labels. Compared to our labeling mechanism, the distance
information given by this method is more precise, at the

cost of labels whose length grows with the size of the net-
work. The idea of labeling schemes that carry various types
of information was further examined in [25]. Several pa-
pers have explored tradeoffs in routing algorithms between
label size, memory requirements at each node, and routing
performance[1, 2, 11, 23, 36].

Several papers have proposed other solutions to routing
in wireless sensor networks. Many of these do not address
node to node routing. Instead they assume that the only
communication necessary will be nodes sending results to
the base station, and the base station flooding the network
with queries. Examples of this type of algorithm are Mini-
mum Cost Forwarding[37], and LEACH[14]. Other routing
algorithms have been proposed for sensor networks which
do support node to node routing, but assume that sensors
can find their precise locations. The first such algorithms
proposed are GPSR[18] and GEDIR+FACE2[5]. More gen-
eral ad-hoc routing protocols could also be used in sensor
networks, but they have a cost associated with establishing
and maintaining routes. The costs in terms of state kept at
each node and routing update messages are too high to scale
well in a large sensor network. Broch et. al. provide a survey
of several ad hoc routing protocols[6], including DSDV[26],
TORA[22], DSR[16][17], and AODV[27].

Data Dissemination Several data dissemination proto-
cols have also been examined. [34] introduces the concept of
data-centric storage, as well as describing the simpler con-
cepts of local and external storage. This work is continued in
[31], which describes GHT, a data-centric storage system for
sensor networks built on top of GPSR[18]. Directed diffu-
sion[15] and TAG[21] are more advanced forms of external
storage which incorporate some in-network aggregation of
data.

9. CONCLUSION
In this paper we proposed Graph Embedding for sensor

networks. GEM can be used to solve a number of prob-
lems in sensor networks, including data-centric storage and
general node to node routing. We have demonstrated how
the concept of graph embedding can be used to build a Vir-
tual Polar Coordinate System in a sensor network, and how
Virtual Polar Coordinate Routing can be used to efficiently
route within a VPCS. VPCR is the first solution to node
to node routing and data-centric storage that requires each
node to keep state only about its neighbors, and does not
require geographic information. It is robust to dynamic net-
works, works well in the face of voids and obstacles, and
scales well with network size and density. We hope that our
graph embedding approach provides a new perspective for
building sensor network applications.
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