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ABSTRACT
A group signature scheme allows a group member to sign
messages anonymously on behalf of the group, while in case
of a dispute, a designated entity can reveal the identity of a
signature’s originator. Group signature schemes can be used
as a basic building block for many security applications such
as electronic banking systems and electronic voting. Two
important issues – forward security and efficient revocation
– have not been addressed by prior schemes. We construct
the first forward-secure group signature schemes. While sat-
isfying all the security properties proposed in previous group
signature schemes, our schemes provide a new desired secu-
rity property, forward-security : while the group public key
stays fixed, a group signing key of a group member evolves
over time such that compromise of a group signing key of
the current time period does not enable an attacker to forge
group signatures pertaining to the past time periods. Such
forward-security is important to mitigate the damage caused
by key exposure and particularly desirable for group signa-
ture schemes because the risk of signing key exposure esca-
lates as the size of the group increases. Our schemes are
provably secure in the random oracle model and under the
strong RSA and decisional Diffie Hellman assumptions.

Furthermore, we extend our forward-secure group signa-
ture scheme to provide a solution for the problem of group
member exclusion without the need to re-key all other group
members. When a group member is excluded, he should
not be able to generate valid signatures any more and yet

∗We gratefully acknowledge funding support for this re-
search. This research was sponsored in part by the United
States Defense Advanced Research Projects Agency (con-
tract N66001-99-2-8913), and by the United States National
Science Foundation (grant FD99-79852). DARPA Contract
N66001-99-2-8913 is under the supervision of the Space and
Naval Warfare Systems Center, San Diego. This paper rep-
resents the opinions of the authors and do not necessarily
represent the opinions or policies, either expressed or im-
plied, of the United States government, of DARPA, NSF, or
any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CCS’01, November 5-8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

his previous signatures remain anonymous. We provide the
first solutions which support both retroactive public revo-
cation and backward unlinkability and the signature size is
independent of the number of revoked members.

1. INTRODUCTION
Group signature schemes are an important building block

for many security applications. In contrast to ordinary sig-
nature schemes where there is only one signer, group signa-
ture schemes allow any member of a group of signers to sign
documents on behalf of the group. In general, a group man-
ager controls the group membership and issues group sign-
ing keys to group members. The group signing keys allow
a group member to sign documents on behalf of the group.
In particular, a group signature scheme provides anonymity
and unlinkability to the signer, i.e. everybody can verify
that the signature is valid on behalf of a group, but no-
body except for the group manager can identify the signing
member. Furthermore it is computationally hard for any-
body but the group manager to decide whether two different
valid signatures were generated by the same group member.
These attractive security properties make group signature
schemes appealing to applications such as electronic voting,
electronic auctions and many applications where it is de-
sirable to hide organizational structure. Group signature
schemes are also used in electronic cash systems to conceal
the cash-issuing banks’ identities [27] and identity escrow
systems [25].

The concept of group signatures was first proposed by
Chaum and van Heyst [16]. Several different group signa-
ture schemes have been proposed [16, 18, 13, 11, 27, 12,
3]. The most recent scheme by Ateniese et al. is particu-
larly efficient and provably secure [3]. Unfortunately several
limitations still render all previous solutions unsatisfactory
in practice. One important problem is how to deal with
exposure of group signing keys. Another important prob-
lem is how to allow efficient exclusion of group members.
We discuss these two problems in more detail in the rest of
this section and introduce our approaches to address these
problems.

1.1 Exposure of Group Signing Keys and For-
ward Secure Group Signatures

Exposure of secret keys for “non-cryptographic” reasons,
such as a compromise of the underlying storage system or
human errors, is one of the greatest threats to many crypto-
graphic protocols in practice. In group signature schemes,
if a group member’s group signing key is exposed to an at-
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tacker, the attacker can then sign any documents on behalf
of the group. And the danger of the exposure of signing keys
escalates as the group size increases. In prior group signa-
ture schemes, the exposure of one group member’s group
signing key not only requires changing the group public
key and signing keys, but also renders all previously ob-
tained group signatures invalid, because one cannot distin-
guish whether a signature is generated by an attacker after
it obtained the group signing key or by the legitimate group
member before the attacker obtained the group signing key.

We propose to use the concept of forward security to re-
duce the damage of exposure of a group signing key, i.e.
even when a group signing key is exposed, previously gen-
erated group signatures remain valid and do not need to be
re-signed. In a forward secure group signature scheme, the
group signing keys evolve over time. We divide the time
that a group public key is desired to be valid into T periods.
Assume the group public key is GPK, and a group mem-
ber A obtained an initial group signing key SK0 when he
initially joins the group. While the group public key stays
fixed, A’s group signing key evolves over time: in time pe-
riod i, A’s group signing key evolves from SKi−1 to SKi

using a public one-way function. After time period i, SKi

is erased from the system. And a signature on a message m
is a pair 〈i, s〉 where i represents the time period indicated
in the signature. The verification procedure ensures that a
signature 〈i, s〉 is valid for message m only if s was produced
using the group signing key for time period i.

Here is an example to illustrate how such a forward-secure
group signature scheme can reduce the damage of the expo-
sure of a group signing key. Assume an attacker breaks into
a group member’s system in time period j and obtains the
member’s group signing key SKj . Because of the one-way
property, the attacker cannot compute the group signing
keys corresponding to previous time periods. Assume a user
B obtained a group signature on a document m prior to
time period j. B expects to be able to use the signed docu-
ment m for a long time (long after time period j). When it
is discovered that SKj has been exposed, the group public
key is revoked. If the group signature scheme were with-
out the forward-secure property, obviously the group signa-
ture B obtained on document m would be rendered invalid
and B would need to obtain a new signature on document
m. But when the group signature scheme is constructed
as a forward-secure scheme, the attacker cannot compute
the group signing keys corresponding to previous time peri-
ods, and hence the group only revokes the group public key
for any period following the time period j. Thus any valid
signatures with corresponding time period before j is still
accepted. Because in the signature B obtained 〈t, s〉, t < j.
Hence the signature 〈t, s〉 is still a valid signature on m and
B would not need to obtain a new signature on m.

The concept of forward secure signatures was first pro-
posed by Ross Anderson [2] for traditional (non-group) sig-
natures. The challenge is to design an efficient scheme. In
particular the size of the secret key, public key and signa-
tures should not be dependent on the number of time peri-
ods during the lifetime of the public key. Several schemes
have recently been proposed for traditional (non-group) sig-
natures and threshold signatures that satisfy this efficiency
property [6, 1, 26, 28, 24].

Previous group signature schemes do not provide forward
security. We propose the first forward secure group signa-

ture schemes. In particular we extend the group signature
scheme proposed by Ateniese et al. [3] in two different ways
to construct two different forward secure group signature
schemes. The first scheme leverages techniques used in [6]
and the second scheme employs a new technique to achieve
forward security which is also proposed in [24]. In addition,
we show that forward secure group signature schemes en-
ables other desirable security properties at little extra cost.
For example, when a new group member C joins, with for-
ward secure group signature schemes, we can restrict the
new member to generate signatures that are only valid for
future time periods and not before his joining period with
no extra overhead. More generally, we can support at little
extra cost the property of time-limited group membership,
i.e. a group member is only allowed to sign on behalf of the
group during a limited time.

1.2 Retroactively Publicly Revokable Group
Membership with Backward Unlinkabil-
ity

Any practical group signature scheme must support dy-
namic group membership. In practice, group members may
join, leave, or be excluded from the group during at any
time. Previous group signature schemes can support group
member joins efficiently, but not group member exclusion
events. Imagine the scenario where an attacker stole a group
member A’s group signing key during time period i. The
leakage of A’s group signing key is only discovered later in
time period j. The group manager revokes A’s group sign-
ing key in time period j. Therefore nobody should be able
to generate group signatures valid for time periods after j
using A’s group signing key. We call this property pub-
lic revokability. Furthermore, because the attacker could
have signed documents on behalf of the group any time af-
ter time period i using A’s group signing key, signatures
generated using A’s group signing key after time period i
should become invalid. At the same time, signatures gen-
erated using other members’ group signing keys should still
remain valid and anonymous and unlinkable. We call this
property retroactive public revokability. Note that retroac-
tive public revokability implies public revokability, not vice
versa. Moreover, signatures generated using A’s group sign-
ing key before time period i should remain valid, anonymous
and unlinkable because these signatures are generated by A
not the attacker. We call this property backward unlinkabil-
ity. Ideally a group signature scheme should support both
retroactive public revokability and backward unlinkability.

A naive approach to achieve both public revokability and
backward unlinkability is to use a forward secure group sig-
nature scheme and re-issue a new group public key and new
group signing keys to legitimate group members whenever
a new group member is expelled. Obviously this approach
does not support retroactive public revokability and is im-
practical when the group is large or highly dynamic. In
another approach the group manager issues a Certification
Revocation List (CRL) when a group member is expelled.
When a user obtains a group signature on a document for
time period i, he checks against the CRL to see whether
the signer has been expelled for time period i. The chal-
lenge for this approach is to design such a group signature
scheme that enables CRL and still provides anonymity, un-
linkability and backward unlinkability. Ateniese and Tsudik
mentioned similar problems as open issues for group signa-
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ture schemes [4]. Bresson and Stern [10] proposed a first
solution providing public revokability for the group signa-
ture scheme in [13]. Unfortunately their approach does not
provide retroactive public revokability and the signature size
is linear to the number of revoked members. We extend our
forward secure group signature schemes to provide the first
solutions that support both retroactive public revokability
and backward unlinkability and the signature size in our
schemes is independent of the number of revoked members.

1.3 Our Contribution and Outline
We propose forward-secure group signature schemes. In

particular we extend the group signature scheme proposed
by Ateniese et al. [3] in two different ways to construct
two different forward secure group signature schemes. The
first scheme leverages techniques used in [6] and the sec-
ond scheme employs a new technique to achieve forward
security and is also proposed in [24]. Our schemes satisfy
forward security as well as all the traditional security prop-
erties shared with previous group signature schemes. Our
schemes are efficient in the sense that they are independent
of the number of group members, and the size of signatures
and group keys are independent of the number of time pe-
riods during the lifetime of the group public key. As a side
benefit, our schemes can also be extended to support flexible
time-limited group membership at little extra overhead.

Furthermore, we extend our forward-secure group signa-
ture schemes to support revocation. Our approaches are the
first ones that support retroactive public revokable group
membership with backward unlinkability and the signature
size in our approach is independent of the number of revoked
members.

The rest of the paper is organized as follows. We first
introduce the model and formal security requirements in
section 2, and the preliminaries and our notations in sec-
tion 3. We then describe our forward secure group signature
Scheme I and extensions in section 4 and the Scheme II in
section 5. We conclude in section 7 and give security proofs
the lemmas in the appendix.

2. THEMODELANDSECURITYREQUIRE-
MENTS

In a group signature scheme, a principal who can sign
documents on behalf of the group is called a group member.
A group manager (GM) controls the group membership and
assigns group signing keys to group members which allow
group members to sign documents on behalf of the group.
A traditional group signature scheme consists of five proce-
dures: SETUP, JOIN, SIGN, VERIFY, and OPEN. We add
another procedure, EVOLVE, for the forward-secure group
signature scheme. Below is a brief description of the six
procedures in a forward-secure group signature scheme.

• SETUP: On input a security parameter �, this proba-
bilistic procedure outputs the system parameters, the
group public key and the secret key for the group man-
ager.

• JOIN: For a user to join the group, the group manager
and the user execute this protocol interactively. The
user receives a group signing key and becomes a new
group member.

• EVOLVE: Given input of a group signing key for time
period i, this procedure outputs the corresponding group
signing key for time period i + 1.

• SIGN: Given input of a group public key, a member’s
group signing key, a message m and a time period i,
this probabilistic procedure outputs a signature 〈i, s〉
on message m.

• VERIFY: Given input of a group public key, a group
signature 〈i, s〉 and a message m, this procedure veri-
fies whether s is a valid group signature on m signed
with a group signing key of time period i. If s is a
valid group signature signed with a group signing key
of time period i, we say 〈i, s〉 is a signature valid for
time period i.

• OPEN: Given input of a message, a valid group sig-
nature on the message, a group public key and the
group manager’s secret key, this procedure determines
the identity of the signer.

A traditional group signature scheme should satisfy the
following properties:

• Correctness: Signatures produced by a group member
using SIGN must be accepted by VERIFY.

• Unforgeability : Only group members are able to sign
messages on behalf of the group.

• Anonymity : Given a valid signature of a message, it
is computationally hard for everybody but the group
manager to identify the actual signer.

• Unlinkability : It is computationally hard for every-
body but the group manager to decide whether two
different valid signatures were computed by the same
group member.

• Exculpability : Neither a coalition of group members
nor the group manager can generate signatures that
will be opened by the OPEN procedure as generated
from another group member. This means a group
member cannot be blamed to have generated a sig-
nature that he actually did not generate.

• Traceability : A trusted entity can always open a valid
signature using the OPEN procedure and identify the
actual signer. This trusted entity can either be the
group manager or some other entity, usually called
the revocation manager. For simplicity we assume this
trusted entity is the group manager in this case. If
a separate entity is desired, the scheme can be easily
adapted to support a separate revocation manager.

We define two degrees of forward security:

• Weak Forward security : Assume a set of group sign-
ing keys Φ = {ki,ti}1≤i≤L where ki,ti represents the
group signing key of member i for time period ti, and
t = min(t1, . . . , tL). We call Ω(Φ) is the weak-span
of Φ where Ω(Φ) represents the set of group signing
keys {ki,wi}1≤i≤L,t≤wi≤T . We say the group signature
scheme satisfies the weak forward security if an at-
tacker given a set of group signing keys Φ cannot gen-
erate a valid group signing key not in Ω(Φ).
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• Strong Forward security : Given a set of group signing
keys Φ = {ki,ti}1≤i≤L where ki,ti represents the group
signing key of member i for time period ti, we call
Ψ(Φ) is the span of Φ where Ψ(Φ) represents the set
of group signing keys {ki,wi}1≤i≤L,ti≤wi≤T . Then the
group signature scheme satisfies the strong forward se-
curity if an attacker given a set of group signing keys Φ
cannot generate a valid group signing key not in Ψ(Φ).

In this paper, we also discuss the following desired security
properties:

• Time-limited membership: The group manager can
limit a member’s group membership by issuing him
group signing keys which can only generate group sig-
natures valid for some periods of time.

• Retroactive public revokability and backward unlinka-
bility : At a time period i, the group manager can ex-
clude a group signing key starting from time period
j such that any signatures generated using this group
signing key after time period j become invalid to any
verifier. Moreover, all signatures generated using this
group signing key before time period j should still re-
main anonymous and unlinkable to everybody but the
group manager.

Finally the scheme should be efficient. In particular, the
signature size and key lengths should be independent of the
number of group members and the number of time peri-
ods during the lifetime of the public key. Furthermore, in
the scheme to support public revokability, the signature size
should be independent of the number of revoked members.

3. PRELIMINARIES
Our schemes rely on the strong RSA assumption [5, 22]

and the decisional Diffie-Hellman assumption [20, 7]. Let
n = pq be an RSA-like modulus and let G be a cyclic sub-
group of Z∗

n. The strong RSA assumption is that given n and
z ∈ G, it is computationally hard to find v ∈ G and e ∈ Z>1

such that z ≡ ve( mod n). Let G = 〈g〉 be a cyclic group
generated by g. The decisional Diffie-Hellman assumption
is that given g, gx, gy, and gz, it is computationally hard to
decide whether gxy and gz are equal.

We use several existing zero-knowledge proof protocols as
building blocks in our scheme. These zero-knowledge proto-
cols can be performed non-interactively using an ideal hash
function (a.k.a. the Fiat-Shamir heuristics [21]) and we refer
to the resulting constructs as signatures of knowledge [13].
Due to space limitation, we do not review the details of these
protocols here. We give the references to these protocols and
introduce the notations we use in the paper here. To sim-
plify the representation, we use PK to represent that the
protocol is a signature of knowledge protocol, Greek letters
to denote the secret knowledge that is being proved, and all
other parameters are known to the prover and the verifier.

• Signature of knowledge of the discrete logarithm:
Let G = 〈g〉 denote a group of prime order q and y ∈ G.
We use PK{(α) : y = gα}(m) to denote the signature
of knowledge of logg y in group G. This protocol was
designed by [29, 15] and shown to be zero-knowledge
in the auxiliary string model [19].

• Signature of knowledge of the discrete logarithm in
QRn:
Let n = pq, where p = 2p′ + 1, q = 2q′ + 1, and p, q, p′

and q′ are all primes. Let g be the generator of QRn,
and y ∈ QRn. We use PK{(α) : y = gα}(m) to denote
the signature of knowledge of logg y in group QRn [22].
In general, it is not easy to for the prover to prove
that y is a quadratic residue. So we use the protocol
PK{(α) : y2 = (g2)α} instead since logg2 y2 = logg y
in case y is a quadratic residue.

• Signature of knowledge of a representation:
Let PK{(α1, . . . , αv) : y = gα1

1 · · · gαv
v }(m) denote a

signature of knowledge of a representation of an ele-
ment y ∈ G with respect to bases g1, . . . , gv ∈ G [15].

• Signature of knowledge of equality of discrete loga-
rithm:
Let PK{(α) : y1 = gα ∧ y2 = hα}(m) denote a signa-
ture of knowledge of equality of discrete logarithms of
two group elements y1, y2 ∈ G to the bases g ∈ G and
h ∈ G [14, 17].

• Signature of knowledge of ranges:
Let PK{(α) : y = gα ∧ α ∈ [a, b]}(m) denote a sig-
nature of knowledge of a discrete logarithm of y ∈ G
with respect to g ∈ G such that logg y lies in the inte-
ger interval [a, b]. This protocol can be efficiently done
under the strong RSA assumption and if the prover is
not provided the factorization of the modulus [8].

4. FORWARD SECURE GROUP
SIGNATURE I

4.1 The Scheme

SETUP Procedure. The group manager (GM) chooses
two (�n/2)-bit primes p = 2p′+1 and q = 2q′+1 where p′ and
q′ are also primes. Set n := pq. GM also randomly chooses
elements a, d, g, g1 ∈R QRn, a secret element x ∈R Z∗

p′q′ ,
and set y := gx mod n. It stores (p, q, x) as its secret key
and publishes (n, a, d, g, g1, y) as the group public key. It
also divides the time during which the group public key is
valid into T time period and makes the time intervals public.

In the rest of the paper, we also use the following notation.
Let Γ and Λ denote integer intervals: Γ = (−2�Γ , 2�Γ), Λ =
(2�Λ , 2�Λ+1), where �Λ > T + �Γ + 2.

Intuition. The intuition of the scheme is as the following.
When a user U joins the group, he and GM randomly se-
lect xu ∈R Γ together such that U knows xu and GM only
knows yu := axu . The group manager then randomly selects

a prime eu ∈ Λ, computes cu,0 := (yud)1/(eu2T ) mod n, and
sends U (cu,0, eu). Thus (xu, cu,0, eu) is U ’s group signing
key. Under the strong RSA assumption, nobody can gen-
erate valid group signing keys except the group manager.
The group members then evolve group signing keys using
squaring as a public one-way function. In particular, U ’s
group signing key for time period i is (xu, cu,i, eu) where
cu,i = c2

u,i−1 mod n. To sign a message m for time pe-
riod i, U produces non-interactive proofs of knowledge that

he knows (xu, cu,i, eu) such that (c2T−i

ui
)eu = daxu , xu ∈ Γ,

and eu ∈ Λ, where the challenge in the non-interactive proof
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is dependent on m as in the standard Fiat-Shamir heuris-
tics [21]. To enable the OPEN procedure, the signer also
encrypts cu,i with the public key of the group manager and
produces the non-interactive proof that the encryption is of
the correct form. In case of a dispute, the group manager
can simply decrypt the value of cu,i to identify the actual
signer.

JOIN Procedure

1. When a user U joins the group, he first generates a
secret ru ∈R Γ, r1 ∈R {0, 1}2�n , and sends GM s1 :=
grugr1

1 . U proves to GM that s1 is formed correctly:

PK{(α, β) : s1 = gαgβ
1 }.

2. GM then randomly select rm ∈R Γ and send U rm.
U then computes xu = (ru + rm mod (2�Γ+1 − 1)) −
2�Γ + 1, yu = axu . U then sends GM yu.

U computes s2 = � ru+rm

2�Γ+1−1
	 and selects r2 ∈R {0, 1}2�n ,

sets s3 := gs2gr2
1 , and sends s3 to GM. Then U proves

to GM that yu is formed correctly:
PK{(α, β, γ, δ, ε, θ) : s1 = gαgβ

1 ∧ s3 = gγgδ
1 ∧

s1g
rm−2�Γ+1s

−(2�Γ+1−1)
3 = gεg1θ ∧ yu = aε}.

3. GM then randomly selects a prime eu ∈ Λ, computes

cu,0 := (yud)1/(eu2T ) mod n, and sends U (cu,0, eu).

U verifies that axud ≡ ceu2T

u,0 mod n. (cu,0, eu, xu) is
U ’s group signing key.

EVOLVE Procedure. Assume U has group signing key
(cu,j , eu, xu) at time period j. Then at time period j+1, his
group signing key becomes (cu,j+1, eu, xu), where cu,j+1 :=
c2

u,j mod n.

SIGN and VERIFY Procedures. Assume U has group
signing key (cu,j , eu, xu) at time period j. To sign a mes-
sage m in time period j, he first chooses r1 ∈R {0, 1}2�n ,
computes A = cu,jy

r1 , B = gr1 , and generates

PK{(α, β, δ, ε) : d2 = (A2T−j+1
)α(1/(a2))β(1/(y2))δ ∧

B2 = (g2)ε ∧ 1 = (B2T−j+1
)α(1/(g2))δ ∧β ∈ Γ∧α ∈ Λ}(m).

A verifier simply checks the validity of the above signature
of knowledge.

OPEN Procedure. In the event that the actual signer
must be subsequently identified (e.g., in case of a dispute),
GM first checks the validity of the signature via the VER-
IFY procedure, and then recover cu,0 (and thus the identity

of U) as cu,0 = (A/Bx)1/2j

mod n. GM also proves that

logg y = logB(A/(c2j

u,0) mod n).

4.2 Security Analysis
In this subsection we show that Scheme I is a secure group

signature scheme and satisfies weak forward security. We
state our theorems here and would like to refer the reader
to the appendix A for detailed proofs.

Lemma 1. PK{(α, β, δ, ε) : B2 = (g2)ε ∧
d2 = (A2T−j+1

)α(1/(a2))β(1/(y2))δ∧1 = (B2T−j+1
)α(1/(g2))δ

∧ β ∈ Γ∧ α ∈ Λ}(m) is a statistical zero-knowledge proof of
knowledge of the group membership key.

Lemma 2. In Scheme I, under the strong RSA assump-
tion, a group signing key for some time period t, (xu, eu, cu)

where xu ∈ Γ, eu ∈ Λ, and c2T−teu
u = daxu mod n, can only

be generated by the group manager given that the number of
group signing keys the group manager issues is polynomially
bounded.

Lemma 3. Scheme I satisfies weak forward security under
the strong RSA assumption and given that the number of
group signing keys the group manager issues is polynomially
bounded.

Corollary 1. In the random oracle model, Scheme I
is secure and satisfies the weak forward security under the
strong RSA assumption and the decisional Diffie-Hellman
assumption.

4.3 Time-Limited Group Membership
When a group member U joins at time period i, if he

only obtains the group signing key for that time period
(cu,i, eu, xu), then he can only generate group signatures
valid for time periods following time period i and not for
the time periods prior to time period i. Thus his group
membership is only valid for the time after he joined.

We can easily extend Scheme I to support a more general
form of time-limited group membership, i.e. a group mem-
ber is only allowed to sign on behalf of the group during a
limited time. The basic idea is to have two chains of the
group signing key. One chain evolves forward over time (as
in Scheme I) and the other chain backwards. Note that the
two chains share the same xu. A signer needs to know both
the signing key in the forward chain and the backward chain
for time period i to generate a signature valid for time period
i. Knowing the signing key for time period i in the forward
chain enables the signer to compute all the keys in the for-
ward chain after time period i, and knowing the signing key
for time period i in the backward chain enables the signer
to compute all the keys in the backward chain prior to time
period i. Therefore knowing the signing key for time period
i in the forward chain and the signing key for time period j
in the backward chain allow the member to sign documents
between time period i and j, given i < j. And the expence
of two chains is not much, i.e. the signature size is less than
double of the basic one-chain signature size.

4.4 Revocation
We can extend Scheme I to support retroactive revocation

with backward unlinkability. Let h be a generator in a cyclic
group of order n where the decisional Diffie Hellman prob-
lem is hard [9, 7]. When a group member U signs a message
in time period j with his group signing key (cu,j , eu, xu),
besides the basic SIGN procedure, U also does the follow-
ing. He randomly selects r ∈ Zn and compute g2 = hr,
C = g

cu,j

2 , and reveals (g2, C) which we call a revocation
token. U proves through signature of knowledge that g2 and
C are of the right form. When a user V is expelled from
the group starting from time period i, cv,i and i will be
published in the CRL. Assume a verifier has a signature for
time period j where j ≥ i and the revocation token in the
signature is (g′

2, C
′). To see whether the signing key has

been expelled, the verifier simply compute cv,j and check
whether C′ = (g′

2)
cv,j . If they equal, it means that the sig-

nature is revoked. In more detail, for U to sign a message
m in time period j, the protocol is as the following:
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U chooses r1 ∈R {0, 1}2�n , r2 ∈R Zn, computes A =
cu,jy

r1 , B = gr1 , g2 = hr2 , C = g
cu,j

2 , and generates
PK{(α, β, δ, ε, γ) : g2 = hγ ∧ B2 = (g2)ε ∧
d2 = (A2T−j+1

)α(1/(a2))β(1/(y2))δ∧1 = (B2T−j+1
)α(1/(g2))δ

∧ β ∈ Γ ∧ α ∈ Λ}(m),
and PK2{(η, θ) : A = ηyθ ∧ B = gθ ∧ C = gη

2}(m).
The first protocol PK is the same as in our original forward-

secure group signature scheme. The second protocol PK2 is
a new zero-knowledge proof protocol that we construct and
we explain the details in the appendix B.

It is clear that this scheme supports publicly-revokable
group membership. However, the backward unlinkability
property relies on a new cryptographic assumption which
we call log-square assumption: Let n be a product of two
safe primes as in Scheme I. Let G be a cyclic group of order
n where the decisional Diffie Hellman problem is hard, and
let g2 be a generator of G. Given a random v ∈R QRn, and
w = gu

2 ∈R G, it is computationally hard for an attacker
to decide whether v = u2 mod n without knowing the fac-
tor of n. Under this assumption, it is easy to see that our
scheme supports backward unlinkability. The cryptographic
assumption reduces to either factoring or discrete logarithm
problem. We conjecture this problem is hard although more
research still needs to be done to study this problem.

5. FORWARD SECURE GROUP
SIGNATURE II

5.1 The Scheme

SETUP Procedure. The SETUP procedure is almost the
same as in Scheme I. In addition to the SETUP procedure
in Scheme I, let Λi denote integer interval (2�Λ(1+i2�Λ/(T +
1)), 2�Λ(1 + (i + 1)2�Λ/(T + 1))), for 0 ≤ i ≤ T. The group
manager also specifies a deterministic one-way method such
that given a randomly chosen prime eu,i ∈ Λi, one can
generate a sequence of prime numbers eu,i, . . . , eu,T where
eu,j ∈ Λj , for i ≤ j ≤ T. Given only eu,j for some i ≤ j ≤ T ,
it is hard to compute backwards, i.e. eu,k for k < j.

Intuition. This forward secure group signature scheme is
similar to Scheme I in section 4 except that it uses a dif-
ferent one-way function to evolve the group signing keys.
When a user U joins the group, similarly to Scheme I, he
and GM randomly select xu ∈R Γ together such that U
knows xu and GM only knows yu := axu . The group man-
ager then randomly selects a prime eu,0 ∈ Λ0 which then
generates a sequence of prime numbers eu,i ∈ Λi, 0 ≤ i ≤ T .
Let bu =

∏
0≤i≤T eu,i. The group manager then computes

fu := (yud)1/(bu) mod n, and sends U (fu, eu,0). Thus from
(xu, fu, eu,0), U can derive his group signing key for each
time period. In particular, let v0 = fu, vi+1 = v

eu,i

i , w0 =∏
1≤i≤T eu,i, wi+1 = wi/eu,i+1. U ’s group signing key for

time period i is (xu, cu,i, eu,i) where cu,i = vwi
i mod n.

To sign a message m for time period i, U produces non-
interactive proofs of knowledge that he knows (xu, cu,i, eu,i)
such that c

eu,i

u,i = daxu , xu ∈ Γ, and eu,i ∈ Λi. To en-
able the OPEN procedure, the signer also encrypts cu,i with
the public key of the group manager and produces the non-
interactive proof that the encryption is of the correct form.
In case of a dispute, the group manager can simply decrypt
the value of cu,i to identify the actual signer.

JOIN Procedure. The JOIN procedure is the same as in
Scheme I except for the third step. In the third step, the
group manager randomly selects a prime eu,0 ∈ Λ0 which
then generates a sequence of prime numbers eu,i ∈ Λi, 0 ≤
i ≤ T . Let bu =

∏
0≤i≤T eu,i. The group manager then

computes fu := (yud)1/(bu) mod n, and sends U (fu, eu,0).
U computes bu from the given eu,0 and verifies that axud =
fbu

u mod n.

EVOLVE Procedure. Let v0 = fu, w0 =
∏

1≤i≤T eu,i. In

each time period i, U stores (vi, eu,i). To evolve in time pe-
riod i + 1, U computes eu,i+1, . . . , eu,T from eu,i and com-
putes vi+1 = v

eu,i

i , wi+1 = eu,i+2 · · · eu,T . Thus U ’s group
signing key for time period i + 1 is (xu, cu,i+1, eu,i+1) where
cu,i+1 = v

wi+1
i+1 mod n. And U update the storage (vi, eu,i)

to (vi+1, eu,i+1).

SIGN and VERIFY Procedures. Assume U has group
signing key (cu,j , eu,j , xu) at time period j. To sign a mes-
sage m in time period j, he first chooses r1 ∈R {0, 1}2�n ,
computes A = cu,jy

r1 , B = gr1 , and generates
PK{(α, β, δ, ε) : d2 = (A2)α(1/(a2))β(1/(y2))δ ∧
B2 = (g2)ε ∧ 1 = (B2)α(1/(g2))δ ∧ β ∈ Γ ∧ α ∈ Λj}(m).

A verifier simply checks the validity of the above signature
of knowledge.

OPEN Procedure. In the event that the actual signer
must be subsequently identified (e.g., in case of a dispute),
GM first checks the validity of the signature via the VER-
IFY procedure, and then recover cu,j (and thus the iden-
tity of U) as cu,j = (A/Bx) mod n. GM also proves that
logg y = logB(A/(cu,j) mod n).

5.2 Security Analysis
We show that Scheme II is a secure group signature scheme

and satisfies strong forward security. We state our theorems
here and would like to refer the reader to the appendix A
for detailed proofs.

Lemma 4. PK{(α, β, δ, ε) : d2 = (A2)α(1/(a2))β(1/(y2))δ

∧ B2 = (g2)ε ∧ 1 = (B2)α(1/(g2))δ ∧ β ∈ Γ ∧ α ∈ Λi}(m) is
a statistical zero-knowledge proof of knowledge of the group
membership key.

Lemma 5. In Scheme II, under the strong RSA assump-
tion, a group signing key for some time period t, (xu, eu,t, cu,t),
where c

eu,t
u,t = daxu mod n, xu ∈ Γ, and eu ∈ Λt, can only

be generated by the group manager given that the number of
group signing keys the group manager issues is polynomially
bounded.

Lemma 6. Under the strong RSA assumption, Scheme II
satisfies strong forward security given that the number of
group signing keys the group manager issues is polynomially
bounded.

Corollary 2. In the random oracle model, Scheme II
is secure and satisfies the strong forward security under the
strong RSA assumption and the decisional Diffie-Hellman
assumption.

5.3 Time-limited Group Membership
Using Scheme II, we can in fact support group member-

ship valid for any subset of the time periods with almost
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no overhead. For example, when user U joins the group, if
GM only wants to issue U group membership valid for time
periods t1, . . . , tm, then in step 3 instead of computing bu as
the product of the whole sequence eu,0, . . . , eu,T , GM com-
putes bu =

∏
1≤i≤m eu,ti and then compute fu = (yud)1/bu

mod n. Thus U can only sign on behalf the group in time
periods t1, . . . , tm with no extra overhead in secret storage
and computation time comparing to the basic Scheme II.

5.4 Revocation
Revocation in Scheme II is easy. When U signs with his

group membership (xu, eu,i, cu,i) in time period i, besides
the basic SIGN procedure in Scheme II, he also does the
following: he randomly generates an element g3 ∈ QRn and
reveals g3 and D = g

eu,i

3 and proves in zero-knowledge that
D is formed correctly. We call (g3, D) the revocation token
of the signature. More precisely, the new SIGN procedure
is as the following: U chooses r1 ∈R {0, 1}2�n , g3 ∈R QRn,
computes A = cu,iy

r1 , B = gr1 , D = g
eu,i

3 , and generates
PK{(α, β, δ, ε) : B2 = (g2)ε ∧ 1 = (B2)α(1/(g2))δ ∧
D2 = (g2

3)α ∧ d2 = (A2)α(1/(a2))β(1/(y2))δ ∧ β ∈ Γ
∧ α ∈ Λi}(m).

A verifier simply checks the validity of the above signature
of knowledge.

Now if the group manager wants to revoke U ’s signature
starting from time period i, he simply reveals eu,i and i. If
a user V obtained a signature for time period j ≥ i and
the revocation token of the signature is (g′, D′), to check
whether the signature is revoked, (i.e. it was signed by U),
V computes eu,j from eu,i and simply checks whether D′ =
(g′)eu,j . If they equal, it means the signature is revoked
because it is signed by U after time period i.

This revocation scheme supports retroactive public revo-
cation. It is easy to see that all signatures signed by other
members stay anonymous and unlinkable. This scheme also
supports backward unlinkability for the revoked member
with the assumption that DDH is hard, because without
knowing the exponents, given two revocation token in two
different signatures (g′, D′) and (g′′, D′′), if one can tell
whether logg′ D′ = logg′′ D′′, then he can solve the DDH
problem.

Moreover, with O(logT ) storage overhead, we can extend
Scheme II to allow a time-limited revocation, i.e. to re-
voke a group member’s signatures only during some periods
of time. The basic idea is that instead of generating the se-
quence eu,0, . . . , eu,T using a one-way chain, we can generate
the sequence using a top-down one-way tree. The squence
eu,0, . . . , eu,T forms the leaf nodes in the top-down one-way
tree. Knowing the root, one can generate the entire tree;
and knowing an internal node, one can generate the entire
subtree but not any other nodes in the tree. Thus, when the
group manager only wants to revoke a group member U ’s
signature from time period t1 to time period t2, he reveals
the internal nodes that serve as the roots of the subtrees
that cover the time periods from t1 to t2. Thus any user
can compute eu,i for t1 ≤ i ≤ t2 and therefore can check
whether a signature is revoked.

6. DISCUSSION
Our two forward secure group signature schemes are both

based on the group signature scheme proposed in [3] and
use different one-way function for evolving the group sign-
ing keys to achieve forward security. The two schemes have

different performance and security tradeoffs. Scheme I has
efficient EVOLVE procedure (only requiring a squaring),
although the signing and verification are less efficient (re-
quiring O(T ) squaring). Scheme II has efficient signing and
verification procedure and has no extra overhead compar-
ing to the non-forward-secure group signature scheme in [3].
But Scheme II has less efficient EVOLVE procedure (requir-
ing O(T ) exponentiations), although similar techniques as
in [24] can be used to reduce the overhead with a storage
space tradeoff. Scheme II can also achieve a more flexible
time-limited group membership than Scheme I. Scheme II
supports strong forward security and Scheme I can only be
proven satisfying weak forward security. Scheme II has a
much more efficient revocation mechanism than Scheme I
and requires no new cryptographic assumptions for security
while Scheme I requires a new assumption for revocation
with backward unlinkability. Note that both two schemes
also satisfy an interesting property that even if an attacker
learns a group member U ’s group signing key for time period
i, he still cannot identify which signatures generated before
time period i were generated by U , i.e. all U ’s signatures
before time period i still remain anonymous and unlinkable.

7. CONCLUSION
In this paper, we present our forward-secure group sig-

nature schemes. Our schemes satisfy forward security as
well as all the traditional security properties shared with
previous group signature schemes. Our schemes are effi-
cient in the sense that they are independent of the num-
ber of group members and the size of signatures and group
keys are independent on the number of time periods dur-
ing the lifetime of the group public key. In addition, we
extend our schemes to provide the first solutions to enable
retroactive-publicly-revokable group membership with back-
ward unlinkability and the signature size is independent of
the number of revoked members.

Our approach illustrates that forward security is a par-
ticularly important property for group signature schemes,
not only because the danger of the exposure of signing keys
escalates as the group size increases, but also because for-
ward security help enable other desired security properties
at little extra cost, such as time-limited group membership
and retroactive revocation. Our forward secure group signa-
ture schemes also have a side benefit that even if an attacker
learns a group member U ’s group signing key for time period
i, he still cannot identify which signatures generated before
time period i were generated by U , i.e. all U ’s signatures
before time period i still remain anonymous and unlinkable.
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APPENDIX

A. SECURITY ANALYSIS
We provide here the proofs of the lemmas stated in the

paper. The proofs are related to proofs in [3]. The proof for
Lemma 3 is similar to the proof in Lemma 2. The proofs for
Lemma 4 and 5 and are similar to the proofs in [3]. Corollary
1 and 2 can be easily proven from the lemmas. Therefore
we omit the proofs for Lemma 2, 4 and 5 and Corollary 1
and 2 here.

Lemma1. PK{(α, β, δ, ε) : d2 = (A2T−j+1
)α(1/(a2))β(1/(y2))δ

∧B2 = (g2)ε∧1 = (B2T−j+1
)α(1/(g2))δ∧β ∈ Γ∧α ∈ Λ}(m)

is a statistical zero-knowledge proof of knowledge of a group
signing key valid for time period j.

Proof sketch. It is easy to see that the protocol is sta-
tistical zero-knowledge. Now we show how to build a knowl-
edge extractor for the group signing key. Under the proper-
ties of the PK protocols and under the strong RSA assump-
tion, the knowledge extractor can produce values α, β, δ, ε
such that the statement after the colon holds. In particular
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from B2 = (g2)ε and 1 = (B2T−j+1
)α(1/(g2))δ, we get that

δ ≡ 2T−jαε mod ord(g). Furthermore, we have d2(a2)β =

(A2T−j+1
)α(1/(y2)δ = (A2/(y2)ε)2

T−jα. As β ∈ Γ, α ∈ Λ,
we see that (A2/(y2)ε, α, β, γ) is a valid group signing key
for time period j. Hence the signer must know a valid group
signing key for time period j.

Lemma 2. In Scheme I, under the strong RSA assumption,
a group signing key for some time period t, (xu, eu, cu) where

c2T−teu
u = daxu mod n and xu ∈ Γ, and eu ∈ Λ, can only

be generated by the group manager given that the number of
group signing keys the group manager issues is polynomially
bounded.

Proof sketch. Let M be an attacker that is allowed
to adaptively run the JOIN procedure and thereby obtain
group signing keys {(xi, ei, ci)}1≤i≤K where d = axicei

i mod n.
We show in the following that if M outputs a tuple (x̂, ê, ĉ, t)

with x̂ ∈ Γ, ê ∈ Λ, dax̂ = ĉ2T−tê mod n, and (x̂, ê) �= (xi, ei)
for all 1 ≤ i ≤ K, i.e. a new group signing key valid for time
period t, with non-negligible probability, then we can use
M to break the strong RSA assumption.

Given a pair (n, z), where n is the product of two safe
primes and z ∈ QRn and we would like to solve the strong
RSA problem, meaning we would like to find a pair (v, e) ∈
Zn ×Z>1 such that ve ≡ z mod n. We look for such a pair
(v, e) by repeatedly playing a random one of the following
two games with M.

Game 1.

1. Select v1, . . . , vK ∈R Γ and primes e1, . . . , eK ∈R Λ.

2. Let α =
∏

1≤i≤K ei, and a = z2T α mod n.

3. Choose r2 ∈R Γ, let d = ar2 mod n.

4. For 1 ≤ i ≤ K, let αi =
∏

1≤l≤K;l �=i el mod n, and

ci = z(vi+r2)αi mod n.

5. Select g ∈R QRn and publish (n, a, d, g, h) as the group
public key.

6. When M sends si = gx̃iht1 and asks for the corre-
sponding group signing key, we first extract x̃i from
the zero-knowledge proof. We then compute wi such
that vi = (wi + x̃i mod (2�Γ+1 − 1)) − 2�Γ + 1, and
send (ci, ei, wi) to M.

7. After K requests, M outputs a new group signing key

(x̂, ê, ĉ) valid for time interval t, i.e. dax̂ ≡ ĉ2T−tê

mod n. In particular, ĉ2T−tê ≡ z2T α(x̂+r2) mod n.
Because squaring is a permutation in QRn, we have

(ĉ2)ê ≡ z2t+1α(x̂+r2) mod n.

8. If gcd(ê, ej) �= 1 for some 1 ≤ j ≤ K, then output ⊥
and quit. Otherwise, Let ẽ := 2t+1(x̂ + r2). Because
gcd(ê, α) = 1, we have gcd(ê, αẽ) = gcd(ê, ẽ). By the
extended Euclidean algorithm, there exists σ, τ ∈ Z
s.t. σê + τ(ẽα) = gcd(ê, ẽ). Let v := zσ(ĉ2)τ mod n,
and e := ê/ gcd(ê, ẽ). We have ve ≡ z mod n. Because
ê ∈ Λ, and ẽ < 2T+1(2�Γ + 2�Γ) < 2�Λ , we have e > 1.
Therefore, (v, e) is a pair that solves the strong RSA
problem, i.e. ve ≡ z mod n and e > 1.

Game 2.
1. Select v1, . . . , vK ∈R Γ and primes e1, . . . , eK ∈R Λ.

2. Choose k ∈R {1, . . . , K}. Let α =
∏

1≤i≤K ei, βi =
∏

1≤l≤K;l �=i,k el mod n, for all 1 ≤ i ≤ K. In particular

βk =
∏

1≤l≤K;l �=k el mod n. Set a = z2T βk mod n.

3. Choose r1 ∈R Γ, let ck = zβkr1 mod n, d = (cek
k /zβkvk)2

T

mod n.

4. For all 1 ≤ j ≤ K, j �= k, compute cj = z(vj+ekr1−vk)βj

mod n.

5. Select g ∈R QRn and publish (n, a, d, g) as the public
key.

6. When M sends si = gx̃iht1 and asks for the corre-
sponding group signing key, we first extract x̃i from
the zero-knowledge proof. We then compute wi such
that vi = (wi + x̃i mod (2�Γ+1 − 1)) − 2�Γ + 1, and
send (ci, ei, wi) to M.

7. After K requests, M outputs a new group signing key

(x̂, ê, ĉ) valid for time period t, i.e. dax̂ ≡ ĉ2T−tê mod n.

In particular, ĉ2T−tê ≡ z2T βk(r1ek−vk+x̂) mod n.

8. If gcd(ê, ek) �= ek, then output ⊥ and quit. Oth-
erwise we have ê = ek because ê ∈ Λ. Therefore

(ĉ/c2t

k )2
T−tek = z2T βk(x̂−vk) mod n, and hence

(ĉ2/c2t+1

k )ek = z2t+1βk(x̂−vk) mod n. Let ẽ := 2t+1(x̂−
vk). Because gcd(ek, βk) = 1, we have gcd(ek, βkẽ) =
gcd(ek, ẽ). By the extended Euclidean algorithm, there
exists σ, τ ∈ Z s.t. σek + τ(ẽβk) = gcd(ek, ẽ). Let

v := zσ(ĉ2/(c2t+1

k ))τ mod n, and e := ek/ gcd(ek, ẽ).
We have ve ≡ z mod n. Because ek ∈ Λ, and ẽ <
2T+1(2�Γ +2�Γ) < 2�Λ , we have e > 1. Therefore, (v, e)
is a pair that solves the strong RSA problem, i.e. ve ≡ z
mod n and e > 1.

Consequently, we can use M to solve the strong RSA prob-
lem in expected running-time polynomial in K by playing
randomly Game 1 or Game 2 until the result is not ⊥. There-
fore no one but the group manager can generate group sign-
ing keys in our scheme under the strong RSA assumption.

Lemma 6. Under the strong RSA assumption, Scheme II
satisfies strong forward security given that the number of
group signing keys the group manager issues is polynomially
bounded.

Proof sketch. Let M be an attacker who can break
the strong forward security of Scheme II with non-negligible
probability. We show that we can use M to break the strong
RSA assumption.

Given a pair (n, z), where n is the product of two safe
primes and z ∈ QRn, we would like to solve the strong
RSA problem, meaning we would like to find a pair (v, e) ∈
Zn ×Z>1 such that ve ≡ z mod n. We look for such a pair
(v, e) by repeatedly playing a random one of the following
two games with M.

Game 1. We first randomly select primes
Φ = {e1,t1 , . . . , eK,tK} where ei,ti ∈ Λti .
Let α =

∏
1≤i≤K,ti≤wi≤T ei,wi where ei,wi represents the
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element for time period wi in the one-way chain generated
from ei,ti . Let a = zα mod n. Choose r ∈R Γ, and let
d = ar. For the i-th request, M asks for a group signing key
for some time period si at his will. We answer the request
by randomly selecting a eai,tai

∈ Φ such that tai = si and
eai,tai

has not been used to answer M’s previous requests.
If no such eai,tai

exists, then abort. Otherwise, we randomly

select xi ∈ Γ, and computes ci = z
(xi+r)α/(eai,tai

)
mod n

and reply M with (xi, ci, eai,tai
).

Assume after L requests, M outputs a valid group signing
key (x̃, c̃, ẽ) not in the span of the group signing keys from
his requests. If gcd(ẽ, eai,wai

) �= 1 for some 1 ≤ i ≤ L, tai ≤
wai ≤ T then abort. Otherwise, similar to the argument
shown in the previous proof, using the extended Euclidean
algorithm, one can break the strong RSA assumption, i.e.
find a pair (v, e) such that ve ≡ z mod n and e > 1.

Game 2.. We first randomly select primes
Φ = {e1,t1 , . . . , eK,tK} where ei,ti ∈ Λti .
Let α =

∏
1≤i≤K,ti≤wi≤T ei,wi where ei,wi represents the

element for time period wi in the one-way chain gener-
ated from ei,ti . We randomly select k ∈R {1, . . . , K}. Let
βi = α/ei,ti . Let a = zβk mod n. Choose r, xk ∈R Γ,
and let ck = ar mod n, d = arek,tk

−xk . For the i-th re-
quest, M asks for a group signing key for time period si.
We answer the request by randomly selecting a eai,tai

∈ Φ
such that tai = si and eai,tai

has not been used to an-
swer M’s previous requests. If no such eai,tai

exists, then
abort. Otherwise, we randomly select xi ∈ Γ, and com-

putes ci = z
(xi+rek,tk

−xk)βk/eai,tai mod n and reply M
with (xi, ci, eai,tai

).
Assume M outputs a valid group signing key (x̃, c̃, ẽ) not

in the span of the group signing keys from his requests. If
gcd(ẽ, ek,tk) �= ek,tk then abort. Otherwise, similar to the
argument shown in previous proof, using the extended Eu-
clidean algorithm, one can break the strong RSA assump-
tion, i.e. find a pair (v, e) such that ve ≡ z mod n and
e > 1.

Note that when the number of group signing keys issued
by the group manager is polynomially bounded, Game 1 or
Game 2 will succeed with non-negligible probability given
M.

B. OUR ZERO-KNOWLEDGE PROOF
PROTOCOL

We now explain the details of the zero-knowledge proof
protocol PK2{(α, β) : A = αyβ ∧ B = gβ ∧ C = gα

2 } we
used in section 4.4. This protocol is to show that given
values A, B ∈ QRn and C ∈ G, where g2 is a generator
of G which is a group of order n and in which the DDH
problem is hard, the prover knows (cu, r1, r2) such that A =
cuyr1 , B = gr1 , C = gcu

2 . The protocol repeats the following
protocol for sufficient times:

1. P select t1, t2, t3 ∈R Zn, t4 ∈R {0, 1}ε(�n+k)+1, and
compute E = At2 , a1 = gt1

2 , a3 = tt2
3 , a4 = gt4 , a5 = yt4

and send V (E, a1, a3, a4, a5)

2. V selects c2 ∈ {0, 1}k.

3. P computes b1 = t1 + c2cut3 mod n, b2 = t4 + c2r1.

4. V sends P c1 ∈ {0, 1}.
5. If c1 = 0, P sends V f0 = cut3 mod n; If c1 = 1, P

sends V f1 = t3 mod n.

6. • If c1 = 1, then V verifies g2
b1 = a1C

c2f1 , gb2 =
a4B

c2 . And P and V engage in a zero knowledge
proof, PK{(α) : a3 = fα

1 ∧ E = Aα}.
• If c1 = 0, then V verifies g2

b1 = a1g
c2f0
2 , gb2 =

a4B
c2 . And P and V engage in a zero knowledge

proof, PK{(α) : (Ea3)
c2 = (fc2

0 (y)b2(a5)
−1)α ∧

E = Aα}.

Lemma 7. PK2{(α, β) : A = αyβ ∧ B = gβ ∧ C = gα
2 } is

a zero-knowledge proof protocol.

Proof sketch. We first show the knowledge extractor.
Assume we can rewind the prover so that we give it two
different values c1 = 0 and c1 = 1 after the third step.
Thus gb1

2 = a1C
c2f1 = a1g

c2f0
2 . Assume C = gx1

2 , then f0 =
f1x1 mod n. From rewinding the second step, we get (x2)
such that B = gx2 . From rewinding the proof of knowledge
protocol in the verification step, we can get x4 such that
a3 = fx4

1 , E = Ax4 , and (Af1)
c2x4 = (f1x1y

x2)c2x4 . So A =
x1y

x2 .
We now show the simulation argument. The following

algorithm constitutes a simulator S for the output of any
verifier V .

1. S chooses c1 ∈R {0, 1}.
2. If c1 = 1, S randomly chooses b1, f1, t2, b2, a5 in their

appropriate ranges. S then also randomly chooses c2 ∈R

{0, 1}k, and computes a1 = gb1
2 (Cc2f1)−1, a3 = f t2

1 , E =
At2 , a4 = gb2B−c2 .

If c1 = 0, S randomly chooses b1, b2, t2, t3, f0 from their
appropriate ranges. S then also randomly chooses c2 ∈R

{0, 1}k, and computes a1 = gb1
2 (gc2f0

2 )−1, E = At2 ,
a3 = tt2

3 , a4 = fc2
0 hb2A−c2t−c2

3 , a4 = gb2B−c2 ,
a5 = yb2fc2

0 (At3)
−c2 .

3. S runs V , sends it the generated values (E, a1, a3, a4, a5)
and receives a c′2.

4. If c′2 = c2, then S sends the generated values (b1, b2) to
V and receives a c′1. Otherwise S continues with Step
1.

5. If c′1 = c1, then S sends f0 if c′1 = 0 or f1 if c′1 = 1,
and completes the verification step with V . Otherwise
S continues with Step 1.

By construction, the output of the simulator is statistically
distributed to the output of the verifier. Hence if we choose
k = Θ(poly(�)) then the protocol is zero-knowledge.
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