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Abstract

It is widely believed that content-signature-based intru-
sion detection systems (IDSes) are easily evaded by poly-
morphic worms, which vary their payload on every infec-
tion attempt. In this paper, we present Polygraph, a sig-
nature generation system that successfully produces signa-
tures that match polymorphic worms. Polygraph gener-
ates signatures that consist of multiple disjoint content sub-
strings. In doing so, Polygraph leverages our insight that
for a real-world exploit to function properly, multiple in-
variant substrings must often be present in all variants of
a payload; these substrings typically correspond to proto-
col framing, return addresses, and in some cases, poorly
obfuscated code. We contribute a definition of the poly-
morphic signature generation problem; propose classes of
signature suited for matching polymorphic worm payloads;
and present algorithms for automatic generation of signa-
tures in these classes. Our evaluation of these algorithms on
a range of polymorphic worms demonstrates that Polygraph
produces signatures for polymorphic worms that exhibit low
false negatives and false positives.

1. Introduction and Motivation

Enabled by ever-more pervasive Internet connectivity, an
increasing variety of exploitable vulnerabilities in software,
and a lack of diversity in the software running on Internet-
attached hosts, Internet worms increasingly threaten the
availability and integrity of Internet-based services.

Toward defending against Internet worms (and other at-
tacks), the research community has proposed and built in-
trusion detection systems (IDSes) [20, 21]. A network ad-
ministrator deploys an IDS at the gateway between his edge
network and the Internet, or on an individual end host. The
IDS searches inbound traffic for known patterns, or signa-

tures, that correspond to malicious traffic. When such mali-
cious traffic is found, the IDS may raise an alarm; block fu-
ture traffic from the offending source address; or even block
the remainder of the offending flow’s traffic. To date, to
detect and/or block Internet worm flows, IDSes use signa-
tures that match bytes from a worm’s payload, using match-
ing techniques including string matching at arbitrary pay-
load offsets [20, 21]; string matching at fixed payload off-
sets [21]; and even matching of regular expressions within
a flow’s payload [20].

It is natural to ask where the signature databases for
IDSes come from. To date, signatures have been generated
manually by security experts who study network traces af-
ter a new worm has been released, typically hours or days
after the fact. Motivated by the slow pace of manual sig-
nature generation, researchers have recently given attention
to automating the generation of signatures used by IDSes
to match worm traffic. Systems such as Honeycomb [14],
Autograph [13], and EarlyBird [22] monitor network traf-
fic to identify novel Internet worms, and produce signatures
for them using pattern-based analysis,1 i.e., by extracting
common byte patterns across different suspicious flows.

These systems all generate signatures consisting of a sin-
gle, contiguous substring of a worm’s payload, of sufficient
length to match only the worm, and not innocuous traffic.
The shorter the byte string, the greater the probability it
will appear in some flow’s payload, regardless of whether
the flow is a worm or innocuous. Thus, these signature gen-
eration systems all make the same underlying assumptions:
that there exists a single payload substring that will remain
invariant across worm connections, and will be sufficiently
unique to the worm that it can be used as a signature without
causing false positives.

Regrettably, the above payload invariance assumptions
are naı̈ve, and give rise to a critical weakness in these previ-

1TaintCheck recently proposed a new approach, semantic-based auto-
matic signature generation [18]. We discuss this further in Section 8.



ously proposed signature generation systems. A worm au-
thor may craft a worm that substantially changes its payload
on every successive connection, and thus evades matching
by any single substring signature that does not also occur
in innocuous traffic. Polymorphism techniques2, through
which a program may encode and re-encode itself into suc-
cessive, different byte strings, enable production of chang-
ing worm payloads. It is pure serendipity that worm au-
thors thus far have not chosen to render worms polymor-
phic; virus authors do so routinely [17, 24]. The effort re-
quired to do so is trivial, given that libraries to render code
polymorphic are readily available [3, 10].

It would seem that given the imminent threat of polymor-
phic worms, automated signature generation, and indeed,
even filtering of worms using human-generated signatures,
are doomed to fail as worm quarantine strategies. In this
paper, we argue the contrary: that it is possible to gener-
ate signatures automatically that match the many variants of
polymorphic worms, and that offer low false positives and
low false negatives. This argument is based on a key insight
regarding the fundamental nature of polymorphic worms as
compared with that of polymorphic viruses. Polymorphic
viruses are executables stored locally on a host, invoked by
a user or application. As such, their content may be entirely
arbitrary, so long as when executed, they perform the oper-
ations desired by the author of the virus. That is, a poly-
morphic generator has free reign to obfuscate all bytes of
a virus. In sharp contrast, to execute on a vulnerable host,
a worm must exploit one or more specific server software
vulnerabilities.

In practice, we find that exploits contain invariant bytes
that are crucial to successfully exploiting the vulnerable
server. Such invariant bytes can include protocol framing
bytes, which must be present for the vulnerable server to
branch down the code path where a software vulnerabil-
ity exists; and the value used to overwrite a jump target
(such as a return address or function pointer) to redirect
the server’s execution. Individually, each of these invariant
byte strings may cause false positives. Thus, in our work,
we explore automatic generation of signature types that in-
corporate multiple disjoint byte strings, that used together,
yield low false positive rates during traffic filtering. These
signature types include conjunctions of byte strings, token
subsequences (substrings that must appear in a specified or-
der, a special case of regular expression signatures, matched
by Bro and Snort), and Bayes-scored substrings.

Our contributions in this work are as follows:

Problem definition: We define the signature generation
problem for polymorphic worms.

Signature generation algorithms: We present Polygraph,

2Throughout this paper, we refer to both polymorphism and metamor-
phism as polymorphism, in the interest of brevity.

a suite of novel algorithms for automatic generation of sig-
natures that match polymorphic worms.

Evaluation on real polymorphic worms: We use several
real vulnerabilities to create polymorphic worms; run our
signature generation algorithms on workloads consisting of
samples of these worms; evaluate the quality (as measured
in false positives and false negatives) of the signatures pro-
duced by these algorithms; and evaluate the computational
cost of these signature generation algorithms.

We proceed in the remainder of the paper as follows.
In Section 2, we first provide evidence of the existence of
invariant payload bytes that cannot be rendered polymor-
phic using examples from real exploits, to motivate several
classes of signature tailored to match disjoint invariant byte
strings. We continue in Section 3 by setting the context in
which Polygraph will be used, and stating our design goals
for Polygraph. Next, in Section 4, we describe Polygraph’s
signature generation algorithms, before evaluating them in
Section 5. We discuss possible attacks against Polygraph in
Section 6; discuss our results in Section 7; review related
work in Section 8; and conclude in Section 9.

2. Polymorphic Worms: Characteristics and
Signature Classes

To motivate Polygraph, we now consider the anatomy of
polymorphic worms. We refer to a network flow containing
a particular infection attempt as an instance or sample of a
polymorphic worm. After briefly characterizing the types
of content found in a polymorphic worm, we observe that
samples of the same worm often share some invariant con-
tent due to the fact that they exploit the same vulnerability.
We provide examples of real-world software vulnerabilities
that support this observation. Next, we demonstrate that
a single, contiguous byte string signature3 cannot always
match a polymorphic worm robustly. Motivated by the in-
sufficiency of single substring signatures and the inherent
structure in many exploits, we identify a family of signa-
ture types more expressive than single substrings that better
match an exploit’s structure. While these signature types
are more complex than single substring signatures, and thus
computationally costlier to generate and match, they hold
promise for robust matching of polymorphic worms.

2.1. Exploits and Polymorphism

Within a worm sample, we identify three classes of
bytes. Invariant bytes are those fixed in value, which if
changed, cause an exploit no longer to function. Such bytes

3For brevity, we hereafter refer to such signatures as single substring
signatures.



are useful as portions of signatures. Wildcard bytes are
those which may take on any value without affecting the
correct functioning of a worm—neither its exploit nor its
code. Finally, code bytes are the polymorphic code executed
by a worm, that are the output of a polymorphic code en-
gine. Typically, the main worm code will be encrypted un-
der a different key in each worm sample. Execution starts at
a small decryption routine, which is obfuscated differently
in each worm sample. The degree of variation in code bytes
from worm sample to worm sample depends on the quality
of the polymorphic obfuscator used—a poor polymorphic
obfuscater may leave long regions of bytes unchanged be-
tween the code instances it outputs, whereas a more aggres-
sive one may leave nearly no multi-byte regions in common
across its outputs. In this work, we do not depend on weak-
nesses of current code obfuscators to be able to generate
quality signatures. Instead, we render worms to be perfectly
polymorphic, by filling in code bytes with values chosen
uniformly at random. We will also show that the current
generation of polymorphic obfuscators actually do produce
invariant byte sequences in their output, which means that
we should be able to generate even higher quality signatures
for worms that use these real-world code obfuscators.

2.2. Invariant Content in Polymorphic Exploits

If a vulnerability requires that a successful exploit con-
tain invariant content, that content holds promise for use
in signatures that can match all variants of a polymorphic
worm. But to what extent do real vulnerabilities have this
property? We surveyed over fifteen known software vul-
nerabilities, spanning a diverse set of operating systems and
applications, and found that nearly all require invariant con-
tent in any exploit that can succeed. We stress that we do
not claim all vulnerabilities share this property—only that
a significant fraction do. We now describe the two chief
sources of invariant content we unearthed: exploit framing
and exploit payload.

Invariant Exploit Framing A software vulnerability ex-
ists at some particular code site, along a code path exe-
cuted upon receiving a request from the network. In many
cases, the code path to a vulnerability contains branches
whose outcome depends on the content of the received re-
quest; these branches typically correspond to parsing of the
request, in accordance with a specific protocol. Thus, an
exploit typically includes invariant framing (e.g., reserved
keywords or well known binary constants that are part of
a wire protocol) essential to exploiting a vulnerability suc-
cessfully.

Invariant Overwrite Values Exploits typically alter the
control flow of the victim program by overwriting a jump
target in memory with a value provided in the exploit, ei-
ther to force a jump to injected code in the payload, or to

force a jump to some specific point in library code. Such
exploits typically must include an address from some small
set of narrow ranges in the request. In attacks that redirect
execution to injected code, the overwritten address must
point at or near the beginning of the injected code, mean-
ing that the high-order bytes of the overwritten address are
typically invariant. A previous study of exploits contains a
similar observation [19]. Attacks that redirect execution to
a library also typically select from a small set of candidate
jump targets. For example, CodeRed causes the server to
jump to an address in a common Windows DLL that con-
tains the instruction call ebx. For this technique to be
stable, the address used for this purpose must work for a
range of Windows versions. According to the Metasploit
op-code database, there are only six addresses that would
work across Windows 2000 service packs zero and one [4].

2.3. Examples: Invariant Content in Polymorphic
Worms

We manually identified the invariant content for exploits
of a range of vulnerabilities by analyzing server source code
(when available), and by studying how current exploits for
the vulnerabilities work. We now present six of the vulner-
abilities and exploits that we studied to illustrate the exis-
tence of invariant content in polymorphic worms, even with
an ideal polymorphic engine. We also present our analysis
of the output of one of the polymorphic generators, to show
how close the current generators are to the ideal.

Apache multiple-host-header vulnerability First, we con-
sider the hypothetical payload of a polymorphic worm
structured like the payload of the Apache-Knacker ex-
ploit [9], shown in Figure 1. This exploit consists of a GET
request containing multiple Host headers. The server con-
catenates the two Host fields into one buffer, leading to an
overflow. This exploit contains several invariant protocol
framing strings: “GET”, “HTTP/1.1”, and “Host:” twice.
The second Host field also contains an invariant value used
to overwrite the return address.

BIND TSIG vulnerability Next, we consider the Lion
worm [5]. We constructed a polymorphic version of the
Lion worm, shown in Figure 2. The Lion worm payload
is a DNS request, and begins with the usual DNS proto-
col header and record counts, all of which may be varied
considerably across payloads, and are thus wildcard bytes;
only a single bit in the header must be held invariant for
the exploit to function—the bit indicating that the packet
is a request, rather than a response. Next come two ques-
tion entries. The second contains an invariant value used
to overwrite a return address (also encoded in a QNAME).
Finally, to take the vulnerable code path in the server, the
exploit payload must include an Additional record of type
TSIG; this requirement results in three contiguous invariant
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Figure 2. BIND TSIG vulnerability, as ex-
ploited by the Lion worm. Shading as for
Apache vulnerability.

bytes near the end of the payload.

Slapper The Slapper worm [1] exploits a heap buffer over-
run vulnerability in Apache’s mod ssh module. Note that
the attack takes place during the initial handshake, meaning
that it is not encrypted. It is a two-part attack; It first uses
the overrun to overwrite a variable containing the session-id
length, causing the server to leak pointer values. This part
must contain the normal protocol framing of a client-
hello message, as well as the value used to overwrite the
variable (0x70).

In the second part of the attack, another session is
opened, and the same buffer is overrun. This time, the
leaked data is patched in, allowing the exploit to perform
a longer buffer overrun while still not causing the server to
crash. The heap metadata is overwritten in such a way as to
later cause the GOT entry of free to be overwritten with
a pointer to the attacker’s code, placed previously on the
heap. Thus, there is an invariant overwrite value that points
to the attacker’s code, and another that points to the GOT
entry for free. An aggressively polymorphic worm may
try to target other GOT entries or function pointers as well.
However, there will still only be a relatively small number
of values that will work.

SQLSlammer The SQLSlammer [2] exploit must begin
with the invariant framing byte 0x04 in order to trigger the

vulnerable code path. It uses a buffer overrun to overwrite
a return address with a pointer to a call esp instruction
contained in a common Windows DLL. There are only a
small number of such values that work across multiple win-
dows versions.

CodeRed The CodeRed [6] exploit takes advantage of a
buffer overflow when converting ASCII to Unicode. The
exploit must be a GET request for a .ida file. The
value used to overwrite the return address must appear
later in the URL. CodeRed overwrites the return address
to point to call esp. There are only a small number of
such pointers that will work across multiple Windows ver-
sions. Hence, the exploit must contain the invariant proto-
col framing string “GET”, followed by “.ida?”, followed by
a pointer to call esp.

AdmWorm The AdmWorm [7] exploits BIND via a buffer
overrun. Unlike the other exploits described here, there are
no invariant protocol framing bytes in this exploit. How-
ever, there is still an invariant value used to overwrite a re-
turn address.

eb 2d 59 31 d2 b2 20 8b 19 c1 c3 0e

81 f3 81 68 44 b3 c1 c3 0a c1 c3 19 c1 c3

11 89 19 81 e9 ff ff ff ff 41 41 41 80 ea

02 4a 4a 74 07 eb d8 e8 ce ff ff ff 0b

Figure 3. Output by Clet polymorphic engine
includes invariant substrings. Boxed bytes
are found in at least 20% of Clet’s outputs;
shaded bytes are found in all of Clet’s out-

puts.

Clet polymorphic engine Figure 3 shows a sample output
by the Clet polymorphic code engine [10].4 The output con-
sists of encrypted code, which is completely different each
time, and a decryption routine that is obfuscated differently
each time. In order to determine how effective the Clet ob-
fuscation is, we generated 100 Clet outputs for the same
input code, and counted substrings of all lengths in com-
mon among the decryption routines in these 100 outputs.
Strings that were present in all 100 outputs appear with
shaded backgrounds; those that were present in at least 20
outputs, but fewer than all 100, appear boxed. Clearly, Clet
produces substrings that are entirely invariant across pay-
loads, and other substrings that occur in a substantial frac-
tion of payloads. However, upon examining the Clet source

4We also evaluated the ADMmutate [3] polymorphic engine. We
present Clet as the more pessimal case, as it produced less invariant content
than the ADMmutate engine.



code, it seems likely that the obfuscation engine could be
improved significantly, reducing the number of substrings
in common between Clet outputs.

2.4. Substring Signatures Insufficient

As described previously, the pattern-based signature
generation systems proposed to date [14, 13, 22] gener-
ate single substring signatures, found either in reassembled
flow payloads, or individual packet payloads. These sys-
tems thus make two assumptions about worm traffic:

• A single invariant substring exists across payload in-
stances for the same worm; that is, the substring is
sensitive, in that it will match all worm instances.5

• The invariant substring is sufficiently long to be spe-
cific; that is, the substring does not occur in any non-
worm payloads destined for the same IP protocol and
port.

Can a sensitive and specific single substring signature
be found in the example payloads in the Apache and DNS
exploits described in Section 2.3? Consider the Apache ex-
ploit. The unshaded bytes are wildcards, and cannot be re-
lied upon to provide invariant content; note that even the
NOP slide can contain significantly varying bytes across
payloads, as many instruction sequences effectively may
serve as NOPs. If we assume a strong code obfuscator, we
cannot rely on there being an invariant substring longer than
two bytes long in the obfuscated decryption routine, shown
with light shading. The only invariant bytes are the heavily
shaded ones, which are pieces of HTTP protocol framing,
and a return address (or perhaps a two-byte prefix of the
return address, if the worm is free to position its code any-
where within a 64K memory region). Clearly, the HTTP
protocol framing substrings individually will not be spe-
cific, as they can occur in both innocuous and worm HTTP
flows. By itself, even the two-to-four-byte return address
present in the payload is not sufficiently specific to avoid
false positives; consider that a single binary substring of
that length may trivially occur in an HTTP upload request.
As we show in our evaluation in Section 5, we have exper-
imentally verified exactly this phenomenon; we have found
return address bytes from real worm payloads in innocuous
flows in HTTP request traces taken from the DMZ of Intel
Research Pittsburgh.

The Lion worm presents a similar story: the heavily
shaded invariant bytes, the high-order bytes of the return

5It is possible that a worm’s content varies only very slightly across in-
stances, and that at least one of a small, constant-cardinality set of substring
signatures matches all worm instances. We view this case as qualitatively
the same as that where worm content is invariant, and focus our attention
herein on worms whose content varies to a much greater extent, such that
a small set of substring signatures does not suffice to match all variants.

address, and TSIG identifier, two and three bytes long, re-
spectively, are too short to be specific to the Lion worm.
As we show in our evaluation in Section 5, we found false
positives when searching for those substrings in DNS traf-
fic traces from a busy DNS server that is a nameserver for
top-level country code domains.

We conclude that single substring signatures cannot
match polymorphic worms with low false positives and low
false negatives.

2.5. Signature Classes for Polymorphic Worms

Motivated by the insufficiency of single substring sig-
natures for matching polymorphic worms robustly, we now
propose other signature classes that hold promise for match-
ing the particular invariant exploit framing and payload
structures described in this section. All these signatures are
built from substrings, or tokens. The signature classes we
investigate in detail in Section 4 include:

Conjunction signatures A signature that consists of a set
of tokens, and matches a payload if all tokens in the set are
found in it, in any order. This signature type can match the
multiple invariant tokens present in a polymorphic worm’s
payload, and matching multiple tokens is more specific than
matching one of those tokens alone.

Token-subsequence signatures A signature that consists
of an ordered set of tokens. A flow matches a token-
subsequence signature if and only if the flow contains the
sequence of tokens in the signature with the same order-
ing. Signatures of this type can easily be expressed as
regular expressions, allowing them to be used in current
IDSes [20, 21]. For the same set of tokens, a token sub-
sequence signature will be more specific than a conjunc-
tion signature, as the former makes an ordering constraint,
while the latter makes none. Framing often exhibits order-
ing; e.g. the TSIG record in the Lion worm, which must
come last in the payload for the exploit to succeed, and the
return address, which must therefore come before it.

Bayes signatures A signature that consists of a set of to-
kens, each of which is associated with a score, and an over-
all threshold. In contrast with the exact matching offered by
conjunction signatures and token-subsequence signatures,
Bayes signatures provide probabilistic matching—given a
flow, we compute the probability that the flow is a worm us-
ing the scores of the tokens present in the flow. If the result-
ing probability is over the threshold, we classify the flow to
be a worm. Construction and matching of Bayes signatures
is less rigid than for conjunction or token-subsequence sig-
natures. This provides several advantages. It allows Bayes
signatures to be learned from suspicious flow pools that
contain samples from unrelated worms, and even innocu-
ous network requests. (We show that the other signature
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generation algorithms can be adapted to deal with these sit-
uations effectively, but at a higher computational cost). It
also helps to prevent false negatives in cases where a token
is observed in all samples in the suspicious flow pool, but
does not actually appear in every sample of the worm. This
issue is further discussed in Section 6.

3. Problem Definition and Design Goals

We now consider the context in which we envision Poly-
graph will be used, both to scope the problem we consider in
this paper, and to reveal challenges inherent in the problem.
Having defined the problem, we then offer design goals for
Polygraph.

3.1. Context and Architecture

Figure 4 depicts a typical deployment of a Polygraph
monitor, shown as the shaded region, which incorporates
the Polygraph signature generator. In this paper, we con-
cern ourselves with the detailed design of algorithms for
the Polygraph signature generator. We now give a brief
overview of the remaining pieces of a Polygraph monitor, to
provide context for understanding how the Polygraph signa-
ture generator fits into an end-to-end system.

We envision that a Polygraph monitor observes all net-
work traffic, either at a monitoring point such as between
an edge network and the Internet, or at an end host. In this
work, we consider only a single monitor instance at a single
site.6 Monitored network traffic passes through a flow clas-
sifier, which reassembles flows into contiguous byte flows,
and classifies reassembled flows destined for the same IP
protocol number and port into a suspicious flow pool and
an innocuous flow pool. Flow reassembly (including traf-
fic normalization) at a monitor has been well studied in the
IDS research community [20]; we defer a discussion of the
liabilities of conducting flow reassembly to Section 6.

6While we believe that extending Polygraph to work distributedly
holds promise for reasons explored in previous signature generation sys-
tems [13], we leave such extensions to future work.

There is a rich literature on methods for identifying
anomalous or suspicious traffic. Previous signature gener-
ation systems have used inbound honeypot traffic [14] or
port scan activity [13] to identify suspicious flows. Far
more accurate techniques are also available, such as moni-
toring the execution of a server to detect exploits at run time,
and mapping exploit occurrences to the network payloads
that caused them, as is done in run-time-detection-based
methods [18]. These current techniques are not suitable for
blocking individual infection attempts, either because they
are too inaccurate or too slow, but they are suitable for use
in a flow classifier for Polygraph. The design of flow clas-
sifiers is outside the scope of this paper, but we assume as
we design and evaluate algorithms for the Polygraph signa-
ture generator that a flow classifier will be imperfect—that
it may misclassify innocuous flows as suspicious, and vice-
versa. Such misclassified flows increase the difficulty of
avoiding the generation of signatures that cause false pos-
itives; we refer to such innocuous flows in the suspicious
flow pool as noise.

Another challenge in generating high-quality signatures
is that we presume the flow classifier does not distinguish
between different worms (though some classifiers may be
able to help do so [18]); it simply recognizes all worms as
worms, and partitions traffic by destination port. Thus, the
suspicious flow pool for a particular destination port may
contain a mixture of different worms—that is, worms that
are not polymorphic variants based on the same exploit. For
example, a single edge network may include hosts running
different HTTP server implementations, each with different
vulnerabilities. In such a case, different worm payloads in
the suspicious flow pool for port 80 observed at the DMZ
may contain different exploits. As we describe in our de-
sign goals, the signature generation algorithm should pro-
duce high-quality signatures, even when the suspicious flow
pool contains a mixture of different worms.

In the simplest possible setting, signature generation
works as a single pass: the Polygraph signature generator
takes a suspicious flow pool and an innocuous flow pool as
input, and produces a set of signatures as output, chosen to
match the worms in the input suspicious flow pool, and to
minimize false positives, based on the innocuous flow pool.
However, we believe that incorporating feedback, whereby
the Polygraph signature generator is provided information
concerning the false positives and false negatives caused by
signatures it has previously generated, can significantly im-
prove signature quality and allow Polygraph to adapt to at-
tacks that change over time.

3.2. Problem Definition for Polygraph Signature
Generator

In the remainder of this paper, we focus on the signature
generation algorithms in the Polygraph signature generator.



We now formally define the signature generation problem,
and introduce terminology and notation used in subsequent
exposition.

The signature generation algorithm is given a training
pool containing a suspicious flow pool where each flow is
labeled as a worm flow, and an innocuous flow pool where
each flow is labeled as a non-worm. Note that these labels
are not necessarily accurate. In particular, the suspicious
pool may contain some innocuous flows. We refer to in-
nocuous flows in the suspicious flow pool as noise.

The signature generation algorithm then produces a set
of signatures. We state that the signature set causes a false
positive for a flow if it is not a worm, but one or more sig-
natures in the signature set matches it. If a network flow is
a worm, but no signature in the signature set classifies the
payload as a worm, we state that the signature set causes a
false negative for that network flow.

3.3. Design Goals

Polygraph7 must meet several design goals to work ef-
fectively:

Signature quality. Our end-to-end goal in Polygraph, as
has been the case in prior worm signature generation sys-
tems, is to generate signatures that offer low false positives
for innocuous traffic and low false negatives for worm in-
stances, including polymorphic worm instances.

Efficient signature generation. The signature types pro-
posed in Section 2.5 are more complex than the single sub-
string signatures generated automatically by today’s signa-
ture generation systems. To the extent possible, we seek to
minimize the computational cost of signature generation in
the size of the suspicious flow pool. Thus, we seek efficient
algorithms for signature generation.

Efficient signature matching. Each signature type also in-
curs a different computational cost during matching against
network traffic. We characterize these matching costs for
each signature type, to argue for the tractability of filtering
using these more complex signatures.

Generation of small signature sets. Some constraint must
be made on the number of signatures Polygraph generates
to match a suspicious flow pool. In the extreme case, Poly-
graph might generate one signature for each polymorphic
payload. Clearly, such behavior does not qualify as gen-
erating a signature that matches a polymorphic worm. We
seek to minimize the number of signatures Polygraph gen-
erates for a suspicious flow pool, without sacrificing signa-
ture quality (causing false positives). Such sets of signatures
cost less bandwidth to disseminate, and cost less to match
at traffic filtering time.

7For the remainder of the paper, we refer to the Polygraph signature
generator as Polygraph, in the interest of brevity.

Robustness against noise and multiple worms. A suc-
cessful signature generator must generate high-quality sig-
natures on workloads that contain noise or a mixture of
different worms on the same destination port. If the sys-
tem cannot find a fully general signature that matches all
worms in the pool and does not cause false positives, it
should instead generate multiple signatures, each of which
matches some subset of flows in the suspicious flow pool
(most likely a subset that employ the same exploit), and
such that the set of signatures together exhibits low false
positives and low false negatives.

Robustness against evasion and subversion. An adver-
sary who knows the design of Polygraph may attempt to
evade or subvert the system. Several well known attacks
against IDS systems may be mounted against Polygraph,
but there are novel attacks specific to Polygraph as well.
An adversary may, for example, evolve a worm’s payload
over time, in an effort to cause signatures previously gener-
ated by Polygraph to cease matching the worm. We con-
sider several evasion and subversion strategies an adver-
sary might adopt in Section 6, and describe defenses against
them.

4. Signature Generation Algorithms

In this section, we will describe our algorithms for auto-
matically generating signatures of different classes includ-
ing conjunction signatures, token subsequence signatures,
and Bayes signatures. For ease of explanation, we first con-
sider the problem of generating one signature that matches
every sample (or most of the samples) in the suspicious flow
pool. However, when the suspicious flow pool has noise or
contains a mix of different worms (or a worm with different
attack vectors), generating one signature that matches every
flow is not always possible or will result in low-quality sig-
natures. In Section 4.3, we will show how these algorithms
can be adapted to handle the cases when there is noise and
when there are multiple worms in the suspicious pool, by
generating a set of signatures where each signature in the set
only matches part of the suspicious pool and the set of sig-
natures together match the samples in the suspicious pool.

Many of the algorithms described in this section are
based on algorithms found in [11].

4.1. Preprocessing: Token Extraction

We define a token to be a contiguous byte sequence.
Each signature in the signature classes that we consider is
made up of one or more such tokens. Here we discuss al-
gorithms for extracting and analyzing tokens, which will be
used in our algorithms for creating signatures.

As a preprocessing step before signature generation, we
extract all of the distinct substrings of a minimum length



α that occur in at least K out of the total n samples in the
suspicious pool. By distinct, we mean that we do not want
to use a token that is a substring of another token, unless it
occurs in at least K out of n samples not as a substring of
that token. For example, suppose one of the substrings oc-
curring in at least K out of the n samples is “HTTP”. “TTP”
is not a distinct substring unless it occurs in at least K of the
n samples, not as a substring of “HTTP”.

There is a well-known algorithm to find the longest sub-
string that occurs in at least K of n samples [12], in time lin-
ear in the total length of the samples. That algorithm can be
trivially modified to return a set of substrings that includes
all of the distinct substrings that occur in at least K out of
n samples, but also includes some of the non-distinct sub-
strings, in the same time bound. We can then prune out the
non-distinct substrings and finally output the set of tokens
for use in signature generation.

Token extraction can be viewed as a first step toward
eliminating the irrelevant parts of suspicious flows. After
the token extraction, we can simply represent each suspi-
cious flow as a sequence of tokens, and remove the rest of
the payload.

4.2. Generating Single Signatures

We next describe our algorithms that automatically gen-
erate a single signature that matches all (or most of) the
suspicious flow pool. Note that this approach of forcing all
(or most of) the suspicious flow pool to be matched using
a single signature is not resilient against noise or when the
suspicious flow pool contains a mixture of different worms.
We present our full algorithms to address these issues in
Section 4.3.

4.2.1. Generating Conjunction Signatures

A conjunction signature consists of an unordered set of to-
kens, where a sample matches the signature if and only if
it contains every token in the signature. To generate one
conjunction signature matching every sample in the pool,
we can simply use the token extraction algorithm described
above to find all the distinct tokens that appear in every sam-
ple of the suspicious pool. The signature is then this set of
tokens. The running time of the algorithm is linear in the
total byte length of the suspicious pool.

4.2.2. Generating Token-Subsequence Signatures

A token-subsequence signature is an ordered list of tokens.
A sample matches a token-subsequence signature if and
only if the subsequence of tokens is in the sample. To gen-
erate a token-subsequence signature, we want to find an or-
dered sequence of tokens that is present in every sample in
the suspicious pool. We begin by showing how to find the

signature from two samples, and then show how we can use
that algorithm to find a token-subsequence signature for any
number of samples.

A subsequence of two strings is a sequence of bytes
that occur in the same order in both strings, though not
necessarily consecutively. For example, in the strings
“xxonexxxtwox” and “oneyyyyytwoyy”, the longest com-
mon subsequence is “onetwo”. The problem of finding the
longest common subsequence of two strings can be framed
as a string alignment problem. That is, given two strings,
we wish to align them in such a way as to maximize the
number of characters aligned with a matching character.
The alignment that gives the longest subsequence in the pre-
vious examples is:
x x o n e x x x - - t w o x -

- - o n e y y y y y t w o y y
This alignment can be described by the regular expression
“.*one.*two.*”.

Note that the longest subsequence does not maximize
consecutive matches, only the total number of matches. For
example, consider the strings “oxnxexzxtwox” and “ytwoy-
oynyeyz”. The alignment corresponding to the longest sub-
sequence is:
- - - - - o x n x e x z x t w o x
y t w o y o y n y e y z - - - - -
This results in the signature “.*o.*n.*e.*z.*”. However,
in this case we would prefer to generate the signature
“.*two.*”, which corresponds to the alignment:
o x n x e x z x t w o x - - - - - - -

- - - - - - - y t w o y o y n y e y z
Although the second alignment produces a shorter subse-
quence, the fact that all the bytes are contiguous produces
a much better signature. (We can use the technique in Ap-
pendix A to show that the first signature has a 54.8% chance
of matching a random 1000-byte string, while the second
signature has only a .0000595% chance). Thus, we need to
use a string alignment algorithm that prefers subsequences
with contiguous substrings.

We use an adaptation of the Smith-Waterman [23] al-
gorithm to find such an alignment. An alignment is as-
signed a score by adding 1 for each character that is aligned
with a matching character, and subtracting a gap penalty Wg

for each maximal sequence of spaces and/or non-matching
characters.8 That is, there is a gap for every “.*” in the re-
sulting signature. However, we do not count the first and
the last “.*”, which are always present. In our experiments,
we set Wg to 0.8 (We used the technique in Appendix A to
help choose this value, based on minimizing the chance of
the resulting signature matching unrelated strings). Using
these parameters, the score for the alignment producing the
signature “.*o.*n.*e.*z.*” has a value of 4− 3 ∗ .8 = 1.6,

8This differs from the common definition of a gap, which is a maximal
sequence of spaces.



while the score for the alignment producing the signature
“.*two.*” has a value of 3−0∗ .8 = 3. Hence, the latter sig-
nature would be preferred. The Smith-Waterman algorithm
finds the highest-scoring alignment between two strings in
O(nm) time and space, where n and m are the lengths of the
strings.9

We generate a signature that matches every sample in the
suspicious pool by finding a subsequence of tokens that is
present in each sample. We find this by iteratively applying
the string-alignment algorithm just described. After each
step, we replace any gaps in the output with a special gap
character γ, and find the best alignment between it and the
next sample. Note that this algorithm is greedy, and could
reach a local minimum. To help reduce this risk, we first use
the token extraction algorithm to find the tokens present in
every sample, and then convert each sample to a sequence
of tokens separated by γ. This helps prevent an early align-
ment from aligning byte sequences that are not present in
other samples. It also has the added benefit of reducing the
lengths of the strings, and hence the running time of the
Smith-Waterman pairwise comparisons.

If the suspicious pool consists of s samples, each n bytes
long, the running time is O(n) to perform the token extrac-
tion, plus O(sn2) to perform the alignments.

4.2.3. Generating Bayes Signatures

The conjunction and token-subsequence classes of signa-
tures assume that the distinction between worms and in-
nocuous flows involves an exact pattern of a set of tokens.
However, the distinction between worms and innocuous
flows may instead be a difference in the probability dis-
tributions over sets of tokens that may be present. Thus,
given two different distributions over sets of tokens (e.g.,
for worms and innocuous flows), we could classify a flow
by the distribution from which its token set is more likely
to have been generated. This type of signature allows for
probabilistic matching and classification, rather than for ex-
act matches, and may be more resilient to noise and changes
in the traffic.

We study the naı̈ve Bayes classifier as a first step toward
exploring this class of signatures. This model is character-
ized by the following independence assumption: the prob-
ability of a token being present in a string, when the string
is known to be a worm or an innocuous string, is indepen-
dent of the presence of other tokens in the string. This as-
sumption often holds approximately in many practical sce-
narios, and is simple enough to allow us to focus on the
important question, i.e., how such a probabilistic matching
scheme compares to the exact matching schemes. In addi-
tion, a naı̈ve Bayes classifier needs far fewer examples to

9Hirchberg’s algorithm can reduce the space bound to O(m), where m
is the length of the longer string.

approach its asymptotic error, in comparison to many other
models; thus, it will yield very good results when it is used
with an extremely large number of dimensions (i.e. tokens,
in our case) and a moderately sized suspicious pool. In fu-
ture work, we can easily relax this independence assump-
tion and extend the naı̈ve Bayes model to other more com-
plex Bayesian models to allow more complex dependencies
in the presence of sets of tokens.

As in the conjunction and subsequence signature gen-
eration, the first step in generating a Bayes signature is to
choose the set of tokens to use as features, as described
in Section 4.1. Assume that we have a set of n tokens,
{Ti}1≤i≤n, from the preprocessing step. Thus, a flow x could
be denoted with a vector (x1, . . . ,xn) in {0,1}n, where the
ith bit xi is set to 1 if and only if the ith token Ti is present
somewhere in the string.

We then calculate the empirical probability of a token
occurring in a sample given the classification of the sample
(a worm or not a worm), i.e., for each token Ti, we compute
the probability that the token Ti is present in a worm flow,
denoted as ti, and the probability that the token Ti is present
in an innocuous flow, denoted as si. We calculate ti sim-
ply as the fraction of samples in the suspicious flow pool
that the token Ti occurs in. We estimate si, the probability
of a token occurring in innocuous traffic, by measuring the
fraction of samples it appears in the innocuous pool, and by
calculating it using the technique described in Appendix A.
We use whichever value is greater, in an effort to minimize
the risk of false positives.

Given a sample x, let L(x) denote the true label of x,
i.e., L(x) = worm denotes x is a worm, and L(x) =∼ worm
denotes x is not a worm. Thus, to classify a sample x =
(x1, . . . ,xn), we wish to compute Pr[L(x) = worm|x] and
Pr[L(x) =∼ worm|x].

To calculate Pr[L(x) = worm|x], we use Bayes law.

Pr[L(x) = worm|x]

=
Pr[x|L(x) = worm]

Pr[x]
Pr[L(x) = worm]

From the independence assumption of the naı̈ve Bayes
model, we can compute this as follows:

=
Pr[L(x) = worm]

Pr[x] ∏
1≤i≤n

Pr[xi = 1|L(x) = worm].

We only need to estimate the quantity Pr[L(x)=worm|x]
Pr[L(x)=∼worm|x]

(i.e., if this is greater than 1, then the x is more likely to have
been generated by a worm, and vice-versa).

Pr[L(x) = worm|x]
Pr[L(x) =∼ worm|x]

=
Pr[L(x) = worm] ·∏1≤i≤n Pr[xi = 1|L(x) = worm]

Pr[L(x) =∼ worm] ·∏1≤i≤n Pr[xi = 1|L(x) =∼ worm]



To calculate the result, we need to find a value to use
for Pr[L(x) = worm], i.e., the probability that any partic-
ular flow is a worm. This value is difficult to determine,
and changes over time. We simply set Pr[L(x) = worm] =
Pr[L(x) =∼worm] = .5. Since false positives are often con-
sidered more harmful than false negatives, we set a thresh-
old so that the classifier reports positive only if it is suf-
ficiently far away from the decision boundary. Given a de-
sired maximum false positive rate, the value of the threshold
to use is automatically set by running the classifier on the
innocuous traffic pool and the suspicious traffic pool, and
selecting a threshold that minimizes the “negative” classi-
fications in the suspicious traffic pool while achieving no
more than the maximum false positive rate in the innocuous
traffic pool.

In practice, we transform the formula above such that
each token is assigned a score based on the log of its term in
the formula. To classify a sample, the scores of the tokens
it contains are added together. If a token is present in a
sample multiple times, it is counted only once. If the total
score is greater than the threshold, the sample is classified
as a worm. This transformation allows the signatures to
be more human-understandable than if we were to use the
probability calculations directly.

4.3. Generating multiple signatures

In a practical deployment, the suspicious flow pool could
contain more than one type of worm, and could contain
innocuous flows (as a result of false positives by the flow
classifier). In these cases, we would like for Polygraph to
still output a signature, or set of signatures, that matches
the worms found in the suspicious pool, and does not match
innocuous flows.

We show that the Bayes generation algorithm can be
used unmodified even in the case of multiple worms or
noise in the pool. However, for the token subsequence and
conjunction algorithms, we must perform clustering. With
clustering, the suspicious flow pool is divided into several
clusters, where each cluster contains similar flows. The sys-
tem then outputs a signature for each cluster, by using the
algorithms previously described to generate a signature that
matches every flow in a cluster.

Clearly, the quality of the clustering is important for gen-
erating good signatures. First, the clusters should not be too
general. If we mix flows from different worms into the same
cluster, or mix flows of worms and noise in the same clus-
ter, the resulting signature may be too general and exhibit a
high false positive rate. Second, the clusters should not be
too specific. If flows of the same worm are separated into
different clusters, the signatures for each cluster may be too
specific to match other flows of the worm.

We choose to adapt a widely-used clustering method,
hierarchical clustering [11], to our problem setting. Hi-

erarchical clustering is relatively efficient, does not need
to know the number of clusters beforehand, and can be
adapted to match our semantics. We next describe the de-
tails of how we use hierarchical clustering in Polygraph.

Hierarchical Clustering. Each cluster consists of a set of
flows, and a signature generated using that set. Given s
flows, we begin with s clusters, each containing a single
flow. At this point, the signature for each cluster is very
specific. It matches exactly the one flow in that cluster.

The next step is to iteratively merge clusters. Whenever
two clusters are merged, the signature generation algorithm
being used is run again on the combined set of samples to
produce a new, more sensitive signature for the new cluster.

We decide which two of the clusters to merge first by
determining what the merged signature would be for each of
the O(s2) pairs of clusters, and using the innocuous pool to
estimate the false positive rate of that signature. The lower
the false positive rate is, the more specific the signature is.
The more specific the signature is, the more similar are the
two clusters. Hence, we merge the two clusters that result
in the signature with the lowest false positive rate. After
each merge, we compute what the merged signature would
be between the new cluster and each of the remaining O(s)
clusters. We always choose whichever pair of the current
clusters results in the signature with the lowest false positive
rate to merge next.

Merging stops when the signature resulting from merg-
ing any two clusters would result in an unacceptably high
false positive rate, or when there is only one cluster remain-
ing. The system then outputs the signature for each of the
remaining clusters that has enough samples in it to be likely
to be general enough. As we show in Section 5, a cluster
should contain at least 3 samples to be general enough to
match other samples of the worm. The cost of this algo-
rithm is to compute O(s2) signatures.

Note that our method for generating signatures with clus-
tering is a greedy approach for finding the best signatures.
As is well-known in the literature, a greedy approach may
reach local minimum instead of global minimum. For ex-
ample, two flows from different worms may have some co-
incidental similarity, causing them to be merged into a sin-
gle cluster during an early round of the algorithm, possibly
preventing the ideal clustering (and set of signatures) from
being found. However, due to the complexity of the prob-
lem, a greedy approach is worthwhile, since it offers re-
duced computational cost compared to an exhaustive search
of possible clusterings.

5. Evaluation

In our experiments, we evaluate the performance of each
Polygraph signature generation algorithm under several sce-
narios. We first consider the simple case where the suspi-



cious flow pool contains only flows of one worm. We next
consider the case where the flow classifier is imperfect, re-
sulting in innocuous requests present in the suspicious flow
pool along with the flows from one worm. Last, we con-
sider the most general case, in which the suspicious flow
pool contains flows from multiple worms, and from innocu-
ous requests.

5.1. Experimental Setup

We describe our experimental setup below. In all our ex-
periments, we set the token-extraction threshold k = 3 (de-
scribed in Section 4.1), the minimum token length α = 2,
and the minimum cluster size to be 3. We conduct 5 in-
dependent trials for each experiment, and report the 2nd
worst value for each data point (e.g., the 80th percentile).
All experiments were run on desktop machines with 1.4
GHz Intel R© Pentium R© III processors, running Linux ker-
nel 2.4.20.

Polymorphic workloads. We generate signatures for poly-
morphic versions of three real-world exploits. The first two
exploits, the Apache-Knacker exploit (described in Section
2) and the ATPhttpd exploit10 use the text-based HTTP pro-
tocol. The third exploit, the BIND-TSIG exploit, uses the
binary-based DNS protocol.

In our experiments, we show that Polygraph generates
high quality signatures for both HTTP exploits and the DNS
exploit, even with an ideal polymorphic engine. In order to
simulate an ideal polymorphic engine, we fill wildcard and
code bytes for each exploit with values chosen uniformly at
random. For the HTTP exploits, we also include randomly
generated headers of random length, which do not affect the
functioning of the exploit.

Network traces. We used several network traces as input
for and to evaluate Polygraph signature generation. For our
HTTP experiments, we used two traces containing both in-
coming and outgoing requests, taken from the perimeter of
Intel Research Pittsburgh in October of 2004. We used a
5-day trace (45,111 flows) as our innocuous HTTP pool.
We used a 10-day trace (125,301 flows), taken 10 days after
the end of the first trace, as an evaluation trace. The eval-
uation trace was used to measure the false positive rate of
generated signatures. In experiments with noisy suspicious
pools, noise flows were drawn uniformly at random from
the evaluation pool.

We also used a 24-hour DNS trace, taken from a DNS
server that serves a major academic institution’s domain,
and several CCTLDs. We used the first 500,000 flows from
this trace as our innocuous DNS pool, and the last 1,000,000
flows as our evaluation trace.

10In this ATPhttpd exploit, the attacker provides a long URL in a GET
request, which is used to overwrite the return address on the server, trans-
ferring control to the attacker’s code.

5.2. Experimental Results

We describe our experimental results below.

5.2.1. Single Polymorphic Worm

We first consider the case where the suspicious flow pool
contains only flows from one worm. In these experiments,
we want to determine what signatures Polygraph would find
for each worm, how accurate these signatures are (e.g., how
many false positives and false negatives they cause), and
how many worm samples are necessary to generate a qual-
ity signature. If there are too few worm samples in the sus-
picious flow pool, the resulting signatures will be too spe-
cific, because they will incorporate tokens that those sam-
ples have in common only by coincidence, but that do not
appear in other samples of the worm. For each exploit, we
run our signature generation algorithms using different sus-
picious pools, of size ranging from 2 to 100 worm samples.

Signature Quality. Tables 1 and 2 show our results for
the Apache-Knacker and BIND-TSIG exploits. For sake of
comparison, we also evaluate the signatures based on the
longest common substring, and the most specific common
substring (that is, the one that results in the fewest false pos-
itives) for each worm.11 Token-subsequence signatures are
shown in regular expression notation. The Bayes signatures
are a list of tokens and their corresponding scores, and the
threshold decision boundary, which indicates the score nec-
essary for a flow to match the signature.

The conjunction and token-subsequence signatures gen-
erated by Polygraph exhibit significantly fewer false posi-
tives than ones consisting of only a single substring. For the
Apache-Knacker exploit, the subsequence signature pro-
duces a lower false positive rate than the conjunction signa-
ture, which is expected since the ordering property makes
it more specific. For both exploits, the Bayes signature is
effectively equivalent to the best-substring signature. This
is reasonable for the Apache-Knacker exploit, since all but
one of the tokens occurs very frequently in innocuous traf-
fic. For the BIND-TSIG exploit, the Bayes signature would
be equivalent to the conjunction signature if the matching
threshold were set slightly higher. We hypothesize that this
would have happened if we had specified a lower maximum
false positive rate (we used .001%). It also would have hap-
pened if the best substring occurred equally often in the in-
put innocuous pool as in the evaluation trace.

Number of Worm Samples Needed. For each algorithm,
the correct signature is generated 100% of the time for all
experiments where the suspicious pool size is greater than 2,
and 0% of the time where the suspicious pool size is only 2.

11We do not propose an algorithm to find such a substring
automatically—we simply measure the result of using each substring and
report the best one.



Class False + False − Signature
Longest Substring 92.5% 0% HTTP/1.1\r\n

Best Substring .008% 0% \xFF\xBF

Conjunction .0024% 0%
‘GET ’, ‘ HTTP/1.1\r\n’, ‘: ’, ‘\r\nHost: ’,

‘\r\n’, ‘: ’, ‘\r\nHost: ’, ‘\xFF\xBF’, ‘\r\n’
Token

Subsequence
.0008% 0%

GET .* HTTP/1.1\r\n.*: .* \r\nHost: .*
\r\n.*: .*\r\nHost: .*\xFF\xBF.*\r\n

Bayes .008% 0%
‘\r\n’: 0.0000, ‘: ’: 0.0000, ‘\r\nHost: ’: 0.0022,

‘GET ’: 0.0035, ‘ HTTP/1.1\r\n’: 0.1108,
‘\xFF\xBF’: 3.1517. Threshold: 1.9934

Table 1. Apache-Knacker signatures. These signatures were successfully generated for innocuous
pools containing at least 3 worm samples.

Class False + False − Signature
Longest Substring .3279% 0% \x00\x00\xFA

Best Substring .0023% 0% \xFF\xBF
Conjunction 0% 0% ‘\xFF\xBF’, ‘\x00\x00\xFA’

Token Subsequence 0% 0% \xFF\xBF.*\x00\x00\xFA

Bayes .0023% 0%
‘\x00\x00\xFA’: 1.7574, ‘\xFF\xBF’: 4.3295

Threshold: 4.2232

Table 2. BIND-TSIG signatures. These signatures were successfully generated for innocuous pools
containing at least 3 worm samples.

The signatures generated using 2 samples are too specific,
and cause 100% false negatives.

5.2.2. Single Polymorphic Worm Plus Noise

Next we show that Polygraph generates quality signatures
even if the flow classifier misclassifies some flows, result-
ing in innocuous flows in the suspicious flow pool. In these
experiments, we use hierarchical clustering with our con-
junction and token subsequence algorithms. Ideally, one or
more signatures will be generated that match future samples
of the polymorphic worm, and no signatures will be gener-
ated from the innocuous traffic that will result in false posi-
tives. We also demonstrate that Bayes does not require hier-
archical clustering, even when there are innocuous flows in
the suspicious pool. In each of these experiments, we use 5
flows from a polymorphic worm, while varying the number
of additional innocuous flows in the suspicious flow pool.

False Negatives For the conjunction and token-
subsequence signatures, Polygraph generates a cluster
containing the worm flows, and no other flows. The signa-
tures for these clusters are the same signatures generated in
the case with no noise, and produce 0% false negatives.

The Bayes signatures are not affected by noise until it

grows beyond 80%, at which point the signatures cause
100% false negatives. This is because we are only using
a token as a feature in the Bayes signature if it occurs in
at least 20% of the suspicious flow pool.12 This parameter
can be adjusted to allow Bayes to generate signatures with
higher noise ratios.

False Positives Figures 5(a) and 5(b) show the additional
false positives (that is, not including those generated by the
correct signatures) that result from the addition of noise.
In the HTTP case, when there is sufficiently high noise,
there are also clusters of innocuous flows that result in sig-
natures. That is, the clustering algorithm interprets simi-
lar noise flows that are dissimilar from flows in the innocu-
ous pool as other worms in the pool. We hypothesize that
this occurs because our HTTP traces come from a relatively
small site. That is, a more diverse innocuous pool would al-
low the algorithm to determine that the resulting signatures
cause too many false positives and should not be output.

Again, once the ratio of noise grows beyond the 80%
threshold, Bayes does not use any tokens from the actual
worm flows as part of its signature. Instead, the signa-
ture consists only of tokens common to the innocuous noise

12We do this to minimize the number of tokens that are only coinciden-
tally in common between flows being used as part of the signature.
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Figure 5. False positives due to noise in suspicious pool.

flows, resulting in false positives.

5.2.3. Multiple Polymorphic Worms Plus Noise

Finally, we examine the fully general case: that in which
there are flows from more than one polymorphic worm, and
misclassified innocuous flows in the suspicious flow pool.
We evaluate Polygraph on a suspicious flow pool contain-
ing 5 flows from the Apache-Knacker polymorphic worm; 5
from the ATPhttpd polymorphic worm, and a varying quan-
tity of noise flows. Ideally, Polygraph should generate a
signature that covers each polymorphic worm, and not gen-
erate any signatures that cover the innocuous flows.

False Negatives. Our results in this case are similar to those
with one HTTP worm plus noise. We observe that Poly-
graph generates conjunction and token-subsequence signa-
tures for each of the two polymorphic worms. Bayes gen-
erates a single signature that matches both worms. The sig-
natures generated by each algorithm generate 0% false neg-
atives, except for Bayes once the fraction of noise flows in-
creases beyond 80%, at which point it has 100% false neg-
atives.

False Positives. Figure 5(c) shows that the false positive
behavior is very similar to when there is only one type of
worm in the suspicious pool. Once again, the signatures
generated by each algorithm have no false positives until
there are a large number of noise samples in the suspicious
pool.

5.2.4. Runtime Performance Overhead

Without clustering, all of our signature generation tech-
niques generate a signature very quickly. For example,
when training on 100 samples in our Apache-Knacker eval-
uation, the conjunction signature, the token subsequence
signature, and the Bayes signature are each computed in
under 10 seconds. The cost of signature generation grows

with the square of the number of samples when using hier-
archical clustering. However, we still find that the run-times
are reasonable, even with our unoptimized implementation.
When training on 25 samples, the conjunction and subse-
quence signatures with hierarchical clustering are generated
in under ten minutes.

The performance of our signature generation algorithms
can be improved with optimizations. Additionally, some of
our algorithms can be parallelized (especially hierarchical
clustering), allowing the signature generation time to be re-
duced significantly by using multiple processors.

6. Attack Analysis

In this section, we analyze potential attacks on Poly-
graph, and propose countermeasures. Note that some at-
tacks are not unique to Polygraph. For example, resource
utilization attacks are common to all stateful IDSes, and
previous work addresses these issues. In addition, eva-
sion attacks are common to network-based IDSes, and tech-
niques such as normalization have been proposed to defend
against them. We do not discuss these more general attacks
here; We focus on Polygraph-specific attacks.

Overtraining Attacks: The conjunction and token-
subsequence algorithms are designed to extract the most
specific signature possible from a worm. An attacker may
attempt to exploit this property to prevent the generated sig-
nature from being sufficiently general.

We call one such attack the coincidental-pattern attack.
Rather than filling in wildcard bytes with values chosen uni-
formly at random, the attacker selects from a smaller distri-
bution. The result is that there tend to be many substrings
coincidentally in common in the suspicious pool that do not
actually occur in every sample of the worm.

We evaluate Polygraph’s resilience to this attack by mod-
ifying the Apache-Knacker exploit to set each of the ap-
proximately 900 wildcard bytes to one of only two values.
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Figure 6. Number of worm samples required
when under ‘coincidental-pattern’ attack.

We used between 2 and 50 samples generated in this way in
Polygraph’s suspicious pool, and another 1000 generated in
this way to measure the false negative rates.

Figure 6 shows the false negative rates of Polygraph’s
signatures generated for this attack. Bayes is resilient to the
attack, because it does not require every one of the com-
mon tokens to be present to match. However, the conjunc-
tion and subsequence algorithms need a greater number of
worm samples than before to create a sufficiently general
signature.

Another concern is the red herring attack, where a worm
initially specifies some fixed tokens to appear within the
wildcard bytes, causing them to be incorporated into sig-
natures. Over time, the worm can stop including these
tokens, thus causing previously produced signatures to no
longer match. Again, Bayes should be resilient to this at-
tack, because it does not require every token in its signature
to be present to match a worm flow. For the other signa-
ture classes, the signature must be regenerated each time
the worm stops including a token.

Innocuous Pool Poisoning: After creating a polymorphic
worm, an attacker could determine what signatures Poly-
graph would generate for it. He could then create otherwise
innocuous flows that match these signatures, and try to get
them into Polygraph’s innocuous flow pool. If he is suc-
cessful, then the worm signature will seem to cause a high
false positive rate. As a result, the signature may not be
generated at all (when using clustering), or the system may
conclude that the signature is insufficiently specific.

This problem can be addressed in several ways. One way
is for Polygraph to collect the the innocuous pool using a
sliding window, always using a pool that is relatively old
(perhaps one month). The attacker must then wait for this
time period between creating a worm and releasing it. In

the case of a non-zero-day exploit, a longer window gives
time for other defenses, such as patching the vulnerability.

Another defense is to deploy distributed Polygraph mon-
itors, each using a locally collected innocuous pool. This
would make it significantly more difficult for the attacker to
poison all innocuous pools. It also offers other added ben-
efits, such as decreasing the time needed to detect a new
worm.

Long-tail Attack: Matching on network flows is tricky, be-
cause we cannot examine the entire flow at once—we must
let packets through. Sometimes an exploit could have al-
ready occurred by the time we see a full signature match.
For the token-subsequence signature, it may be desirable
to prune off the end of the signature, and keep just enough
to ensure few false positives. For a Bayes signature, the
flow can be matched before we see every token in the signa-
ture. In either case, it may also be desirable to buffer/throttle
streams that are in the middle of a partial match.

7. Discussion

We have presented three classes of signatures, and an
algorithm to generate signatures for each class. The ques-
tion remains—which algorithm and signature class should
be used?

All three signature classes have advantages and disad-
vantages. The token-subsequence signature class produces
ordered signatures that are more specific than the equivalent
unordered conjunction signatures. However, some exploits
may contain invariants that can appear in different orders.
In that case, the token-subsequence signature will consist of
only the tokens that appear in a consistent order, and may
actually be less specific than a conjunction signature for the
same worm. The Bayes signature class can be generated
more quickly than the others, and is more useful when there
are tokens that only appear some of the time.

All three algorithms are promising, but no one algorithm
is superior to the others for every worm. The most resilient
approach for using these algorithms is to consider all three,
and use the signature that appears to have the fewest false
positives and false negatives.

8. Related Work

The Bro [20] and Snort [21] IDSes monitor network traf-
fic, and search the monitored traffic for signatures of known
worms and other intrusions; Polygraph solves the comple-
mentary problem of how to provide the signature database
required by an IDS automatically. We note that both Bro
and Snort support matching regular expression signatures
in reassembled TCP flows, and thus already support match-
ing the token subsequence signatures generated by Poly-



graph. Shield [26] uses manually generated vulnerability-
based signatures to filter out attack flows on a host. These
vulnerability-based signatures could be effective against
polymorphic worms, however, they need to be manually
generated.

Honeycomb [14], Autograph [13], and EarlyBird [22] all
generate signatures for novel worms automatically. While
these three systems produce signatures by different means,
they share a common signature type: a single, contiguous
string. As discussed in Section 2.4, these signatures often
fail to match polymorphic worm payloads robustly.

TaintCheck [18] is a tool for automatic exploit detec-
tion and signature generation. Besides being able to de-
tect very accurately when monitored software is exploited,
it proposes a novel method for automatic signature gen-
eration, semantic-based signature generation—instead of
the pattern-based signature generation methods in Honey-
Comb [14], EarlyBird [22], Autograph [13], and Polygraph,
which is based on extracting common patterns in sample
flows, TaintCheck proposes to automatically generate sig-
natures using information about the vulnerability and how
it is exploited. As a first step, TaintCheck demonstrated
how to automatically extract values used to overwrite the
high-order bytes of the jump target and use that as an in-
variant part of a signature. Extensions to such semantic-
based signature generation could be used to identify other
invariant parts for signatures such as protocol framing [18].
Semantic-based signature generation could serve as a com-
plimentary approach for signature generation for polymor-
phic worms.

Finally, the problem of motif-finding in computational
biology is reminiscent of that of finding a signature for a
polymorphic worm: given long strings, find extremely sim-
ilar short strings (motifs) contained in them [16, 8, 27, 28].
The underlying assumption in motif-finding, however, is
that differences in non-motif regions of the strings are
changes caused by random perturbations that occur at a sig-
nificantly lower rate in the motif regions.

9. Conclusion

The growing consensus in the security community is
that polymorphic worms portend the death of content-based
worm quarantine—that no sensitive and specific signatures
may exist for worms that vary their content significantly
on every infection. We have shown, on the contrary, that
content-based filtering holds great promise for quaran-
tine of polymorphic worms—and moreover, that Polygraph
can derive sensitive and specific signatures for polymor-
phic worms automatically. We observe that it is the rigid-
ity of many software vulnerabilities that enables matching
of polymorphic worms by fixed signatures; exploits fre-
quently must incorporate invariant byte sequences in order

to function correctly. We have defined the signature gen-
eration problem for polymorphic worms; provided exam-
ples that illustrate the presence of invariant content in poly-
morphic worms; proposed conjunction, token-subsequence,
and Bayes signatures classes that specifically target match-
ing polymorphic worms’ invariant content; and offered and
evaluated Polygraph, a suite of algorithms that automati-
cally derive signatures in these classes. Our results indi-
cate that even in the presence of misclassified noise flows,
and multiple worms, Polygraph generates high-quality sig-
natures. We conclude that the rumors of the demise of
content-based filtering for worm quarantine are decidedly
exaggerated.
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A. Token Distinguishability

We find that it is useful to estimate how likely a token
is to appear in innocuous network traffic. This information
can be used as a relative measure of how distinguishing one
token is compared to another. That is, given two tokens that
appear in worm samples equally as often, the one that ap-
pears in innocuous traffic less often is more distinguishing
than the other. Such information can also be used to help
estimate the false positive rate of a signature.

One often-used heuristic is that, in general, longer strings
are more useful in a signature than short strings. In par-
ticular, one automatic signature generation algorithm is

to find the longest substring common to a set of suspi-
cious samples [15]. We wish to quantify how much bet-
ter a longer substring is than a shorter substring. This
can help to answer questions such as, “Which is a more
specific signature- a twenty byte string or the conjunc-
tion of two twelve byte strings?” Additionally, consider-
ing the length of a string alone can be quite misleading.
While the string “HTTP/1.1\r\n” is longer than the string
“\xBF\xFF\xFE”, it is still much more likely to appear in
innocuous requests on port 80.

To calculate the probability that pattern string P occurs
in some input text T , we construct a finite state machine that
takes T as input, and reaches the accept state if and when P
is found. In this machine, there is a state for each character
in P, plus the initial state. We denote the probability that the
machine is in state i after processing n characters as Pri(n).
Our goal, then, is to calculate Prl(P)(l(T )), where l(P) is
the length of the pattern P, and l(T ) is the length of the
text T . To calculate Prl(P)(l(T )), we iteratively compute the
probability of being in each state after processing each input
character. This calculation can be performed in O(l(P) ∗
l(T )) time.

To calculate the probability that text matching an input
with a uniform-random byte distribution, we set the proba-
bility that a transition is taken equal to the number of char-
acters on its label, divided by the size of the alphabet.

We can use the same technique to estimate the proba-
bility that a string occurs in a network flow of a particular
protocol. Instead of assuming that each character in the al-
phabet is equally likely, we can use traces of the protocol
to measure the relative frequency of each character. We
can use these measurements to estimate the probability of
each transition in the finite state machine. This model can
be further improved by measuring the relative frequency
of each character, given the current context. For example,
if the flow consists of English text, and the last character
matched was “q”, it is very likely that the next character
will be “u”. Again, these statistics can easily be measured
from traces of a protocol. Compared to simply measuring
the frequency of the string in the trace, this technique of-
fers a more generalized view of the protocol. For exam-
ple, while the trace might not have any requests contain-
ing the exact string “www.obscuresite.com”, this technique
can calculate that it is more plausible than the equally long
string “dJesOuruhamjRhoEfvi”, since substrings including
“www.” and “.com” are common, it fits the model for En-
glish words, etc.


