
Multi-Dimensional Range Query over
Encrypted Data 1

Elaine Shi John Bethencourt
T-H. Hubert Chan Dawn Song Adrian Perrig

May 2006. Updated: March 2007.
CMU-CS-06-135

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1This research was supported in part by CyLab at Carnegie Mellon under grant DAAD19-02-1-0389 and Cyber-
TA Research grant No. W911NF-06-1-0316 from the Army Research Office, and grants 0433540 and 0448452 from
the National Science Foundation, and a grant from GM. The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either express
or implied, of ARO, CMU, GM, NSF, or the U.S. Government or any of its agencies.

Keywords: applied cryptography, range query, searchable encryption, anonymous identity-
based encryption

Abstract

We design an encryption scheme called Multi-dimensional Range Query over Encrypted Data
(MRQED), to address the privacy concerns related to the sharing of network audit logs and var-
ious other applications. Our scheme allows a network gateway to encrypt summaries of network
flows before submitting them to an untrusted repository. When network intrusions are suspected,
an authority can release a key to an auditor, allowing the auditor to decrypt flows whose attributes
(e.g., source and destination addresses, port numbers, etc.) fall within specific ranges. However,
the privacy of all irrelevant flows are still preserved. We formally define the security for MRQED
and prove the security of our construction under the decision bilinear Diffie-Hellman and decision
linear assumptions in certain bilinear groups. We study the practical performance of our construc-
tion in the context of network audit logs. Apart from network audit logs, our scheme also has
interesting applications for financial audit logs, medical privacy, untrusted remote storage, etc. In
particular, we show that MRQED implies a solution to its dual problem, which enables investors
to trade stocks through a broker in a privacy-preserving manner.

1 Introduction

Recently, the network intrusion detection community has made large-scale efforts to collect net-
work audit logs from different sites [25, 35, 24]. In this application, a network gateway or an
Internet Service Provider (ISP) can submit network traces to an audit log repository. However, due
to the presence of privacy sensitive information in the network traces, the gateway will allow only
authorized parties to search their audit logs. We consider the following four types of entities: a
gateway, an untrusted repository, an authority, and an auditor. We design a cryptographic primi-
tive that allows the gateway to submit encrypted audit logs to the untrusted repository. Normally,
no one is able to decrypt these audit logs. However, when malicious behavior is suspected, an
auditor may ask the authority for a search capability. With this search capability, the auditor can
decrypt entries satisfying certain properties, e.g., network flows whose destination address and port
number fall within a certain range. However, the privacy of all other flows should still be preserved.
Note that in practice, to avoid a central point of trust, we can have multiple parties to jointly act as
the authority. Only when a sufficient number of the parities collaborate, can they generate a valid
search capability.

We name our encryption scheme Multi-dimensional Range Query over Encrypted Data (MRQED).
In MRQED, we encrypt a message with a set of attributes. For example, in the network audit log
application, the attributes are the fields of a network flow, e.g., source and destination addresses,
port numbers, time-stamp, protocol number, etc. Among these attributes, suppose that we would
like to support queries on the time-stamp t, the source address a and the destination port number
p. Our encryption scheme provides the following properties:

• Range query on attributes. An authority can issue a decryption key for all flows whose
(t, a, p) falls within a certain range: t ∈ [t1, t2] and a ∈ [a1, a2] and p ∈ [p1, p2]. Notice that
range query implies equality and greater-than (smaller-than) tests, e.g., t ≥ t1 and a = a1

and p ≤ p1. With this decryption key, all flows whose (t, a, p) tuple falls within the above
range can be decrypted.

• Security requirement. Normally, no one can learn any information from the ciphertexts.
Under special circumstances, however, an auditor may obtain a decryption key from an au-
thority for some range t ∈ [t1, t2] and a ∈ [a1, a2] and p ∈ [p1, p2]. For any flow, if at least
one attribute among t, a, p lies outside the specified range, the auditor fails to decrypt it.
The auditor inevitably learns that the (t, a, p) tuple of this flow does not lie within the given
range. However, apart from this information, the auditor cannot learn anything more about
the flow. For example, the auditor cannot learn anything about attributes other than t, a, p; in
addition, she cannot decide whether t < t1 or t > t2, etc.

Our results and contributions. We are among the earliest to study the problem of point encryp-
tion, range query, and conditional decryption of matching entries. We propose a provably secure
encryption scheme that allows us to achieve these properties. Table 1 summarizes the asymptotic
performance of our scheme in comparison with other approaches. Please refer to Section 2 for a
detailed comparison between our scheme MRQED, and the concurrent work BonehWaters06 [13].
We study the practical performance of MRQED, and show that it makes the encrypted network

1

Scheme Pub. Key Size Encrypt. Cost CT Size Decrypt. Key Size Decrypt. Cost Security
BonehWaters06 [13] O(D · T) O(D · T) O(D · T) O(D) O(D) MC
Naive AIBE-based O(1) O((log T)D) O((log T)D) O((log T)D) O((log T)D) MR

Our scheme O(D · log T) O(D · log T) O(D · log T) O(D · log T) O((log T)D) MR

Table 1: Performance of different approaches. D denotes the number of dimensions and T the
number of points in each. The naive AIBE-based scheme is described in Section 4.3. MC and
MR refer to the match-concealing and match-revealing security models respectively as defined in
Section 3.

audit log application feasible. We also study the dual problem to MRQED, where one encrypts un-
der a hyper-range in multi-dimensional space, and decrypts under a point. We show that MRQED
implies a solution to its dual problem, which enables investors to trade stocks through a broker in
a privacy-preserving manner.

Paper organization. In the remainder of this section, we give more example applications of
MRQED. We review related work in Section 2, and formally define the MRQED problem in Sec-
tion 3. In Section 4, we demonstrate some initial attempts at constructing MRQED; while in Sec-
tion 5, we describe our novel construction which we consider the main contribution of this paper.
We note that the purpose of Section 4 is not only to exhibit straw-man schemes, but also to better
motivate our design of MRQED as described in Section 5. In particular, some of the primitives
introduced in Section 4 will later be used in Section 5 when we explain our novel construction.
Due to limit of space, formal security proofs of security are provided in Appendix C. In the proof,
we borrow techniques from the AHIBE scheme of Boyen and Waters [15]. As a result, the se-
curity of our construction is likewise based on the hardness of Decision Bilinear Diffie-Hellman
problem and the Decision Linear problem. In Section 7, we consider the practical performance of
the scheme in the context of network audit logs. We show that MRQED implies a solution to its
dual problem in Section 8, and show that the dual problem is of particular interest to investors who
would like to trade stocks through a broker in a privacy-preserving manner.

1.1 Application to Network Audit Logs

We briefly mentioned network audit logs at the beginning of this section. Throughout the paper,
we will keep using this example to motivate the design of MRQED. To provide context for the
remainder of the paper, we now describe this application in greater detail.

Firewalls and network intrusion detection systems (NIDS) such as Snort [43], Emerald [40],
and Bro [39] produce logs summarizing detected or blocked activities suspected to be malicious.
Log entries typically correspond to either a single packet (perhaps rejected by a firewall) or an
established flow deemed suspicious. Each entry normally includes fields such as source and desti-
nation IP address and port, date and time, protocol (e.g., TCP, UDP, or ICMP), and, in the case of
NIDS, the type of rule causing an alert. Sharing and comparing such logs across organizations is a
method for gaining broader information about malicious activities on the Internet so that adminis-
trators may better protect their systems. Current large scale efforts to collect and aggregate network
audit logs for this purpose include DShield [25], myNetWatchman [35], and Deepsight [24].

2

However, sharing of network audit logs is hampered by the presence of security and privacy
sensitive information. By encrypting each log entry before sending it to another party, the source
can allay these concerns. Later, the source may release a decryption key for a carefully specified
set of log entries deemed currently relevant. For example, suppose a particular host with IP address
a1 is determined to have been compromised at time t1 and later involved in scanning other hosts for
vulnerabilities on a certain range of ports [p1, p2]. A trusted authority may then choose to release a
key decrypting any entries at time t, with source address a, connecting to port p such that t ≥ t1,
a = a1, and p1 ≤ p ≤ p2. Note that to avoid a central point of trust, we can have multiple parties
jointly act as the authority. Using techniques from secure multi-party computation [27], only when
a sufficient number of them collaborate, can they generate a valid decryption key. The source
would then have precise guarantees about the privacy of their network while providing useful
information to other individual organizations or a global monitoring effort. The public key nature
of the scheme would allow distributed, encrypted submissions to a central monitoring organization
possessing the master private key and giving out decryption keys as necessary. There have been
some previous attempts to protect the security of audit logs through encryption or anonymization
while allowing limited queries [46, 23, 33], but in no previous scheme has it been possible to
issue keys for conjunctions of ranges over multiple attributes while maintaining the secrecy of the
attributes. In particular, we are not aware of any previous method supporting queries such as our
example of (t≥ t1) ∧ (a=a1) ∧ (p1≤ p≤ p2) that does not require either revealing the attribute
values or issuing an exponential number of key components.

1.2 Other Applications

Apart from the network audit log application, and the stock-trading application described in Sec-
tion 8, we mention here some other potentially interesting applications of MRQED.

Financial audit logs. Financial audit logs contain sensitive information about financial transac-
tions. Our MRQED scheme allows financial institutions to release audit logs in encrypted format.
When necessary, an authorized auditor can obtain a decryption key from a trusted authority. With
this decryption key, the auditor can decrypt certain transactions that may be suspected of fraudulent
activities. However, the privacy of all other transactions are preserved.

Medical privacy. Consider a health monitoring program. When Alice moves about in her daily
life, a PDA or smart-phone she carries automatically deposits encrypted crumbs of her trajectory
at a storage server. Assume that each crumb is of the form ((x, y, t), ct), where (x, y) represents
the location, t represents time, and ct is Alice’s contact information. During an outbreak of an
epidemic, Alice wishes to be alerted if she was present at a site borne with the disease during an
incubation period, i.e., if (x, y, t) falls within a certain range. However, she is also concerned with
privacy, and she does not wish to leak her trajectory if she has not been to a site borne with the
disease.

Untrusted remote storage. Individual users may wish to store emails and files on a remote server,
but because the storage server is untrusted, the content must be encrypted before it is stored at
the remote server. Emails and files can be classified with multi-dimensional attributes. Users may
wish to perform range queries and retrieve only data that satisfy the queries.

3

Using biometrics in anonymous IBE. The MRQED scheme can also be used in biometric-based
Anonymous Identity-Based Encryption (AIBE). Using biometrics in identity-based encryption first
appeared in the work by Sahai and Waters [41]. In this application, a person’s biometric features
such as finger-prints, blood-type, year of birth, eye color, etc., are encoded as a point X in a
multi-dimensional lattice. Personal data is encrypted using the owner’s biometric features as the
identity, and the encryption protects both the secrecy of the personal data and the owner’s biometric
identity. Due to potential noise each time a person’s biometric features are sampled, a user holding
the private key for biometric identity X should be allowed to decrypt data encrypted under X′,
iff X′ and X have small distance. In particular, the SahaiWaters04 construction [41] considered
the set-overlap distance (or the Hamming distance); and their encryption scheme does not hide the
identity of the user. Our construction allows a user with the private key for identity X, to decrypt an
entry encrypted under X′, iff �∞(X,X′) ≤ ε. Here �∞ denotes the �∞ distance between X and X′,
and is defined as max{|x1 − x′

1| , . . . , |xD − x′
D|}. In this case, the decryption region is a hyper-

cube in multi-dimensional space. One can also associate a different weight to each dimension, in
which case the decryption region becomes a hyper-rectangle.

2 Related Work

Search on encrypted data. The problem of search on encrypted data (SoE) was introduced in
the symmetric key setting by Song et al. [44] and has had some recent improvements in security
definitions and efficiency [21]. Boneh et al. [10] later proposed Public Key Encryption with Key-
word Search (PEKS), in which any party possessing the public key can encrypt and the owner
of the corresponding private key can generate keyword search capabilities. Both SoE and PEKS
can be trivially extended to support one-dimensional range queries; the extension is similar to the
MRQED1 scheme described in Section 4.2. However, it is not clear that either can be used to con-
struct a scheme supporting range queries over multiple attributes. Recent work on traitor-tracing
systems [14, 12] allows a more specialized sort of range query. Given a ciphertext C with at-
tributes X = (x1, x2, . . . , xD), a master key owner can issue a token for some value x′ that allow
us to decide whether xd ≤ x′ for all 1 ≤ d ≤ D with O(

√
T) ciphertext size and token size.

Applications of searchable encryption have been studied by the database community [30, 22, 2].
Other works related to searches on encrypted data include oblivious RAMs [37, 28], and private
stream searching [5, 38].

IBE. The notion of Identity-Based Encryption (IBE) was introduced by Shamir [42]. Several
IBE schemes [20, 11, 7, 6, 18, 45, 36], hierarchical IBE (HIBE) schemes [31, 26, 8, 47], and
applications [41, 29] were proposed since then. In particular, the HIBE scheme proposed by
Boneh, Boyen, and Goh [8] can be extended to multiple dimensions (M-HIBE) efficiently and
in a collusion-resistant1 manner. The resulting scheme can be used to solve a problem similar to
MRQED, but lacking the third property in the previous discussion. That is, when using M-HIBE
it would not be possible to hide the attribute values associated with a ciphertext.

1Collusion-resistance, in this sense, means that two parties who have been issued different decryption keys cannot
combine their keys in some way to allow decryption of ciphertexts that neither could decrypt previously.

4

Anonymous IBE. Recently, researchers have proposed anonymous IBE and HIBE schemes (AIBE,
AHIBE) [15, 1]. The notion of anonymity is also related to key privacy [4, 3]. Like the HIBE
scheme mentioned above, the AHIBE scheme of Boyen and Waters [15] can be extended to mul-
tiple dimensions in a collusion-resistant manner, resulting in a Multi-dimensional AHIBE (M-
AHIBE) scheme. An M-AHIBE scheme could be used to implement MRQED (including the
third property), but applying it directly would have a serious drawback. Because the encryption is
anonymous and hides the attributes used as the public key, at time of decryption one would need
to try all possible decryption keys on a given ciphertext. This incurs O(TD) decryption cost on a
single ciphertext, where T is the number of possible values each attribute may assume and may be
quite large. Nevertheless, on a technical level, this AHIBE scheme and its extension to M-AHIBE
are the most closely related work to ours. In particular, we prevent collusion in the same way
the M-AHIBE construction does. Since we do not require the key delegation property of HIBE
schemes, however, we are able to improve decryption cost to be logarithmic in T .

Recent developments. Concurrent to our work, Boneh and Waters [13] propose another con-
struction (BonehWaters06 in Table 1) for complex queries over encrypted data. They propose a
primitive called Hidden Vector Encryption, and use it in conjunctive range and subset queries.
When applied to multi-dimensional range query, their scheme results in O(DT) encryption time,
ciphertext size, and public key size, and O(D) decryption key size and decryption cost. As in
Table 1, D and T are the number of attributes and the number of discrete values for each attribute.
Their scheme is more expensive in terms of public key size, encryption cost and ciphertext size;
but saves on decryption key size and decryption cost. In applications with large T and small D
(e.g., network audit logs, and the stock trading application mentioned in Section 8), our approach
is more appropriate. In particular, for network audit logs, T = 232 for an IP address, and D may
range from 2 to 4. In other applications where D is large and T is small, the BonehWaters06
construction is more appropriate. We also would like to note that the BonehWaters06 construction
achieves a stronger notion of security. Their construction hides the attribute values, even when the
message is successfully decrypted. This stronger security property is a key difference from our
construction, in which the attribute values are revealed upon successful decryption. In Section 3,
we name these two different security models match-concealing security and match-revealing se-
curity respectively. For applications like encrypted network audit logs, it is acceptable to reveal
the attributes of a message when it is successfully decrypted. By relaxing the security definition
to allow this possibility, we achieve O(D log T) encryption time, ciphertext size, and public key
size. This makes applications such as the encrypted network audit logs possible. However, one
may conceive of other applications where the stronger security notion is necessary.

3 Problem Definition and Preliminary

3.1 Problem Definition

In the network audit log application, a gateway encrypts network flows, and submits them to an
untrusted repository. When necessary, an auditor may ask an authority for a key that allows the
decryption of all flows whose attributes fall within a certain range; while the privacy of all irrelevant

5

flows are still preserved. There is a geometric interpretation to these multi-attribute range queries.
Suppose that we would like to allow queries on these three fields: time-stamp t, source address
a, and destination port p. The tuple (t, a, p) can be regarded as a point X in multi-dimensional
space. Now suppose we query for all flows whose t, a, p falls within some range: t ∈ [t1, t2],
a ∈ [a1, a2] and p ∈ [p1, p2]. Here the “hyper-range” [t1, t2] × [a1, a2] × [p1, p2] forms a hyper-
rectangle B in space. The above range query is equivalent to testing whether a point X falls inside
the hyper-rectangle B.

We now formally define these notions mentioned above. Assume that an attribute can be en-
coded using discrete integer values 1 through T . For example, an IP address can be encoded
using integers 1 through 232. We use the notation [T] to denote integers from 1 to T , i.e., [T] =
{1, 2, . . . , T}. Let S ≤ T be integers, we use [S, T] to denote integers from S to T inclusive,
i.e., [S, T] = {S, S + 1, . . . , T}. Throughout this paper, we assume that T is a power of 2, and
denote log2 as simply log. Suppose that we would like to support range queries on D different
attributes, each of them can take on values in [T1], [T2], . . . , [TD] respectively. We formally define
a D-dimensional lattice, points and hyper-rectangles below.

Definition 1 (D-dimensional lattice, point, hyper-rectangle). Let Δ = (T1, T2, . . . , TD). LΔ =
[T1] × [T2] × . . . × [TD] defines a D-dimensional lattice. A D-tuple X = (x1, x2, . . . , xD) de-
fines a point in LΔ, where xd ∈ [Td](∀d ∈ [D]). A hyper-rectangle B in LΔ is defined as
B(s1, t1, s2, t2, . . . , sD, tD) = {(x1, x2, . . . , xD)

∣∣∀d ∈ [D], xd ∈ [sd, td]} (∀d ∈ [D], 1 ≤ sd ≤
td ≤ Td).

A MRQED scheme consists of four (randomized) polynomial-time algorithms: Setup, Encrypt,
DeriveKey and QueryDecrypt. In the network audit log example, an authority runs Setup to
generate public parameters and a master private key; a gateway runs the Encrypt algorithm to en-
crypt a flow. Encryption is performed on a pair (Msg,X). The message Msg is an arbitrary string,
and X is a point in multi-dimensional space, representing the attributes. For example, suppose that
we would like to support queries on the following three attributes of a flow: time-stamp t, source
address a, and destination port p. The tuple (t, a, p) then becomes the point X, and the entire flow
summary forms the message Msg. Whenever necessary, the authority can run the DeriveKey
algorithm, and compute a decryption key allowing the decryption of flows whose attributes fall
within a certain range. Given this decryption key, an auditor runs the QueryDecrypt algorithm
over the encrypted data to decrypt the relevant flows. We now formally define MRQED.

Definition 2 (MRQED). An Multi-dimensional Range Query over Encrypted Data (MRQED)
scheme consists of the following polynomial-time randomized algorithms.

1. Setup(Σ, LΔ): Takes a security parameter Σ and D-dimensional lattice LΔ and outputs
public key PK and master private key SK.

2. Encrypt(PK,X,Msg): Takes a public key PK, a point X, and a message Msg from the
message space M and outputs a ciphertext C.

3. DeriveKey(PK,SK,B): Takes a public key PK, a master private key SK, and a hyper-
rectangle B and outputs decryption key for hyper-rectangle B.

6

4. QueryDecrypt(PK,DK,C): Takes a public key PK, a decryption key DK, and a ci-
phertext C and outputs either a plaintext Msg or ⊥, signaling decryption failure.

For each message Msg ∈ M, hyper-rectangle B ⊆ LΔ, and point X ∈ LΔ, the above algo-
rithms must satisfy the following consistency constraints:

QueryDecrypt(PK,DK,C) =

{
Msg if X ∈ B
⊥ w.h.p., if X /∈ B

(1)

where C = Encrypt(PK,X,Msg) and DK = DeriveKey(PK,SK,B).

3.2 Security Definitions

Suppose that during time [t1, t2], there is an outbreak of a worm characteristic by the port number
p1. Now the trusted authority issues a key for the range t ∈ [t1, t2] and p = p1 to a research group
who has been asked to study the worm behavior. With this key, the research group should be able
to decrypt only flows whose time-stamp and port number fall within the given range. The privacy
of all other flows should still be preserved. Informally, suppose that a computationally bounded
adversary has obtained decryption keys for regions B0,B1, . . . ,Bq. Now given a ciphertext C =
Encrypt(PK,X,Msg) such that X /∈ B0,B1, . . . ,Bq, the adversary cannot learn X or Msg
from C. Of course, since the adversary fails to decrypt C using keys for regions B0,B1, . . . ,Bq,
the adversary inevitably learns that the point X encrypted does not fall within these regions. But
apart from this fact, the adversary cannot learn more information about X or Msg.

We now formalize this intuition into a selective security game for MRQED. Here, the selective
security notion is similar to the selective-ID security for IBE schemes [16, 17, 6]. We prove the
security of our construction in the selective model. A stronger security notion is adaptive security,
where the adversary does not have to commit to two points in the Init stage of the security game
defined below. In Appendix D, we give a formal definition for adaptive security, and state how it
is related to the selective security model.

Definition 3 (MR-selective security). An MRQED scheme is selectively secure in the match-
revealing (MR) model if all polynomial-time adversaries have at most a negligible advantage in
the selective security game defined below.

• Init: The adversary submits two points X∗
0,X

∗
1 ∈ LΔ where it wishes to be challenged.

• Setup: The challenger runs the Setup(Σ, LΔ) algorithm to generate PK, SK. It gives PK
to the adversary, keeping SK secret.

• Phase 1: The adversary adaptively issues decryption key queries for q0 hyper-rectangles
B1,B2, . . . ,Bq0 . Furthermore, X∗

0 and X∗
1 are not contained in any hyper-rectangles queried

in this phase, i.e., for 0 < i ≤ q0, X∗
0 /∈ Bi, and X∗

1 /∈ Bi.

• Challenge: The adversary submits two equal length messages Msg0,Msg1 ∈ M. The
challenger flips a random coin, b, and encrypts Msgb under X∗

b . The ciphertext is passed to
the adversary.

7

• Phase 2: Phase 1 is repeated. The adversary adaptively issues decryption key queries for
q−q0 hyper-rectangles Bq0+1,Bq0+2, . . . ,Bq. As before, all hyper-rectangles queried in this
stage must not contain X∗

0 and X∗
1.

• Guess: The adversary outputs a guess b′ of b.

An adversary A’s advantage in the above game is defined as AdvA(Σ) =
∣∣Pr[b = b′]− 1

2

∣∣.
We would like to note that a stronger notion of security is possible as defined by Boneh and

Waters in their concurrent work [13]. We call this stronger security notion match-concealing (MC)
security, since it requires that the attribute values (i.e., the point X) remain hidden even when an
entry matches a query. MC-selective security can be formally defined through the following game
between an adversary and a challenger.

Definition 4 (MC-selective security [13]). An MRQED scheme is selectively secure in the match-
concealing (MC) model if all polynomial-time adversaries have at most a negligible advantage in
the selective security game defined below.

• Init: The adversary submits two points X∗
0,X

∗
1 ∈ LΔ where it wishes to be challenged.

• Setup: The challenger runs the Setup(Σ, LΔ) algorithm to generate PK, SK. It gives PK
to the adversary, keeping SK secret.

• Phase 1: The adversary adaptively issues decryption key queries for q0 hyper-rectangles
B1,B2, . . . ,Bq0 , satisfying the condition that for all 0 < i ≤ q0, either (X∗

0 ∈ Bi) ∧ (X∗
1 ∈

Bi), or (X∗
0 /∈ Bi) ∧ (X∗

1 /∈ Bi).

• Challenge: The adversary submits two equal length messages Msg0,Msg1 ∈ M. If in
Phase 1, there exists some 0 < i ≤ q0 such that (X∗

0 ∈ Bi) ∧ (X∗
1 ∈ Bi), then Msg0 =

Msg1. The challenger flips a random coin, b, and encrypts Msgb under X∗
b . The ciphertext

is passed to the adversary.

• Phase 2: Phase 1 is repeated. The adversary adaptively issues decryption key queries for
hyper-rectangles Bq0+1,Bq0+2, . . . ,Bq, satisfying the condition that for all q0 < i ≤ q,
either (X∗

0 ∈ Bi) ∧ (X∗
1 ∈ Bi), or (X∗

0 /∈ Bi) ∧ (X∗
1 /∈ Bi). In addition, if in the Challenge

stage, Msg0
= Msg1, then for all q0 < i ≤ q, (X∗
0 /∈ Bi) ∧ (X∗

1 /∈ Bi).

• Guess: The adversary outputs a guess b′ of b.

Likewise, an adversaryA’s advantage in the above game is defined as AdvA(Σ) =
∣∣Pr[b = b′]− 1

2

∣∣.
In this paper, we use the MR security model, i.e., we do not protect the privacy of the attributes

if an entry is matched by the query. This security notion suffices for applications such as network
audit logs, and the stock-trading application as described in Section 8.

8

3.3 Preliminary: Bilinear Groups

A pairing is an efficiently computable, non-degenerate function, e : G × Ĝ → G′, satisfying
the bilinear property that e(gr, ĝs) = e(g, ĝ)rs. G, Ĝ and G′ are all groups of prime order. g,
ĝ and e(g, ĝ) are generators of G, Ĝ and G′ respectively. Although our MRQED scheme can be
constructed using asymmetric pairing, for simplicity, we describe our scheme using symmetric
pairing in the remainder of the paper, i.e., G = Ĝ.

We name a tuple G = [p, G, G′, g, e] a bilinear instance, where G and G′ are two cyclic groups
of prime order p. We assume an efficient generation algorithm that on input of a security parameter

Σ, outputs G
R← Gen(Σ) where log2 p = Θ(Σ).

We rely on the following complexity assumptions:

Decision BDH Assumption: The Decision Bilinear DH assumption, first used by Joux [32], later
used by IBE systems [11], posits the hardness of the following problem:

Given [g, gz1 , gz2 , gz3 , Z] ∈ G4×G′, where exponents z1, z2, z3 are picked at random from Zp,
decide whether Z = e(g, g)z1z2z3 .

Decision Linear Assumption: The Decision Linear assumption, first proposed by Boneh, Boyen
and Shacham for group signatures [9], posits the hardness of the following problem:

Given [g, gz1 , gz2 , gz1z3 , gz2z4 , Z] ∈ G6, where z1, z2, z3, z4 are picked at random from Zp, de-
cide whether Z = gz3+z4 .

4 A First Step towards MRQED

In this section, we first show a trivial construction for MRQED which has O(T 2D) public key
size, O(T 2D) encryption cost and ciphertext size, O(1) decryption key size and decryption cost.
Then in Section 4.2, we show that using AIBE, we can obtain an improved one-dimension MRQED
scheme. Henceforth, we refer to a one-dimension MRQED scheme as MRQED1 and refer to multi-
dimension MRQED as MRQEDD. The AIBE-based MRQED1 construction has O(1) public key
size, O(log T) encryption cost, ciphertext size, decryption key size and decryption cost. While
describing the AIBE-based MRQED1 construction, we introduce some primitives and notations
that will later be used in our main construction in Section 5. In Section 4.3, we demonstrate that a
straightforward extension of the AIBE-based MRQED1 scheme into multiple dimensions results in
O
(
(log T)D

)
encryption cost, ciphertext size, decryption key size and decryption cost. The AIBE-

based MRQED1 construction aids the understanding of our main construction in Section 5. By
contrast, details of the AIBE-based MRQEDD scheme are not crucial towards the understanding
of our main construction. Therefore, we only highlight a few important definitions and give a
sketch of the scheme in Section 4.3. We give the detailed description of the AIBE-based MRQEDD

scheme in Appendix F.

9

x T1ID4

ID3

ID2

ID1

(a) The path from a leaf to the
root.

c4

c3

2c
c1

IDBIDA

IDC

x T1 . . . 1 T3.

[3,7]

. . . 7

k

k k

(b) A ciphertext and a decryption key in MRQED1.

Figure 1: An MRQED1 scheme. (a) Path from the leaf node representing x ∈ [T] to the root. P(x) =
{ID1, ID2, ID3, ID4}. (b) Encryption under the point x = 3 and the keys released for the range [3, 7].

4.1 Trivial Construction

We first give a trivial construction for one-dimensional range query over encrypted data. We refer
to one-dimensional range query over encrypted data as MRQED1 where the superscript represents
the number of dimensions.

In the trivial MRQED1 construction, we make use of any secure public key encryption scheme.
We first generate O(T 2) public-private key pairs, one for each range [s, t] ⊆ [1, T]. To encrypt a
message Msg under a point x, we produce O(T 2) ciphertexts, one for each range [s, t] ⊆ [1, T].
In particular, if x ∈ [s, t], we encrypt Msg with public key pks,t; otherwise, we encrypt an invalid
message ⊥ with pks,t. The decryption key for any range [s, t] is then sks,t, the private key for [s, t].
In Appendix E, we give a formal description of this trivial construction.

One can extend this idea into multiple dimensions. The resulting MRQEDD scheme requires
that one encrypt δB(Msg,X) for all hyper-rectangles B in space. Therefore, the trivial MRQEDD

scheme has O(T 2D) public key size, O(T 2D) encryption cost and ciphertext size, O(1) decryption
key size and O(1) decryption cost.

4.2 Improved MRQED1 Construction Based on AIBE

We show an improved MRQED construction based on Anonymous Identity-Based Encryption
(AIBE). For clarity, we first explain the construction for one dimension. We call the scheme
MRQED1 where the superscript denotes the number of dimensions. We note that the primitives
and notations introduced in this section will be used in our main construction.

4.2.1 Primitives: Efficient Representation of Ranges

To represent ranges efficiently, we build a binary interval tree over integers 1 through T .

Definition 5 (Interval tree). Let tr(T) denote a binary interval tree over integers from 1 to T . Each
node in the tree has a pre-assigned unique ID. For convenience, we define tr(T) to be the set of
all node IDs in the tree. Each node in tr(T) represents a range. Let cv(ID) denote the range
represented by node ID ∈ tr(T). Define cv(ID) as the following: Let ID be the ith leaf node,
then cv(ID) = i. Otherwise, when ID is an internal node, let ID1 and ID2 denote its child nodes,
then cv(ID) = cv(ID1) ∪ cv(ID2). In other words, cv(ID) is the set of integers that correspond
to the leaf descendants of ID.

10

Given the interval tree tr(T), we define the P(x) of IDs covering a point x ∈ [1, T], and the
set Λ(x) of IDs representing a range [s, t] ⊆ [1, T].

• Set of IDs covering a point x. For a point x ∈ [1, T] and some node ID ∈ tr(T), we
say that ID covers the point x if x ∈ cv(ID). Define P(x) to be the set of IDs covering
point x. Clearly, P(x) is the collection of nodes on the path from the root to the leaf node
representing x. As an example, in Figure 1 (a), P(x) = {ID1, ID2, ID3, ID4}.
• Range as a collection of IDs. A range [s, t] ⊆ [1, T] is represented by a collection of

nodes: Λ(s, t) ⊆ tr(T). We define Λ(s, t) to be the smallest of all subsets V ⊆ tr(T) such
that
⋃

ID∈V
cv(ID) = [s, t]. It is not hard to see that for any [s, t] ⊆ [1, T], Λ(s, t) is uniquely

defined, and its size |Λ(s, t)| is at most O(log T).

We will make use of the following properties in our AIBE-based construction: If x ∈ [s, t],
then P(x) ∩ Λ(s, t)
= ∅; in addition, P(x) and Λ(s, t) intersect at only one node. Otherwise, if
x /∈ [s, t], then P(x) ∩ Λ(s, t) = ∅.

4.2.2 AIBE-Based MRQED1 Scheme

AIBE encrypts a message Msg using an identity ID as the public key. Given the private key
for ID, one can successfully decrypt all messages encrypted by identity ID. The encryption
scheme protects both the secrecy of the message Msg and the identity ID in the following sense:
Given ciphertext C, which is an encryption of Msg by identity ID0, and given decryption keys
for identities ID1, ID2, . . . , IDq but not for ID0, a computationally bounded adversary cannot
learn anything about Msg or about ID0 from the ciphertext C. Researchers have successfully
constructed secure AIBE schemes [15, 1] with O(1) cost in all respects: in public parameter size,
encryption cost, ciphertext size, decryption key size and decryption cost.

Given a secure AIBE scheme, we can construct an MRQED1 scheme based on the following
intuition. To encrypt the message Msg under point x, we encrypt Msg under all IDs in P(x). To
release the decryption key for a range [s, t] ⊆ [1, T], we release the keys for all IDs in Λ(s, t).
Now if x ∈ [s, t], then P(x)∩Λ(s, t)
= ∅. Suppose P(x) and Λ(s, t) intersect at node ID. Then we
can apply the decryption key at ID to the ciphertext encrypted under ID, and obtain the plaintext
message Msg. Otherwise, if x /∈ [s, t], then P(x) ∩ Λ(s, t) = ∅. In this case, the security of
the underlying AIBE scheme ensures that a computationally bounded adversary cannot learn any
information about the message Msg or the point x, except for the obvious fact (since decryption
fails) that x /∈ [s, t].

Example. In Figure 1(b), we show a ciphertext C encrypted under the point x. Let L = O(log T)
denote the height of the tree, C is composed of O(log T) components: {c1, c2, . . . , cL}. On the
right, we show the decryption keys for the range [3, 7]. Since [3, 7] can be represented by the set of
nodes Λ(3, 7) = {IDA, IDB, IDC}, the decryption key for [3, 7] consists of three sub-keys, kIDA

,
kIDB

and kIDC
.

The AIBE-based construction has O(1) public key size, O(|P(x)|) encryption cost and cipher-
text size, and O(|Λ(s, t)|) decryption key size. Since |P(x)| = O(log T), and |Λ(s, t)| = O(log T),

11

we get O(log T) in encryption cost, ciphertext size, and decryption key size. Later, we will show
that decryption can be done in O(log T) time as well.

Stated more formally, given a secure AIBE scheme[
Setup∗(Σ), DeriveKey∗(PK,SK, ID), Encrypt∗(PK, ID,Msg), Decrypt∗(PK,DK,C)

]
,

one can construct a secure MRQED1 scheme as below:

• Setup(Σ,T) calls Setup∗(Σ) and outputs PK and SK.

• Encrypt(PK,x,Msg) encrypts the message Msg under every ID ∈ P(x). In other
words, Encrypt yields C =

{
cID

∣∣ID ∈ P(x)
}

, where cID = Encrypt∗(PK, ID,Msg||0m′
).

To check whether a decryption is valid, prior to encryption, we append m′ trailing 0s denoted
0m′

to message Msg ∈ {0, 1}m.

• DeriveKey(PK,SK, [s, t]) releases a decryption key kID for each ID ∈ Λ(s, t). kID is
computed as kID = DeriveKey∗(PK,SK, ID). The entire decryption key for the range
[s, t] is then the set DKs,t =

{
kID

∣∣ ID ∈ Λ(s, t)
}

.

• QueryDecrypt(PK,DK,C) tries each key kID ∈ DKs,t on each ciphertext cID′ ∈ C. If

ID = ID′, then Decrypt∗(PK, kID, cID′) yields result of the form M̂sg||0m′
. In this case,

we accept the result and exit the QueryDecrypt algorithm. If all trials fail to yield result
of the form M̂sg||0m′

, QueryDecrypt outputs ⊥, indicating failure to decrypt.

Note that in the AIBE-based construction, if we simply try all decryption keys over all cipher-
texts, then decryption would require O(|P(x)|·|Λ(s, t)|) time; and since |P(x)| = O(log T), |Λ(s, t)| =
O(log T), decryption would require O(log2 T) time. However, observe that it is not necessary to
try kID on cID′ , if ID and ID′ are at different depth in the tree; since then, ID and ID′ cannot be
equal. Thus we only need to try kID on cID′ if ID and ID′ are at the same depth in the tree, which
requires knowledge of the depth of ID′ for ciphertext cID′ . Of course, we cannot directly release
ID′ for ciphertext cID′ , since the encryption is meant to hide ID′. However, since each ciphertext
C has a portion at every depth of the tree, we can give out the depth of ID′ for each cID′ ∈ C
without leaking any information about ID′. In this way, we reduce the decryption cost to O(log T)
rather than O(log2 T).

We emphasize that using AIBE as the underlying encryption scheme is crucial to ensuring
the security of the derived MRQED1 scheme. In particular, a non-anonymous IBE scheme is not
suitable to use as the underlying encryption scheme, since IBE hides only the message Msg but
not the attribute x.

4.3 AIBE-Based MRQEDD Construction

The same idea can be applied to construct an MRQEDD scheme, resulting in O(1) public key size,
O
(
(log T)D

)
encryption cost, ciphertext size, decryption key size, and decryption cost. Since

the details of this construction is not crucial to the understanding of our main construction, we
only give a sketch here and leave the full description of the scheme to Appendix F. However, we

12

highlight a few important definitions here, including the notion of a simple hyper-rectangle, and
the definition of Λ×(B). These definitions will later be used in our main construction.

We build D binary interval trees, one for each dimension. We assign a globally unique ID to
each node in the D trees.

Representing a hyper-rectangle. We represent an arbitrary hyper-rectangle as a collection of
simple hyper-rectangles. To illustrate this idea, we first give a formal definition of a simple hyper-
rectangle, and then state how to represent an arbitrary hyper-rectangle as a collection of simple
hyper-rectangles. Simply put, a simple hyper-rectangle is a hyper-rectangle B0 in space, such that
B0 can be represented by a single node in the tree of every dimension. More specifically, a hyper-
rectangle B(s1, t1, . . . , sD, tD) in space is composed of a range along each dimension. If for all
1 ≤ d ≤ D, |Λ(sd, td)| = 1, i.e., [sd, td] is a simple range in the dth dimension, then we say that
the hyper-rectangle B(s1, t1, . . . , sD, tD) is a simple hyper-rectangle. A simple hyper-rectangle
can be defined by a single node from each dimension. We can assign a unique identity to each
simple-rectangle B0(s1, t1, . . . , sD, tD) in space. Define

idB0 = (ID1, ID2, . . . , IDD) ,

where IDd(1 ≤ i ≤ D) is the node representing [sd, td] in the dth dimension.

Definition 6 (Hyper-rectangle as a collection of simple hyper-rectangles). Given an hyper-rectangle
B(s1, t1, . . . , sD, tD), denote Λd(B) := Λ(sd, td) for d ∈ [D]. Λ(B) is the collection of nodes
representing range [sd, td] in the dth dimension. The hyper-rectangle B can be represented as a
collection Λ×(B) of simple hyper-rectangles:

Λ×(B) = Λ1(B)× Λ2(B)× . . .× ΛD(B)

In particular, for every id ∈ Λ×(B), id is a vector of the form (ID1, ID2, . . . , IDD), where IDd

(d ∈ [D]) is a node in the tree corresponding to the dth dimension. Therefore, id uniquely specifies
a simple hyper-rectangle B0 in space.

Clearly, |Λ×(B)| = O
(
(log T)D

)
; in addition, Λ×(B) can be efficiently computed. Given

the above definitions, we briefly describe the AIBE-based MRQEDD construction. The detailed
description is provided in Appendix F.

Encryption. Suppose that now we would like to encrypt a message Msg and the point X =
(x1, x2, . . . , xD). We encrypt the message Msg under all simple hyper-rectangles that contain the
point X = (x1, x2, . . . , xD). This is equivalent to encrypting Msg under the cross-product of D
different paths to the root. Specifically, for d ∈ [D], denote Pd(X) := P(xd). Pd(X) is the path
from the root to the leaf node representing xd in the dth dimension. Define the cross-product of all
D different paths to the root:

P×(X) = P1(X)× P2(X)× . . .× PD(X).

Then, to encrypt Msg and X, we use AIBE to encrypt Msg under every id ∈ P×(X). Since
|P×(X)| = O

(
(log T)D

)
, both encryption cost and ciphertext size are O

(
(log T)D

)
.

Key derivation and decryption. To issue decryption keys for a hyper-rectangle B, we issue a key
for every id ∈ Λ×(B). Since |Λ×(B)| = O

(
(log T)D

)
, the decryption key has size O

(
(log T)D

)
.

13

c1

c5

c6

c7

c8

c4

c3

c2

1

5

T

. .
 .

. .
 .

IDA

IDB IDC

IDF

IDE

IDD

1 3. . . T. . . 1 T2 . . . 6 . . .

1

T
7

3

. .
 .

. .
 .x

k

k

k

kk

k

(a) A ciphertext and a decryption key in MRQED2.

R1 R2

R3 R4

kx1 kx2

ky1

ky2

(b) Collusion.

Figure 2: An MRQED2 scheme. (a) Encryption under the point x = (3, 5) and the keys released for the
range [2, 6]× [3, 7]. (b) With decryption keys kx1, ky1 for region R1 and kx2, ky2 for region R4, regions R2

and R3 are compromised.

Now if X ∈ B, then P×(X)∩Λ×(B)
= ∅; in addition, P×(X) and Λ×(B) intersect at exactly one
simple hyper-rectangle idB0 , where the keys and the ciphertexts overlap. In this case, we use the
key for idB0 to decrypt the ciphertext for idB0 . Otherwise, if X /∈ B, then P×(X) ∩ Λ×(B) = ∅.
In this case, the security of the underlying AIBE schemes ensures the security of the MRQEDD

constructions. In Appendix F, we show that the cost of decryption is also O
(
(log T)D

)
.

5 Our MRQEDD Construction

In Section 4, we showed an AIBE-based MRQEDD construction with O(1) public key size,
O
(
(log T)D

)
encryption cost and ciphertext size, O

(
(log T)D

)
decryption key size and decryp-

tion cost. In this section, we propose a new MRQEDD construction with O (D log T) public
key size, O (D log T) encryption cost and ciphertext size, O (D log T) decryption key size, and
O
(
(log T)D

)
decryption cost.

5.1 Intuition

We build D interval trees over integers from 1 to T , each representing a separate dimension. As-
sume each tree node has a globally unique ID. In the previous section, we showed a naive con-
struction for MRQEDD based on AIBE. The naive construction encrypts Msg under the O((log T)D)
simple hyper-rectangles that contain the point X; and releases decryption keys for the O((log T)D)
simple hyper-rectangles that compose a hyper-rectangle B. Our goal is to reduce the ciphertext
size and decryption key size to O(D log T) instead. However, as we will soon explain, naively
doing this introduces the collusion attack as shown in Figure 2 (b). Our main technical challenge,
therefore, is to devise ways to secure against the collusion attack.

Reducing the ciphertext size. In other words, rather than encryption Msg for each simple hyper-
rectangle in P×(X) = P1(X)× . . .× PD(X), we would like to encrypt Msg for each tree node in

14

the the union of these D different paths:

P∪(X) = P1(X) ∪ . . . ∪ PD(X).

Reducing the decryption key size. Instead of representing an arbitrary hyper-rectangle using
the collection of simple hyper-rectangles, we can represent a simple hyper-rectangle B as the
collection of disjoint intervals over different dimensions:

Definition 7 (Hyper-rectangle as a collection of nodes). A hyper-rectangle B ⊆ LΔ gives a col-
lection of nodes corresponding to disjoint intervals over different dimensions:

Λ∪(B) = Λ1(B) ∪ Λ2(B) ∪ . . . ∪ ΛD(B)

Note that for all hyper-rectangle B ⊆ LΔ, |Λ∪(B)| = O(D log T); in addition, Λ∪(B) can be
computed efficiently.

Using the above definition, rather than releasing keys for each simple hyper-rectangle in Λ×(B) =
Λ1(B)× . . .× ΛD(B), we would like to release keys for each ID in Λ1(B) ∪ . . . ∪ ΛD(B).

Example. Figure 2 (a) is an example in two dimensions. To encrypt under the point (3, 5), we find
the path from the leaf node 3 to the root in the first dimension, and the path from the leaf node
5 to the root in the second dimension. We then produce a block in the ciphertext corresponding
to each node on the two paths. In the first dimension, we produce blocks c1, c2, c3 and c4. In the
second dimension, we produce blocks c5, c6, c7 and c8. To release decryption keys for the range
[2, 6]× [3, 7], we find a collection Λ(2, 6) of nodes covering the range [2, 6] in the first dimension;
and a collection Λ(3, 7) of nodes covering [3, 7] in the second dimension. We issue a block in the
decryption key corresponding to each node in Λ(2, 6) and in Λ(3, 7). In the first dimension, we
create blocks kIDA

, kIDB
, and kIDC

; and in the second dimension, we create blocks kIDD
, kIDE

,
and kIDF

.

Preventing the collusion attack. Unfortunately, naively doing the above is equivalent to apply-
ing the AIBE-based MRQED1 scheme independently in each dimension. As we demonstrate in
Figure 2 (b), such a scheme is susceptible to the collusion attack. Suppose that Figure 2 (b),
every rectangle is a simple rectangle. Now suppose that an adversary were given the decryp-
tion keys for region R1 and R4, then the adversary would have collected keys kR1 = {kx1, ky1},
kR4 = {kx2, ky2}. With these, the adversary would be able to reconstruct the keys for R2 and
R3: kR2 = {kx2, ky1}, kR3 = {kx1, ky2}. Hence, our major challenge is to find a way to se-
cure against the collusion attack without incurring additional cost. We use a binding technique to
prevent the collusion attack: we use re-randomization to tie together the sub-keys in different di-
mensions. For example, in Figure 2 (b), when we release the decryption key for region R1, instead
of releasing {kx1, ky1}, we release {μ̃xkx1, μ̃yky1}, where μ̃x and μ̃y are random numbers that we
pick each time we issue a decryption key. Likewise, when releasing the key for region R4, we
release {μ̃′

xkx2, μ̃
′
yky2}, where μ̃′

x and μ̃′
y are two random numbers picked independently from μ̃x

and μ̃y. Of course, in the real construction, μ̃x and μ̃y (μ̃′
x and μ̃′

y) also need to satisfy certain
algebraic properties (e.g., μ̃xμ̃y = μ̃′

xμ̃
′
y = some invariant) to preserve the internal consistency of

our scheme. In this way, components in the decryption key for R1 cannot be used in combination
with components in the decryption key for R4.

15

5.2 The Main Construction

We are now ready to describe our construction. Define L = O(log T) to represent the height of a
tree. Assume that node IDs are picked from Z∗

p. We append a message Msg ∈ {0, 1}m with a
series of trailing zeros, 0m′

, prior to encryption. Assume that {0, 1}m+m′ ⊆ G′.

Setup(Σ, LΔ) To generate public parameters and the master private key, the setup algorithm first

generates a bilinear instance G = [p, G, G′, g, e]
R← Gen(Σ). Then, the setup algorithm does the

following.

1. Select at random the following parameters from Z8DL+1
p :

ω,
[
αϕ,1, αϕ,2, βϕ,1, βϕ,2, θϕ,1, θϕ,2, θ

′
ϕ,1, θ

′
ϕ,2

]
ϕ=(d,l)
∈[D]×[L]

In addition, we require that the α’s and the β’s be forcibly non-zero. At this point, we give a
brief explanation of our notation. The variable ϕ is used to index a tuple (d, l) ∈ [D]× [L],
where d denotes the dimension and l denote the depth of a node in the corresponding tree.

2. Publish G and the following public parameters PK ∈ G′ ×G8DL:

Ω← e(g, g)ω,⎡⎢⎢⎣
aϕ,1 ← gαϕ,1θϕ,1 , aϕ,2 ← gαϕ,2θϕ,2 ,

a′
ϕ,1 ← gαϕ,1θ′ϕ,1 , a′

ϕ,2 ← gαϕ,2θ′ϕ,2 ,
bϕ,1 ← gβϕ,1θϕ,1 , bϕ,2 ← gβϕ,2θϕ,2 ,

b′ϕ,1 ← gβϕ,1θ′ϕ,1 , b′ϕ,2 ← gβϕ,2θ′ϕ,2 ,

⎤⎥⎥⎦
ϕ=(d,l)∈
[D]×[L]

3. Retain a master private key SK ∈ G8DL+1 comprising the following elements:

ω̃ ← gω,⎡⎢⎢⎣
aϕ,1 ← gαϕ,1 , aϕ,2 ← gαϕ,2 ,
bϕ,1 ← gβϕ,1 , bϕ,2 ← gβϕ,2 ,
yϕ,1 ← gαϕ,1βϕ,1θϕ,1 , yϕ,2 ← gαϕ,2βϕ,1θϕ,2 ,

y′
ϕ,1 ← gαϕ,1βϕ,1θ′ϕ,1 , y′

ϕ,2 ← gαϕ,2βϕ,1θ′ϕ,2

⎤⎥⎥⎦
ϕ=(d,l)
∈[D]×[L]

Notice that in the public parameters and the master key, we have different versions of the
same variable, e.g., aϕ,1, aϕ,2, a

′
ϕ,1, a

′
ϕ,2. Although they seem to be redundant, they are ac-

tually need to provide sufficient degrees of randomness for our proof to go through. The
reasons for having these different versions will become clear once the reader has gone over
the detailed proof provided in Appendix C.

DeriveKey(PK,SK,B) The following steps compute the decryption key for hyper-rectangle
B, given public key PK and master private key SK.

16

1. Pick O(D · L) random integers from GD × Z
2|Λ∪(B)|
p :[

μ̃d

]
d∈[D]

, [λID,1, λID,2]ID∈Λ∪(B)

such that
∏

d∈[D] μ̃d = ω̃. The reason for having an overhead tilde for the variable μ̃d is
to associate it with the variable ω̃, since they both belong to the group G, and they satisfy
the condition that

∏
d∈[D] μ̃d = ω̃. We note that the random μ̃d’s generated in this stage are

later used to re-randomize the components of the decryption key. In this way, components
in different dimensions are tied to each other; and components from one decryption key
cannot be used in combination with components from another decryption key. This is how
we prevent the collusion attack as shown in Figure 2 (b).

2. Compute and release a decryption key DK ∈ G5|Λ∪(B)|. DK is composed of a portion
DK(ID) for each ID ∈ Λ∪(B). In the following definition for DK(ID), ϕ = (d, l) =
Φ(ID) represents the dimension and depth of node ID; without risk of ambiguity, denote
λ1 = λID,1, λ2 = λID,2. DK(ID) is defined below:

μ̃d

(
yID

ϕ,1y
′
ϕ,1

)λ1
(
yID

ϕ,2y
′
ϕ,2

)λ2 , a−λ1
ϕ,1 , b−λ1

ϕ,1 , a−λ2
ϕ,2 , b−λ2

ϕ,2

Observe that we release a portion of the decryption key for each node in Λ∪(B), as opposed
to for each hyper-rectangle in Λ×(B). In this way, the size of the private key is O(DL),
instead of O(LD). Also observe that we multiply the first element of DK(ID) by μ̃d. This
illustrates the binding technique used to tie together components in different dimensions. In
this way, components in one decryption key cannot be used in combination with components
in another decryption key; therefore, we successfully prevent the collusion attack.

Encrypt(PK,X,Msg) We create a block in the ciphertext for every ID ∈ P∪(X). Equivalently,
for each dimension d and depth l, denote ϕ = (d, l), we create a portion of the ciphertext corre-
sponding to the node Iϕ, residing in the dth tree at depth l, on the path Pd(X) to the root. We now
describe the Encrypt algorithm in the following steps:

1. Select 2DL + 1 random integers: select r ∈R Zp, select [rϕ,1, rϕ,2]ϕ=(d,l)∈[D]×[L] ∈R Z2DL
p .

2. For ϕ = (d, l) ∈ [D]× [L], define Iϕ = Iϕ(X), i.e., the node at depth l in Pd(X) in the dth

dimension. Now compute and output the following ciphertext C ∈ G′ ×G4DL+1:

(Msg||0m′
) · Ω−r, gr,[

(bϕ,1
Iϕb′ϕ,1)

rϕ,1
, (aϕ,1

Iϕa′
ϕ,1)

r−rϕ,1 ,

(bϕ,2
Iϕb′ϕ,2)

rϕ,2
, (aϕ,2

Iϕa′
ϕ,2)

r−rϕ,2

]
ϕ=(d,l)∈
[D]×[L]

QueryDecrypt(PK,DK,C) We first give an overview on how QueryDecrypt works. Recall
that a decryption key DK =

{
DK(ID)

∣∣ ID ∈ Λ∪(B)
}

is composed of a portion DK(ID)
for each ID ∈ Λ∪(B). We now reconstruct a decryption key for each simple hyper-rectangle

17

idB0 ∈ Λ×(B) as below. We grab from DK a sub-key from each dimension: for each d ∈ [D],
grab a sub-key DK(IDd) from the dth dimension, where IDd ∈ Λd(B). The collection of sub-keys
{DK(ID1),DK(ID2), . . . ,DK(IDD)} can now be jointly used to decrypt a message encrypted
under the simple hyper-rectangle idB0 = (ID1, . . . , IDD).

We also need to find the correct blocks in the ciphertext to apply this key for idB0 . Recall

that the ciphertext is of the form C =
(
c, c0, [cϕ,1, cϕ,2, cϕ,3, cϕ,4]ϕ=(d,l)∈[D]×[L]

)
. For convenience,

denote cϕ := [cϕ,1, cϕ,2, cϕ,3, cϕ,4] for ϕ = (d, l) ∈ [D] × [L]. cϕ is the block in the ciphertext
corresponding to a node in the dth dimension and at depth l of the tree. Define Φ(ID) := (d, l) to
extract the dimension and depth of the node ID. Now for a sub-key DK(ID), define ϕ = Φ(ID),
it is not hard to see that DK(ID) should be used in combination with the block cϕ in the ciphertext.

The following algorithm iterates through the simple hyper-rectangles in Λ×(B) and checks if
the ciphertext can decrypt to a valid message under each simple hyper-rectangle in Λ×(B).

For each simple hyper-rectangle Λ×(B0) = {(ID1, ID2, . . . , IDD)} ⊆ Λ×(B),

(1) Let DK(IDd) = (kIDd,0, kIDd,1, kIDd,2, kIDd,3, kIDd,4) represent the element in DK for IDd,
where d ∈ [D].

(2) Try to decrypt C under B0 with the collection {DK(ID1),DK(ID2), . . . ,DK(IDD)} of
sub-keys:

V ← c ·
∏

d∈[D],
ϕd=Φ(IDd)

[
e(c0, kIDd,0) · e(cϕd,1, kIDd,1) · e(cϕd,2, kIDd,2) · e(cϕd,3, kIDd,3) · e(cϕd,4, kIDd,4)

]

If V is of the form M̂sg||0m′
, then output M̂sg as the decrypted plaintext and exit.

If for all simple hyper-rectangles in Λ×(B), the previous step fails to produce the plaintext, then
output ⊥.

When done naively, the above QueryDecrypt algorithm takes O(D(log T)D) time. How-
ever, if one saves intermediate results, it can be done in O((log T)D) time with O(D log T) storage.
The above numbers takes into account all group operations, include multiplication, exponentiation
and bilinear pairing. However, since a pairing operation is typically more expensive than exponen-
tiation (and far more expensive than multiplication) in known bilinear groups, we are particularly
interested in reducing the number of pairings at time of decryption. Notice that we can precom-
pute all pairings e(c0, kIDd,0) and pairings e(cϕd,i, kIDd,i) for 1 ≤ i ≤ 4, and store the results in a
look-up table. Therefore, the decryption algorithm requires O(D log T) pairings in total.

6 Consistency, Security

The following two theorems state the consistency and security of our MRQED construction.

Theorem 6.1 (Internal consistency). The above defined MRQED construction satisfies the consis-
tency requirement posed by Equation (1).

18

Theorem 6.2 (Selective security). The above defined MRQED construction is selectively secure
against polynomial-time adversaries.

Below we give an overview of the techniques used in the security proof. The detailed proofs
of Theorem 6.1 and Theorem 6.2 are provided in Appendix C and Appendix B respectively. To
prove the selective security of our MRQEDD construction, we decompose the selective MRQED
game into two games: a selective confidentiality game and a selective anonymity game. By the
hybrid argument, if no polynomial-time adversary has more than negligible advantage in either the
confidentiality game or the anonymity game, then no polynomial-time adversary has more than
negligible advantage in the combined selective MRQED game.

In the proof, we build a simulator that leverages an MRQED adversary to solve the D-BDH
problem or the D-Linear problem. The simulator inherits parameters specified by the D-BDH/D-
Linear instance, hence, it has incomplete information about the master key. Therefore, the crux of
the proof is how to simulate the key derivation algorithm without knowing the complete master key.
In comparison, the anonymity proof is more complicated than the confidentiality proof, because
it involves a hybrid argument containing 2DL steps. In step (d1, l1, n1) of the hybrid argument,
yϕ1,n1 and y′

ϕ1,n1
(ϕ1 = (d1, l1)) in the master key contain unknown parameters inherited from the

D-Linear instance. Therefore, we need to condition on the relative position between X∗ and the
(d1, l1) in question. Our proof techniques are similar to that presented in the AHIBE paper [15].

7 Practical Performance

In this section, we give a detailed analysis of the performance of the MRQEDD scheme given in
Section 5 in practical scenarios. We use the conditional release of encrypted network audit logs as
our motivating application.

Assumptions. To evaluate the scheme of Section 5 in this application, we detail a set of scenarios
regarding the searchable fields present in the logs. We assume log entries contain the fields listed in
Table 2. The 17-bit time field is sufficient to distinguish times over a period of about 15 years with
a one hour resolution, or about three months at a one minute resolution. More precise times may
be stored in the non-searchable portion of the message if desired. The protocol field corresponds

Field Abbr. Range Distinct Values
Source IP sip [0, Tsip −1] Tsip = 232

Dest. IP dip [0, Tdip −1] Tdip = 232

Port port [0, Tport −1] Tport = 216

Time time [0, Ttime −1] Ttime = 217

Protocol prot [0, Tprot −1] Tprot = 28

Table 2: Fields appearing in a network audit log and their possible values.

to the actual bits of the corresponding field in an IP header (where, for example, 6 denotes TCP
and 133 denotes Fibre Channel). Various subsets of these fields may be included as searchable
attributes in MRQEDD. Other fields and any additional associated data such as a payload may be

19

included as the encrypted message. Regardless of message length, we need only use the MRQEDD

scheme to encrypt a single group element, which may be a randomly generated symmetric key
(e.g., for AES) used to encrypt the message.

Benchmarks for the selected pairing were run on a modern workstation. The processor was a
64-bit, 3.2 Ghz Pentium 4. We used the Pairing-Based Cryptography (PBC) library [34], which
is in turn based on the GNU Multiple Precision Arithmetic Library (GMP). The relevant results
are given in Table 3. Using these benchmark numbers, we now estimate the performance of our
encryption scheme under several scenarios for the network audit log application.

Operation Time
pairing (no preprocessing) 5.5 ms

pairing (after preprocessing) 2.6 ms
preprocess pairing 5.9 ms

exponentiation in G, Ĝ 6.4 ms
exponentiation in G′ 0.6 ms
multiplication in G′ 5.1 μs

Table 3: Group arithmetic and pairing performance benchmarks on a modern workstation [34].

Public parameters and master key. The space required to store the public parameters and master
key is logarithmic with respect to the number of possible attribute values. Specifically, denote the
set of attributes as A = {sip, dip, port, time, prot}. Then for each attribute a ∈ A, define the height
of the tree La = log2 Ta + 1. For example, Lsip = 33 and Lprot = 9. Then the public parameters
PK require a total of 8

∑
a∈A La = 880 elements of G and one element of G′. Assuming 512-

bit representations2 of elements of G and G′, the total size of PK is 55KB. The master key SK
contains the same number of elements, again requiring 55KB of storage. More space efficient
pairings than the one used in this estimate are available, but this one was selected for speed of
evaluation.

Computation time for Setup is reasonable, given that it is only run once. Computing the public
and private parameters in Setup requires roughly 16

∑
a∈A La exponentiations and one pairing,

for a total of about 11.3s. Time spent on multiplication in this case is negligible.

Encryption. Saving the group elements of a ciphertext requires 4
∑

a∈A La + 2 group elements,
or 28KB. Note that we normally just encrypt a session key, so this is a constant overhead beyond
the actual length of the message. Running Encrypt requires about two exponentiations for each
group element, resulting in a time of about 5.6s. While significant, this overhead should be accept-
able in most cases in the network audit log example. If audit logs are high volume, the best strategy
may be to produce periodic summaries rather than separately encrypting each packet. The search-
able attributes of such summaries would reflect the collection of entries they represent, and the full
contents of the entries could be included as the encrypted message without incurring additional
overhead. In systems containing a cryptographic accelerator chip supporting ECC (such as some

2We consider a type A pairing using the singular curve y2 = x3 + x for the groups G and Ĝ with a base field size
of 512-bits. Note that all groups involved have 160-bit group order; the storage requirements arise from the specific
representation of elements in the elliptic curves.

20

routers), much higher performance is possible. For example, the Elliptic Semiconductor CLP-17
could reduce the time of exponentiation from 6.4ms to 30μs [19], resulting in a total encryption
time as low as 27ms.

Key derivation and decryption. We now consider decryption keys and the running time of the
decryption algorithm, the more interesting aspects of the scheme’s computational and storage re-
quirements. The space required to store a decryption key, the time to derive it, and the time to
decrypt using it depend only on the ranges of attributes for which it permits decryption. Unlike the
computational and storage requirements discussed thus far, these costs do not depend on the full
range of possible values, only those associated with the key. These costs depend on the number of
key components necessary to represent the permissible range along each dimension. For example,
suppose a particular decryption key DK only allows decryption of entries with a destination port
in the range [3, 7] (perhaps placing other requirements on the other attributes). Referring back to
Figure 1, we see that three tree nodes are necessary to cover this range, so DeriveKey would
include these three for the destination port dimension in DK. Similarly, given some decryption
key DK, we denote the number of tree nodes necessary to cover the decryption range in each of
the dimensions a ∈ A by Na = |Λa(B)| (using the notation of Section 5). So in this example,
Nport = 3. Note that for any a ∈ A, in the worst case, Na = 2La − 2.

Now given Na for each a ∈ A, we may compute the decryption costs. A decryption key
consists of 5

∑
a∈A Na group elements and DeriveKey performs 8

∑
a∈A Na exponentiations.

The number of operations necessary to decrypt using a key DK is slightly more subtle. While
QueryDecrypt is Θ(

∏
a∈A La) (i.e., Θ((log T)D)) overall, only O(

∑
a∈A La) (i.e., O(D log T))

pairings are required, as mentioned in Section 5.2. Specifically, we need only compute 5
∑

a∈A Na

pairings to populate a lookup table containing values of e(c0, kID,0), e(cϕ,1, kID,1), e(cϕ,2, kID,2),
e(cϕ,3, kID,3), e(cϕ,4, kID,4), and e(cϕ,5, kID,5). These values are enough to complete the QueryDecrypt
algorithm. Assuming a key will normally be used to decrypt a batch of ciphertexts one after an-
other, we may further reduce the cost of pairings by preprocessing with the key. As shown in Ta-
ble 3, preprocessing reduces the pairing time by about half, at a one time cost (per decryption key
DK) equivalent to one or two decryptions. Computed naively, the sequence of trials in step one of
QueryDecrypt end up requiring a total of |A|∏a∈A Na multiplications in G′. This can be some-
what reduced. Let S1, . . . S|A| be {Na | a ∈ A } sorted in ascending order: S1 ≤ S2 ≤ . . . S|A|.
Then by saving intermediate results between trials and ordering the dimensions appropriately, it is
possible to complete step one with a total of S1+S1S2+S1S2S3+ . . . S1S2 · · ·S|A| multiplications.

Specific scenarios. We have now computed the costs associated with the storage and usage of a
decryption key in terms of Na for a ∈ A, but we have not yet specified Na. If we assume the range
for each attribute is randomly selected (uniformly), then for each a ∈ A, the expected value of Na

is La − 1. This results in a decryption key size of 33KB and a running time for DeriveKey of
5.4s. The corresponding worst-case decryption time3 is 13.1s. We note that this is a major cost,
and likely to be inconvenient if significant quantities of log entries must be decrypted. Fortunately,
queries eliciting such long decryption times are not likely to be necessary in practice. In fact, fairly

3In reality, the average decryption time is smaller than this number, since upon a successful decryption, the
QueryDecrypt algorithm exits after trying half of the combinations in expectation and thus performing half the
worst-case multiplications.

21

Pairing Worst-case Worst-case
Example Query Nsip Ndip Nport Ntime Nprot Time Mult. Time Dec. Time

sip=207.44.178.∗,
dip=216.187.103.169, port=22,

time=∗, prot=TCP

1 1 1 1 1 65ms < 0.1ms 65ms

sip∈ [207.44.178.123, 207.44.182.247],
dip=∗, port=22,

time∈ [5pm 10/31, 9am 11/5],
prot∈{TCP, UDP, ICMP}

10 1 1 7 3 286ms 1.2ms 287ms

sip∈ [207.44.178.123, 207.60.177.15],
dip∈ [207.44.178.123, 207.60.177.15],

port∈ [3024, 35792],
time∈ [10/31/2006, 10/31/2020],

prot∈{TCP, UDP, ICMP}

20 20 15 17 3 0.98s 1.64s 2.62s

Table 4: Decryption times resulting from decryption keys of various sizes.

elaborate queries are possible while keeping decryption costs low.
In Table 4 we provide several examples that help demonstrate this. The first entry illustrates the

fact that specifying a single value, all values, or a range of values falling on power-of-two bound-
aries (as in the case of an IP subnet) for some attribute a results in Na = 1, reducing decryption
time dramatically. In the next example, several attributes are required to be in general ranges, or,
in the case of prot, selected from a small set. This results in larger numbers of key components and
slightly longer decryption times. Still, the decryption time in this case is far below the time with
each range randomly selected. As shown by the third example, larger ranges result in larger values
of Na and, again, somewhat larger, but still relatively low, decryption times.

8 Extensions and Discussions

8.1 The Dual Problem and Stock Trading through a Broker

In the MRQED problem, one encrypts a message Msg under a point X in multi-dimensional
space, and given a hyper-rectangle B, the master key owner can construct a capability, allowing
an auditor to decrypt all entries satisfying X ∈ B. On the other hand, the privacy of the irrelevant
entries are still preserved.

Informally, the natural dual problem to MRQED is where one encrypts under a hyper-rectangle
B, and given a point X, the master key owner can construct a capability allowing an auditor to
decrypt all entries satisfying B � X. Like in MRQED, we require that the privacy of all irrelevant
entries be preserved. We now show an interesting application of the dual problem, and then show
that MRQED implies a solution for the dual problem.

An interesting application of the dual problem is for trading stocks and other securities. Sup-
pose an investor trades stocks through a broker. The investor specifies a price range and a time
range, such that if the stock price falls within that range during a specific period of time, the broker
can buy or sell the stock on behalf of the investor. This is usually referred to as a stop order, limit

22

order, or stop-limit order. Sometimes, the investor may not fully trust the broker, and may wish to
conceal the price and time ranges from the broker before an order is executed.

The dual problem can be applied in such scenarios to address the privacy concerns of investors.
In particular, the stock exchange, or any third-party with knowledge of the real-time stock price can
act as the trusted authority who owns the master key. For convenience, in the following description,
we assume that the stock exchange is the trusted authority. The investor first encrypts the order
along with the desired price and time ranges, and sends the encrypted order to the broker. Suppose
that at a certain point of time t, the stock price is p. The stock exchange constructs a decryption
key for the pair (t, p), and hands it to the broker. With this decryption key, the broker can decrypt
all orders whose price and time ranges match the current price p and the current time t, and execute
these orders. For orders whose price and time ranges do not match the current price and time, the
broker cannot learn any additional information about these orders.

MRQED implies the dual problem. We use a two-dimensional example to illustrate how MRQED
implies a solution for the dual problem.

• Dual.Setup (Σ, [T]2): Call MRQED.Setup (Σ, [T]4), and output the public key PK, and
master key SK.

• Dual.Encrypt (PK, [x1, x2]× [y1, y2],Msg): To encrypt a message Msg under the range
[x1, x2]× [y1, y2] in 2 dimensions, call MRQED.Encrypt (PK, (x1, x2, y1, y2),Msg). Ob-
serve that here a range [x1, x2]× [y1, y2] in [T]2 is mapped to a point (x1, x2, y1, y2) in [T]4.

• Dual.DeriveKey (PK,SK, (x, y)): To generate a decryption key for the point (x, y) ∈
[T]2, call MRQED.DeriveKey (PK,SK, [1, x]× [x, T]× [1, y]× [y, T]).

• Dual.QueryDecrypt (PK,DK,C): To try to decrypt a ciphertext C using the decryption
key DK, call MRQED.QueryDecrypt (PK,DK,C).

In essence, the above construction maps a range [x1, x2]×[y1, y2] ⊆ [T]2 to a point (x1, x2, y1, y2) ∈
[T]4, and testing if a point (x, y) is within the range [x1, x2]×[y1, y2] is equivalent to testing whether
(x1, x2, y1, y2) ∈ [1, x]× [x, T]× [1, y]× [y, T]. It is easy to verify that the security of the MRQED
scheme guarantees a similar notion of security for the dual construction, i.e., if a decryption key
fails to decrypt a certain ciphertext entry, then a probablistic polynomial adversary cannot learn
any additional information about that entry.

8.2 Adaptive Security

Our scheme is provably secure in the selective-ID model. A stronger notion of security is adaptive-
ID security (also known as full security), i.e., the adversary does not have to commit ahead of time
which point in the lattice to attack. We present the formal definition for MRQED adaptive-ID
security in Appendix D . Previous research has shown that IBE schemes secure in the selective-
ID sense can be converted to schemes fully secure [6, 18, 45, 36] with some loss in security. In
particular, Boneh and Boyen prove the following theorem:

23

Theorem 8.1 ([6]). A (t, q, ε)-selective identity secure IBE system (IND-sID-CPA) that admits N
distinct identities is also a (t, q, Nε)-fully secure IBE (IND-ID-CPA).

This technique can be applied to our case to achieve full confidentiality and anonymity. In our
case, the scheme admits N = TD identities and hence that would be the loss factor in security.

9 Conclusion

We design an encryption scheme that allows us to encrypt an arbitrary message and a set of at-
tributes. An authority holding a master key can issue a search capability to an authorized party,
allowing it to decrypt data entries whose attributes fall within specific ranges; while the privacy
of other data entries is preserved. We prove the security of our scheme under the D-BDH and the
D-Linear assumptions in certain bilinear groups. We also study the practical performance of our
construction in network audit log applications. Apart from network audit logs, MRQED can be
useful in various other applications such as financial audit logs, untrusted email servers and med-
ical privacy. In particular, we show that the dual problem can be useful for investors who wish to
trade stocks through a broker in a privacy-preserving manner.

10 Acknowledgments

We would especially like to thank Brent Waters, Dan Boneh, Matthew Wachs, and Eno Thereska
for their valuable suggestions on how to improve the paper. We also thank the anonymous review-
ers for their insightful comments.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In Advances in Cryptology - Proceedings
of CRYPTO ’05, pages 205–222. Springer-Verlag, August 2005.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryption
for numeric data. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 563–574, 2004.

[3] Giuseppe Ateniese, Marina Blanton, and Jonathan Kirsch. Secret handshakes with dynamic and fuzzy
matching. In Network and Distributed System Security Symposium, 2007.

[4] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key
encryption. In ASIACRYPT ’01: Proceedings of the 7th International Conference on the Theory and
Application of Cryptology and Information Security, pages 566–582, 2001.

[5] John Bethencourt, Dawn Song, and Brent Waters. New constructions and practical applications for
private stream searching (extended abstract). In SP ’06: Proceedings of the 2006 IEEE Symposium on
Security and Privacy (S&P’06), pages 132–139, 2006.

24

[6] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In EUROCRYPT, pages 223–238, 2004.

[7] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In CRYPTO,
pages 443–459, 2004.

[8] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Ronald Cramer, editor, Proceedings of Eurocrypt 2005, LNCS. Springer, 2005.

[9] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, pages 41–55,
2004.

[10] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In EUROCRYPT, pages 506–522, 2004.

[11] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[12] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short cipher-
texts and private keys. In EUROCRYPT, 2006.

[13] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. To appear in
the Theory of Cryptography Conference (TCC), 2007.

[14] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace and revoke system. In CCS,
2006.

[15] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In CRYPTO, 2006.

[16] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
EUROCRYPT, pages 255–271, 2003.

[17] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In EUROCRYPT, pages 207–222, 2004.

[18] Sanjit Chatterjee and Palash Sarkar. Trading time for space: Towards an efficient IBE scheme with
short(er) public parameters in the standard model. In Proceedings of ICISC, 2004.

[19] The Elliptic Semiconductor CLP-17 high performance elliptic curve cryptography point multiplier
core: Product brief.
http://www.ellipticsemi.com/pdf/CLP-17 60102.pdf.

[20] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int. Conf.,
pages 360–363, 2001.

[21] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In CCS, 2006.

[22] Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela Sama-
rati. Balancing confidentiality and efficiency in untrusted relational dbmss. In CCS ’03: Proceedings
of the 10th ACM conference on Computer and communications security, pages 93–102, 2003.

25

[23] D. Davis, F. Monrose, and M. K. Reiter. Time-scoped searching of encrypted audit logs. In Proceeding
of the International Conference on Information and Communications Security (ICICS), 2004.

[24] Symantec deepsight threat management system technology brief. https://tms.symantec.com.

[25] The dshield project. http://www.dshield.org.

[26] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In ASIACRYPT ’02: Proceed-
ings of the 8th International Conference on the Theory and Application of Cryptology and Information
Security, pages 548–566, London, UK, 2002. Springer-Verlag.

[27] Oded Goldreich. Secure multi-party computation. Volume 2, Foundations of Cryptography, 1998.

[28] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[29] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–98, 2006.

[30] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over encrypted data
in the database-service-provider model. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 216–227, 2002.

[31] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In EUROCRYPT
’02: Proceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques, pages 466–481, London, UK, 2002. Springer-Verlag.

[32] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS-IV: Proceedings of the
4th International Symposium on Algorithmic Number Theory, pages 385–394, London, UK, 2000.
Springer-Verlag.

[33] Patrick Lincoln, Phillip A. Porras, and Vitaly Shmatikov. Privacy-preserving sharing and correlation
of security alerts. In USENIX Security Symposium, pages 239–254, 2004.

[34] Ben Lynn. The Pairing-Based Cryptography (PBC) library. http://crypto.stanford.edu/
pbc.

[35] The mynetwatchman project. http://www.mynetwatchman.com.

[36] David Naccache. Secure and practical identity-based encryption. Cryptology ePrint Archive, Report
2005/369, 2005. http://eprint.iacr.org/.

[37] Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. Ph.D. thesis, MIT, 1992.
Preliminary version in STOC 1990.

[38] Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data. In CRYPTO, pages
223–240, 2005.

[39] Vern Paxson. Bro: A system for detecting network intruders in real-time. In USENIX Security Sympo-
sium, 1998.

26

[40] P. Porras and P. Neumann. EMERALD: Event monitoring enabling responses to anomalous live dis-
turbances. In National Information Systems Security Conference, 1997.

[41] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473,
2005.

[42] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO 84 on
Advances in cryptology, pages 47–53, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[43] The Snort open source network intrusion detection system. http://www.snort.org.

[44] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on en-
crypted data. In SP ’00: Proceedings of the 2000 IEEE Symposium on Security and Privacy, page 44,
Washington, DC, USA, 2000. IEEE Computer Society.

[45] Brent Waters. Efficient identity-based encryption without random oracles. In Proceedings of Euro-
crypt, 2005.

[46] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and D. K. Smetters. Building an encrypted and search-
able audit log. In Proceedings of Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2004.

[47] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In CCS ’04: Proceedings
of the 11th ACM conference on Computer and communications security, pages 354–363, New York,
NY, USA, 2004. ACM Press.

27

A Notations

In Table 5, we summarize the notations used throughout this paper.

Notation Explanation First Defined

[s, t] integers s through t Sec. 3
[a] integers 1 through a Sec. 3
D number of dimensions Sec. 3
T number of discrete values in each dimension Sec. 3

LΔ multi-dimensional lattice Sec. 3
X a point in the lattice Sec. 3
B a hyper-rectangle Sec. 3
Σ security parameter Sec. 3

PK public key Sec. 3
SK master key Sec. 3
DK decryption key Sec. 3
Msg message to encrypt Sec. 3
M message space Sec. 3
G a bilinear instance Sec. 3.3
G bilinear group Sec. 3.3
G′ target group Sec. 3.3
e bilinear pairing function Sec. 3.3
g generator of G Sec. 3.3

Zp additive group of integers modular a prime p Sec. 3.3
Z∗

p multiplicative group of integers modular a prime p Sec. 5.2
tr(T) binary interval tree over integers 1 through T Sec. 4.2
ID identity of a tree node Sec. 4.2

cv(ID) range represented by a tree node ID Sec. 4.2
P(x) path from the root to the leaf node representing x Sec. 4.2

Λ(s, t) set of nodes representing the range [s, t] Sec. 4.2
Λd(B) set of nodes representing the range specified by B in the dth dimension Sec. 4.3
B0 simple hyper-rectangle Sec. 4.3
idB0 identity vector of the simple hyper-rectangle B0 Sec. 4.3

Λ×(B) hyper-rectangle B as a collection of simple hyper-rectangles Sec. 4.3
Pd(X) path to root in the dth dimension for the point X Sec. 4.3
P×(X) cross-product of all D paths to root for the point X Sec. 4.3
P∪(X) union of all D paths to root for the point X Sec. 5.1
Λ∪(B) hyper-rectangle B as a set of tree nodes Sec. 5.1

L height of interval tree Sec. 5.2
Φ(ID) a function that outputs the dimension and depth of some node ID Sec. 5.2

ϕ = (d, l) usually used in subscripts to indicate the dimension and depth respectively Sec. 5.2
Iϕ(X) where ϕ = (d, l) the node at depth l in the path Pd(X) of the dth dimension Sec. 5.2

Table 5: Notations.

28

B Proof of Consistency

Proof of Theorem 6.1:
Let C =

(
c, c0, [cϕ,1, cϕ,2, cϕ,3, cϕ,4]ϕ=(d,l)∈[D]×[L]

)
be the encryption of Msg on point X. Let

Λ×(B0) = {(ID1, ID2, . . . , IDD)} ⊆ Λ×(B) be the current simple hyper-rectangle under de-
cryption. Let ϕd = Φ(IDd) (d ∈ [D]).

If X ∈ B0, then for all d ∈ [D], Iϕd
(X) = IDd. For simplicity, let ξ(x) = e(g, g)x, and denote

Iϕd
= Iϕd

(X). Now decryption for B0 proceeds as follows:

V =(Msg||0m′
) · Ω−r ·

∏
d∈[D]

e
(
gr, μ̃d

(
yϕd,1

IDdy′ϕd,1

)λIDd,1
(
yϕd,2

IDdy′ϕd,2

)λIDd,2
)

·
∏

d∈[D],n∈[2]

e
(
aϕd,n

−λIDd,n , (bϕd,n
Iϕd b′ϕd,n)

rϕd,n
)
·

∏
d∈[D],n∈[2]

e
(
bϕd,n

−λIDd,n , (aϕd,n
Iϕd a′ϕd,n)

r−rϕd,n
)

=(Msg||0m′
) · Ω−r · e (gr, ω̃) · ξ

⎛⎜⎜⎝r ·
∑

d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)⎞⎟⎟⎠

· ξ

⎛⎜⎜⎝ ∑
d∈[D],
n∈[2]

αϕd,n(−λIDd,n)rϕd,nβϕd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)⎞⎟⎟⎠

· ξ

⎛⎜⎜⎝ ∑
d∈[D],
n∈[2]

βϕd,n(−λIDd,n) (r − rϕd,n) αϕd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)⎞⎟⎟⎠

=(Msg||0m′
) · Ω−r · e (gr, ω̃) · ξ

⎛⎜⎜⎝r ·
∑

d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)⎞⎟⎟⎠

· ξ

⎛⎜⎜⎝r ·
∑

d∈[D],
n∈[2]

αϕd,nβϕd,n(−λIDd,n)
(
θϕd,nIϕd

+ θ′ϕd,n

)⎞⎟⎟⎠
=Msg||0m′

.

29

Else if X /∈ B0, Iϕd
(X)
= IDd, d ∈ [D]. Hence decryption yields

V = (Msg||0m′
) ·

ξ

⎛⎜⎝r · ∑
d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)⎞⎟⎠
ξ

⎛⎜⎝r · ∑
d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)⎞⎟⎠
= (Msg||0m′

) ·Qr

where

Q = ξ

⎛⎜⎜⎝∑
d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)− ∑
d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)⎞⎟⎟⎠
With probability 1 − 1/p, Q
= 1, and the ciphertext is distributed uniformly at random in G′.
Hence the probability that V is of the form M̂sg||0m′

is less than 1
p

+ 1
2m′ .

C Proof of Security

To prove the selective security of our MRQEDD construction, we decompose the selective MRQED
game into two games: a selective confidentiality game and a selective anonymity game. By the
hybrid argument, if no polynomial-time adversary has more than negligible advantage in either the
confidentiality game or the anonymity game, then no polynomial-time adversary has more than
negligible advantage in the combined selective MRQED game. The terminology confidentiality
and anonymity that we use here is adopted from AIBE schemes.

Definition 8 (MRQED selective confidentiality game). The MRQED selective confidentiality game
is defined as below.

• Init: The adversary A outputs a point X∗ where it wishes to be challenged.

• Setup: The challenger runs the Setup(Σ, LΔ) algorithm to generate PK, SK. It gives PK
to the adversary, but does not divulge SK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles that
do not contain X∗.

• Challenge: The adversary submits two equal length messages Msg0 and Msg1. The chal-
lenger flips a random coin, b, and encrypts Msgb under X∗. The ciphertext is passed to the
adversary.

30

• Phase 2: Phase 1 is repeated.

• Guess: The adversary outputs a guess b′ of b.

Definition 9 (MRQED selective anonymity game). The MRQED selective anonymity game is de-
fined as below.

• Init: The adversary A outputs two points X0 and X1, where it wishes to be challenged.

• Setup: The challenger runs the Setup(Σ, LΔ) algorithm to generate PK, SK. It gives PK
to the adversary, but does not divulge SK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles that
do not contain X0 and X1.

• Challenge: The adversary submits a message Msg. The challenger first flips a random coin
b, and then encrypts Msg under Xb. The ciphertext is passed to the adversary.

• Phase 2: Phase 1 is repeated.

• Guess: The adversary outputs a guess b′ of b.

In either game, we define the adversary A’s advantage as

AdvA(Σ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
Definition 10 (IND-sID-CPA). An MRQED scheme is IND-sID-CPA secure if all polynomial-time
adversaries have at most a negligible advantage in the confidentiality game.

Definition 11 (ANON-sID-CPA). An MRQED scheme is ANON-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in the anonymity game.

Lemma C.1. If an MRQED scheme is both IND-sID-CPA secure and ANON-sID-CPA secure, then
the MRQED scheme is selectively secure.

Proof. By the hybrid argument.

Hence, it suffices to prove our MRQED construction IND-sID-CPA and ANON-sID-CPA se-
cure. We say that an MRQED scheme is (τ, q, ε) secure if any adversary making q range queries
for decryption keys, cannot have more than ε advantage within time τ .

Theorem C.2 (Confidentiality). Suppose G satisfies the (τ, ε) D-BDH assumption, then the above
defined MRQED scheme is (τ ′, q, ε) IND-sID-CPA secure, where τ ′ < τ −Θ(qD log T).

Theorem C.3 (Anonymity). Suppose G satisfies the (τ, ε) D-Linear assumption, then the above
defined MRQED scheme is (τ ′, q, ε′) ANON-sID-CPA secure, where τ ′ < τ − Θ(qD log T), and
ε′ = (2D log T + 1)(ε + 1/p).

31

In particular, Θ(qD log T) comes from the fact that the simulator needs O(D log T) time to
compute the decryption key for each hyper-rectangle queried. The 2D log T + 1 loss factor in ε′

comes from the hybrid argument we use to prove anonymity, and additive 1/p comes from the
probability that bad events happen in the simulation so that the simulator has to abort.

C.1 Proof: Confidentiality

Proof of Theorem C.2:
We reduce the semantic security of MRQED to the hardness of the D-BDH problem. Let

[g, g1, g2, g3, Z] denote the D-BDH instance supplied to the simulator, B, where g1 = gz1 , g2 = gz2 ,
g3 = gz3 , the simulator’s task is to decide whether or not Z = e(g, g)z1z2z3 . And to do this, the
simulator leverages an MRQED IND-sID-CPA adversary, A.

We describe a reduction such that if Z = e(g, g)z1z2z3 , the simulator produces a valid ciphertext;
otherwise, the first term c in the ciphertext is random. Hence, if the adversary could break the
confidentiality of the scheme, the simulator would be able to solve the D-BDH problem.

Init: The adversary selects a point X∗ ∈ LΔ that it wishes to attack. For ϕ ∈ [D] × [L], define
I∗ϕ = Iϕ(X∗).

Setup: To create public and private parameters, the simulator does the following:

1. Pick at random from Zp
12DL:[

αϕ,n, βϕ,n, θϕ,n, θ′ϕ,n, θ̄ϕ,n, θ̄′ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2]

subject to the constraint that[
θ̄ϕ,nI∗ϕ + θ̄′ϕ,n = 0

]
ϕ=(d,l)∈[D]×[L],n∈[2]

where I∗ϕ = Iϕ(X∗). We also require that the α’s, β’s, θ̄’s and θ̄′’s are forcibly non-zero.

2. Release the following public parameters to the adversary.

Ω← e(g1, g2),

[
aϕ,n ← (gθϕ,ng1

θ̄ϕ,n)
αϕ,n

, a′
ϕ,n ← (gθ′ϕ,ng1

θ̄′ϕ,n)
αϕ,n

,

bϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

βϕ,n
, b′ϕ,n ← (gθ′ϕ,ng1

θ̄′ϕ,n)
βϕ,n

,

]
ϕ=(d,l)∈[D]×[L],n∈[2]

Note that this posits that ω = z1z2; in addition, both ω and ω̃ are both unknown to the
simulator.

3. Compute what it can of the master key.[
aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n ,

yϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

αϕ,nβϕ,n
, y′

ϕ,n ← (gθ′ϕ,ng1
θ̄′ϕ,n)

αϕ,nβϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2]

Portion ω̃ of the master key is unknown to the simulator.

32

Phase 1: Suppose the adversary makes a decryption key query for the hyper-rectangle B(s1, t1, s2, t2, . . . , sD, tD).
Since B does not contain X∗, there exists a dimension d0 ∈ [D] such that x∗

d0
/∈ [sd0 , td0], where

x∗
d0

is X∗ projected onto the dth
0 dimension. Hence, there exists a dimension d0 ∈ [D], such that

for all ID ∈ Λd0(B), ID
= I∗ϕ, where ϕ = (d0, l) = Φ(ID). We say that X∗ does not overlap
with B in dimension d0. The simulator now does the following:

1. Pick d0 such that X∗ does not overlap with B in dimension d0. Let n0 = 1.

2. Pick the following numbers at random from Z
D+2|Λ∪(B)|
p :[

μd

]
d∈[D]

,
[
λ̃ID,n0

]
ID∈Λd0

(B)
,
[
λID,n

]
ID∈Λd0

(B),n�=n0
,
[
λID,n

]
ID∈Λ∪(B)−Λd0

(B),n∈[2]

subject to the constraint that
∑

d∈[D] μd = 0.

3. For all ID ∈ Λ∪(B)−Λd0(B), let DK(ID) =
(
kID,0,

[
k

(a)
ID,1, k

(b)
ID,1

]
,
[
k

(a)
ID,2, k

(b)
ID,2

])
repre-

sent the element in DK for ID, let ϕ = (d, l) = Φ(ID) where d
= d0, compute and release
DK(ID) as below:

kID,0 ← gμd · ∏
n∈[2]

(
yϕ,n

IDy′
ϕ,n

)λID,n ,[
k

(a)
ID,n ← aϕ,n

−λID,n , k
(b)
ID,n ← bϕ,n

−λID,n

]
n∈[2]

4. For all ID ∈ Λd0(B), let ϕ0 = (d0, l) = Φ(ID), compute and release DK(ID) as below:

kID,0 ← ω̃gμd0 · ∏
n∈[2]

(
yϕ0,n

IDy′
ϕ0,n

)λID,n ,[
k

(a)
ID,n ← aϕ0,n

−λID,n , k
(b)
ID,n ← bϕ0,n

−λID,n

]
n∈[2]

where
λID,n0 = λ̃ID,n0 −

z2

αϕ0,n0βϕ0,n0Θ̄ϕ0,n0

(2)

Θ̄ϕ0,n0 = θ̄ϕ0,n0ID + θ̄′ϕ0,n0

= 0.

This ensures that λID,n0 is distributed uniformly at random in Zp. And since θ̄ϕ0,n0I∗ϕ0
+ θ̄′ϕ0,n0

=
0; moreover, the simulator has picked d0 such that ID
= I∗ϕ0

, we then have Θ̄ϕ0,n0
= 0.
Although the simulator does not know λID,n0 (since it does not know z2), it can compute
aϕ0,n0

−λID,n0 and bϕ0,n0

−λID,n0 given gz2 . Since the simulator does not know ω̃, we now
explain how to compute kID,0. The simulator rewrites the equation for kID,0 as

kID,0 =
[
gμd0 · (yϕ0,2

IDy′
ϕ0,2

)λID,2
]
· ω̃ · (yϕ0,1

IDy′
ϕ0,1

)λID,1

Let Ψ = gμd0 · (yϕ0,2
IDy′

ϕ0,2

)λID,2 , then kID,0 = Ψ · ω̃ · (yϕ0,n0
IDy′

ϕ0,n0

)λID,n0 The simulator
can compute part Ψ because it possesses all necessary parameters required to compute it.

33

Although the simulator cannot directly compute the value of λID,n0 (since it does not know
z2), it is capable of computing kID,0 given gz1 and gz2; since if we rewrite kID,0 as below,
we can see that the exponent only contains z1 and z2 to the first degree. For convenience,
we omit the subscripts ϕ0, n0 and ID below by letting α = αϕ0,n0 , β = βϕ0,n0 , θ = θϕ0,n0 ,
θ′ = θ′ϕ0,n0

, θ̄ = θ̄ϕ0,n0 , θ̄′ = θ̄′ϕ0,n0
, y = yϕ0,n0 , y′ = y′

ϕ0,n0
, Θ = Θϕ0,n0 , λ = λID,n0 ,

λ̃ = λ̃ID,n0 .

kID,0 =Ψ · gz1z2 · (yIDy′)λ = Ψ · gz1z2 ·
(
gαβ(θ+z1θ̄)IDgαβ(θ′+z1θ̄′)

)
eλ−z2/(αβΘ)

= Ψ · gz1z2 · g−z1z2(θ̄·ID+θ̄′)/Θ · gf(z1,z2,α,β,θ,θ′,θ̄,θ̄′,eλ,Θ,ID) = Ψ · gf(z1,z2,α,β,θ,θ′,θ̄,θ̄′,eλ,Θ,ID)

where f(z1, z2, α, β, θ, θ′, θ̄, θ̄′, λ̃, Θ, ID) is a polynomial where variables z1 and z2 have
maximum degree 1.

Challenge: The adversary gives the simulator two messages Msg0 and Msg1. The simulator
picks a random bit b, and encrypts Msgb under point X∗ as below:

1. Pick random integers [rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .

2. Compute and release the following as the ciphertext.

(Msgb||0m′
) · Z−1, g3,

[
grϕ,nβϕ,n(θϕ,nI∗

ϕ+θ′ϕ,n), (g3 · g−rϕ,n)
αϕ,n(θϕ,nI∗

ϕ+θ′ϕ,n)
]

ϕ=(d,l)∈[D]×[L],n∈[2]

Note that this implies that r = z3; and if Z = e(g, g)z1z2z3 , it is easy to verify that the ciphertext
is well-formed, due to the fact that

[
θ̄ϕ,nI∗ϕ + θ̄′ϕ,n = 0

]
ϕ=(d,l)∈[D]×[L],n∈[2]

. On the other hand, if
Z is a random number, then the first term c in the ciphertext is random and independent of the
remaining terms.

Phase 2: Phase 1 is repeated.

Guess: When the adversary outputs a guess b′ of b, the simulator outputs 1 if b′ = b and 0 other-
wise, in answer to the D-BDH instance.

C.2 Proof: Anonymity

In Definition 9 of the selective-ID anonymity game, the challenger flips a random coin b in the
Challenge phase. An equivalent definition is where the challenger flips the coin b in the Setup
phase before running the Setup(Σ, LΔ) algorithm. This new definition can be further translated
into a real-or-random version which we will use in the following proof of anonymity. In the real-or-
random game, the adversary commits to only one point X∗ in the Init phase; any of its subsequent
range queries must not contain X∗; in the Challenge phase, the challenger either returns a faithful
encryption of Msg under X∗ or a completely random ciphertext; and the adversary’s job is to
distinguish between these two worlds. It is easy to verify that the above real-or-random definition
implies the selective-ID anonymity definition as stated in Definition 9 [15].

34

The proof of anonymity is carried out in 2DL steps using a hybrid argument. To do this, we
define the following games, where ∗ represents a number distributed uniformly at random from the
appropriate group.

Wreal : The challenge ciphertext is
(
c, c0, [c

(b)
(1,1),1, c

(a)
(1,1),1], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

W0 : The challenge ciphertext is
(
∗, c0, [c

(b)
(1,1),1, c

(a)
(1,1),1], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

W1,1,1 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [c(b)

(1,1),2, c
(a)
(1,1),2], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

W1,1,2 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [∗, ∗], [c(b)

(1,2),1, c
(a)
(1,2),1], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

. . .

WD,L,1 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [∗, ∗], . . . , [∗, ∗], [c(b)

(D,L),2, c
(a)
(D,L),2]

)
;

WD,L,2 : The challenge ciphertext is (∗, c0, [∗, ∗], [∗, ∗], . . . , [∗, ∗], [∗, ∗]) .

In step (d, l, n) of the hybrid argument, we show that Wd,l,n is computationally indistinguish-
able from the previous world. Note that the transition from Wreal to W0 is the standard concept
of semantic security, and has been proved in the previous section. In addition, WD,L,2 is computa-
tionally indistinguishable from a completely random ciphertext, hence is anonymous.

We reduce the anonymity of our MRQED scheme to the hardness of the D-Linear problem. We
rewrite the D-Linear problem as given [g, gz1 , gz2 , Y, gz2z4 , gz3+z4] ∈ G6, where z1, z2, z3, z4 are
picked at random from Zp, decide whether Y = gz1+z3 . It is easy to show that this is equivalent to
the original D-Linear problem. For convenience, let g1 = gz1 , g2 = gz2 , g×

24 = gz2z4 , g+
34 = gz3+z4 .

Without loss of generality, we show only how to prove step (d1, l1, n1) of the hybrid argument.

Lemma C.4. Suppose G satisfies the (τ, ε) D-Linear assumption, then no adversary making q
decryption key queries, within time τ − Θ(qD log T), can distinguish between Wd1,l1,n1 and the
preceding game with more than ε + 1/p probability.

Proof of Lemma C.4: Let ϕ1 = (d1, l1). We describe a reduction such that if Y = gz1+z3 ,
then the simulator produces a ciphertext in which the block [c

(b)
(d1,l1),n1

, c
(a)
(d1,l1),n1

] is well-formed;
otherwise, if Y is picked at random, the block is random as well. Hence, if the adversary can
distinguish between the two scenarios, the simulator can solve the D-Linear problem.
Init: The adversary selects a point X∗ in space that it wishes to attack. Define I∗ϕ = Iϕ(X∗).
Setup: To create public and private parameters, the simulator does the following:

1. Pick the following parameters at random from Z12DL−3
p :

ω,
[
αϕ,n, βϕ,n, θ̄ϕ,n, θ̄′ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n) �=(ϕ1,n1)

,
[
θϕ,n, θ′ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2]

subject to the constraint that[
θ̄ϕ,nI∗ϕ + θ̄′ϕ,n = 0

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n) �=(ϕ1,n1)

35

where I∗ϕ = Iϕ(X∗).

We require that the α’s, βs, θ̄’s and θ̄′’s are forcibly non-zero. In addition, later in Equa-
tion (5), we will need that θϕ1,n1I∗ϕ1

+ θ′ϕ1,n1

= 0. Hence, the simulator simply aborts if it

happens to pick θ such that θϕ1,n1I∗ϕ1
+ θ′ϕ1,n1

= 0. Note that this happens with probabil-
ity 1/p, and this explains why the 1/p additive factor exists in the adversary’s advantage in
Lemma C.4.

2. Compute and release to the adversary the following public parameters:

Ω← e(g, g)ω, aϕ1,n1 ← g1
θϕ1,n1 , bϕ1,n1 ← g2

θϕ1,n1 , a′
ϕ1,n1

← g1
θ′ϕ1,n1 , b′ϕ1,n1

← g2
θ′ϕ1,n1 ,[

aϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

αϕ,n
, bϕ,n ← (gθϕ,ng1

θ̄ϕ,n)
βϕ,n

,

a′
ϕ,n ← (gθ′ϕ,ng1

θ̄′ϕ,n)
αϕ,n

, b′ϕ,n ← (gθ′ϕ,ng1
θ̄′ϕ,n)

βϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n) �=(ϕ1,n1)

This posits that αϕ1,n1 = z1, βϕ1,n1 = z2, both of which are unknown to the simulator.

3. Compute what it can of the private key:

ω̃ ← gω, aϕ1,n1 ← g1, bϕ1,n1 ← g2,[
aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n ,

yϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

αϕ,nβϕ,n
, y′

ϕ,n ← (gθ′ϕ,ng1
θ̄′ϕ,n)

αϕ,nβϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n) �=(ϕ1,n1)

Note that the simulator does not know yϕ1,n1 and y′
ϕ1,n1

.

The following lemma shows that even if we do not know the parameters z1, z2, yϕ1,n1 or y′
ϕ1,n1

,
we can still compute certain terms efficiently.

Lemma C.5. In step (d1, l1, n1) of the hybrid argument, let ϕ1 = (d1, l1). Suppose we are given
(d2, l2, n2)
= (d1, l1, n1), and let ϕ2 = (d2, l2). Suppose ID1 and ID2 are nodes such that
Φ(ID1) = ϕ1 and Φ(ID2) = ϕ2 and ID2
= I∗ϕ2

. Moreover, suppose we are given λ1 ∈ Zp.
Then, even though the simulator does know yϕ1,n1 , it can efficiently generate the following term,
such that the its resulting distribution is the same as when λ2 is picked uniformly at random.

(yID1
ϕ1,n1

y′
ϕ1,n1

)
λ1 · (yID2

ϕ2,n2
y′

ϕ2,n2
)
λ2 (3)

Moreover, the following two terms can also be computed efficiently

a−λ2
ϕ2,n2

, b−λ2
ϕ2,n2

. (4)

Proof. For simplicity, let α = αϕ2,n2 , β = βϕ2,n2 . For i ∈ [2], we use simply θi to denote θϕi,ni
,

and θ′i to denote θ′ϕi,n1
. We use simply θ̄2 to denote θ̄ϕ2,n2 , and θ̄′2 to denote θ̄′ϕ2,n2

. Notice we do
not define θ̄1, since θ̄ϕ1,n1 and θ̄′ϕ1,n1

are not defined. Define for i ∈ [2], Θi = θi · IDi + θ′i and
define Θ2 = θ̄2 · ID2 + θ̄′2.

Recall that the simulator picked parameters such that θ̄2I∗ϕ2
+ θ̄′2 = 0. In addition, since

ID2
= I∗ϕ2
, and θ̄2
= 0,

Θ2 = θ̄2 · ID2 + θ̄′2
= 0

36

First, the simulator pick λ uniformly at random and define

λ2 = λ− z2λ1Θ1

αβΘ2

.

Observe that λ2 is distributed uniformly, but we cannot compute λ2 efficiently because we do
not know z2. However, since we know gz2 , we can compute gλ2 efficiently. Hence, it follows that
we can compute the two terms in (4) efficiently in the following way.

a−λ2
ϕ2,n2

= (gλ2)−α, b−λ2
ϕ2,n2

= (gλ2)−β.

It remains to show how to compute the term in (3). Rewrite (3) as below:

(yID1
ϕ1,n1

y′
ϕ1,n1

)
λ1 · (yID2

ϕ2,n2
y′

ϕ2,n2
)
λ2

= gz1z2λ1(θ1ID1+θ′1) ·
(
gαβ(θ2+z1θ̄2)ID2gαβ(θ′2+z1θ̄′2)

)λ2

=gz1z2λ1Θ1+αβ(Θ2+z1Θ2)(λ−z2λ1Θ1/αβΘ2) = gαβΘ2λ · (gz1)αβΘ2λ · (gz2)−λ1Θ1Θ2/Θ2 ,

which can be computed efficiently given gz1 and gz2 .

Phase 1: Suppose the adversary makes a decryption query for the hyper-rectangle B(s1, t1, . . . , sD, tD).
Since B does not contain X∗, there exists a dimension d0 ∈ [D] such that x∗

d0
/∈ [sd0 , td0], where

x∗
d0

is X∗ projected onto the dth
0 dimension. Hence, exactly one of the following cases must be

true:

Case 1: For all ID ∈ Λd1(B) such that Φ(ID) = ϕ1, ID
= Iϕ1(X
∗).

Case 2: There exists ID ∈ Λd1(B) such that Φ(ID) = ϕ1 and ID = Iϕ1(X
∗). Note that in this

case, for all ID′ ∈ Λd1(B) such that ID′
= ID, ID′
= Iϕ′(X∗), where ϕ′ = Φ(ID′);
moreover, there exists a dimension d0, such that for all ID0 ∈ Λd0(B), ID0
= Iϕ0(X

∗),
where ϕ0 = Φ(ID0).

Figure 3 illustrates the above two cases with a 2-dimensional example. We now explain how the
simulator generates the decryption key in each of the above cases.

Case 1: (a) Pick at random [μ̃d]d∈[D] ∈R GD, such that
∏

d∈[D] μ̃d = ω̃.

(b) For each ID ∈ Λ∪(B) where ϕ := Φ(ID)
= ϕ1, pick at random λID,1, λID,2. Let

DK(ID) =
(
kID,0, [k

(a)
ID,1, k

(b)
ID,1], [k

(a)
ID,2, k

(b)
ID,2]

)
represent the element in DK for ID,

compute and release DK(ID) as below:

kID,0 ← μ̃d ·
∏

n∈[2]

(
yID

ϕ,ny′
ϕ,n

)λID,n ,[
k

(a)
ID,n ← a

−λID,n
ϕ,n , k

(b)
ID,n ← b

−λID,n
ϕ,n

]
n∈[2]

37

(a) (b)

Figure 3: A 2-dimensional example: Relative position between X∗ and the queried hyper-
rectangle. (a) Each small rectangle shown is a simple rectangle. Along dimension d1, ranges
[3, 4] and [9, 10] correspond to nodes at level l1. (b) The interval tree corresponding to dimension
d1.

(c) For each ID ∈ Λ∪(B) such that Φ(ID) = ϕ1, the simulator can compute the following
DK(ID) efficiently:

kID,0 ← μ̃d1 ·
∏

n∈[2]

(
yID

ϕ1,ny
′
ϕ1,n

)λID,n ,[
k

(a)
ID,n ← a

−λID,n
ϕ1,n , k

(b)
ID,n ← b

−λID,n
ϕ1,n

]
n∈[2]

Since the simulator does not know yϕ1,n1 or y′
ϕ1,n1

, it needs to use Lemma C.5 to gen-
erate DK(ID). Let n′
= n1. To apply Lemma C.5, the simulator first picks at random
λID,n1 , and rewrites kID,0 as

kID,0 = μ̃d1 ·
(
yID

ϕ1,n1
y′

ϕ1,n1

)λID,n1 · (yID
ϕ1,n′y′

ϕ1,n′
)λID,n′

Since ID
= Iϕ1(X
∗) , the simulator can apply Lemma C.5 by substituting (d2, l2, n2)

in the lemma with (d1, l1, n
′), and λ1 with λID,n1 ; in addition, both ID1 and ID2 in the

lemma are substituted with ID.

Case 2: (a) Pick at random [μd]d∈[D] ∈R Zp such that
∑

d∈[D] μd = ω.

(b) For each ID ∈ Λ∪(B)−Λd0(B)−Λd1(B) where ϕ := Φ(ID) = (d, l), d
= d0 and d
=
d1, pick at random λID,1, λID,2. Let DK(ID) =

(
kID,0, [k

(a)
ID,1, k

(b)
ID,1], [k

(a)
ID,2, k

(b)
ID,2]

)
represent the element in DK for ID, compute and release DK(ID) as below:

kID,0 ← gμd · ∏
n∈[2]

(
yID

ϕ,ny′
ϕ,n

)λID,n[
k

(a)
ID,n ← a

−λID,n
ϕ,n , k

(b)
ID,n ← b

−λID,n
ϕ,n

]
n∈[2]

(c) Let ID ∈ Λd1(B) and ID = Iϕ1(X
∗). There exists exactly one such ID. The simula-

tor picks at random λID,n1
∈R Zp. Define Υ =

(
yID

ϕ1,n1
y′

ϕ1,n1

)λID,n1 .

38

(d) For each ID ∈ Λd0(B) where ϕ0 = (d0, l) := Φ(ID), compute and release DK(ID):

kID,0 ← gμd0 ·Υ · ∏
n∈[2]

(
yID

ϕ0,ny′
ϕ0,n

)λID,n[
k

(a)
ID,n ← a

−λID,n
ϕ0,n , k

(b)
ID,n ← b

−λID,n
ϕ0,n

]
n∈[2]

This implies that μ̃d0 = gμd0 · Υ. Note that Υ cannot be computed efficiently, as the
simulator does not know yϕ1,n1 or y′

ϕ1,n1
. However, since ID
= Iϕ0(X

∗), the simulator
can apply Lemma C.5 by substituting (d2, l2, n2) in the lemma with (d0, l, 1), λ1 with
λID,n1

, ID1 with ID, and ID2 with ID. The remaining terms in kID,0 can be computed
efficiently.

(e) For each ID ∈ Λd1(B) where ϕ′
1 = (d1, l) := Φ(ID)
= ϕ1, compute and release

DK(ID):

kID,0 ← gμd1 ·Υ−1 · ∏
n∈[2]

(
yID

ϕ′
1,ny′

ϕ′
1,n

)λID,n

[
k

(a)
ID,n ← a

−λID,n

ϕ′
1,n , k

(b)
ID,n ← b

−λID,n

ϕ′
1,n

]
n∈[2]

This implies that μ̃d1 = gμd1 · Υ−1. Note that Υ−1 cannot be computed efficiently,
as the simulator does not know yϕ1,n1 or y′

ϕ1,n1
. However, since ID
= Iϕ′

1
(X∗), the

simulator can apply Lemma C.5, by substituting (d2, l2, n2) in the lemma with (d1, l, 1),
λ1 with −λID,n1

, ID1 with ID, and ID2 with ID. The remaining terms in kID,0 can
be computed efficiently.

(f) For ID, let n′
= n1. Pick λID,n′ at random from Zp. Then compute and release the
following DK(ID):

kID,0 ← gμd1 ·Υ−1 · ∏
n∈[2]

(
yID

ϕ1,ny
′
ϕ1,n

)λID,n

,[
k

(a)

ID,n
← a

−λID,n
ϕ1,n , k

(b)

ID,n
← b

−λID,n
ϕ1,n

]
n∈[2]

As before, here μ̃d1 = gμd1 ·Υ−1. kID,0 can be computed because the terms containing

yϕ1,n1 and y′
ϕ1,n1

cancel out, leaving kID,0 = gμd1 ·
(
yID

ϕ1,n′y′
ϕ1,n′

)λID,n′
.

(g) For each ID ∈ Λd1(B) such that Φ(ID) = ϕ1 and ID
= ID, compute and release
DK(ID):

kID,0 ← gμd1 ·Υ−1 · ∏
n∈[2]

(
yID

ϕ1,ny
′
ϕ1,n

)λID,n ,[
k

(a)
ID,n ← a

−λID,n
ϕ1,n , k

(b)
ID,n ← b

−λID,n
ϕ1,n

]
n∈[2]

Again, to be able to generate kID,0, Lemma C.5 is required. However, in this case, a

39

slight complication is involved, since two terms in kID,0 contain yϕ1,n1 and y′
ϕ1,n1

:

k
(O)
ID = gμd1 ·Υ−1 ·

∏
n∈[2]

(
yID

ϕ1,ny′
ϕ1,n

)λID,n

= gμd1 ·
(
yID

ϕ1,n1
y′

ϕ1,n1

)−λID,n1 ·
∏
n∈[2]

(
yID

ϕ1,ny
′
ϕ1,n

)λID,n

= gμd1 ·
((

yID
ϕ1,n1

y′
ϕ1,n1

)−λID,n1 · (yID
ϕ1,n1

y′
ϕ1,n1

)λID,n1

)
· (yID

ϕ1,n′y′
ϕ1,n′
)λID,n′

Now the simulator picks λID,n1 at random from Z∗
p, and computes

λ̃ID,n1 = λID,n1

θϕ1,n1 · ID + θ′ϕ1,n1

θϕ1,n1 · ID + θ′ϕ1,n1

− λ(ID)
n1

(5)

Here we require that θϕ1,n1 · ID + θ′ϕ1,n1

= 0. Notice that ID = I∗ϕ1

. As we ex-
plained in the Setup stage, the simulator aborts if it happens to pick θϕ1,(n1,j)’s such
that θϕ1,n1I∗ϕ1

+ θ′ϕ1,n1
= 0. Hence,

kID,0 = gμd1 ·
(
yID

ϕ1,n1
y′

ϕ1,n1

)
eλID,n1 · (yID

ϕ1,n′y′
ϕ1,n′
)λID,n′

And now the simulator can apply Lemma C.5 by substituting (d2, l2, n2) in the lemma
with (d1, l1, n

′), λ1 with λ̃ID,n1 , ID1 with ID, and ID2 with ID.

Challenge: On receiving a message Msg from the adversary, the simulator does the following:

1. Pick random integers [rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .

2. Compute and release the following as the ciphertext.

∗, g+
34, [∗, ∗], . . . , [∗, ∗], (g×

24)
θϕ1,n1I∗

ϕ1
+θ′ϕ1,n1 , Y θϕ1,n1I∗

ϕ1
+θ′ϕ1,n1 ,[

grϕ,nβϕ,n(θϕ,nI∗
ϕ+θ′ϕ,n), (g+

34 · g−rϕ,n)
αϕ,n(θϕ,nI∗

ϕ+θ′ϕ,n)
]

(d1,l1,n1)<(d,l,n)<(D,L,2),ϕ=(d,l)

where (d, l, n) < (d′, l′, n′) if and only if 1) d < d′; or 2) d = d′ and l < l′; or 3) (d, l) =
(d′, l′) and n < n′.

Note that this implies that r = z3 + z4 and rϕ1,n1 = z4. If Y = gz1z3 , it is easy to verify that the
ciphertext is well-formed, due to the fact that[

θ̄ϕ,nI∗ϕ + θ̄′ϕ,n = 0
]
(d,l,n) �=(d1,l1,n1),ϕ=(d,l)

If Y is a random number, then term c
(a)
(d1,l1),n1

is random and independent of the remaining terms of
the ciphertext.

40

Phase 2: Phase 1 is repeated.
Guess: If the adversary guesses that the ciphertext is an encryption of Msg under X∗, the simulator
guesses that Y = gz3+z4 . Else if the adversary guesses that the ciphertext is the encryption under a
random point, then the simulator guesses that Y is picked at random from G.

Proof of Theorem C.3: The theorem follows naturally from Lemma C.4 and the hybrid argument.

D Adaptive-ID Security

Definition 12 (MRQED adaptive security). An MRQED scheme is adaptively secure if all polynomial-
time adversaries have at most a negligible advantage in the adaptive security game defined below:

• Setup: The challenger runs the Setup(Σ, LΔ) algorithm to generate PK, SK. It gives PK
to the adversary, but does not divulge SK.

• Phase 1: The adversary adaptively issues decryption key queries for hyper-rectangles B1,B2, . . . ,Bq0 .

• Challenge: The adversary submits two pairs (X∗
0,Msg0), (X

∗
1,Msg1), where X∗

0,X
∗
1 ∈

LΔ, and Msg0,Msg1 ∈ M are two equal length messages. Furthermore, X∗
0 and X∗

1 are
not contained in any hyper-rectangles queried in Phase 1, i.e., for 0 < i ≤ q0, X∗

0 /∈ Bi, and
X∗

1 /∈ Bi. Now the challenger flips a random coin, b, and encrypts Msgb under X∗
b . The

ciphertext is passed to the adversary.

• Phase 2: Phase 1 is repeated. The adversary adaptively issues decryption key queries for
hyper-rectangles Bq0+1,Bq0+2, . . . ,Bq. As before, all hyper-rectangles queried in this stage
must not contain X∗

0 and X∗
1 specified in the previous stage.

• Guess: The adversary outputs a guess b′ of b.

We define the adversary A’s advantage in the above game as

AdvA(Σ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
The difference between the two notions of security is that in selective security, the adversary

commits to two points X∗
0 and X∗

1 at the beginning of the security game. Therefore, selective
security is weaker than adaptive security. In Appendix C, we prove the selective security of our
construction under the Decisional BDH and the Decisional Linear Assumption in bilinear groups
of prime order.

Previous research has shown that IBE schemes secure in the selective-ID sense can be converted
to schemes fully secure [6, 18, 45, 36] with some loss in security. In particular, Boneh and Boyen
prove the following theorem:
Theorem D.1 ([6]). A (t, q, ε)-selective identity secure IBE system (IND-sID-CPA) that admits N
distinct identities is also a (t, q, Nε)-fully secure IBE (IND-ID-CPA).

This technique can be applied to our case to achieve full confidentiality and anonymity. In our
case, the scheme admits N = TD identities and hence that would be the loss factor in security.

41

E Trivial MRQED Construction

We first describe the trivial construction for one dimension. Let AE = (K, E ,D) denote a secure
public key encryption scheme. K, E ,D represent the key generation, encryption and decryption
algorithm respectively. We build a MRQED1 based on AE as below.

• During Setup, one runs K, the key generation algorithm, O(T 2) times to generate the fol-
lowing public and private keys:

PK =
{
pks,t

∣∣1 ≤ s ≤ t ≤ T
}

, SK =
{
sks,t

∣∣1 ≤ s ≤ t ≤ T
}

• To encrypt a pair (Msg, x) where x is a point between 1 and T , first define for 1 ≤ s ≤ t ≤ T

δs,t(Msg, x) =

{
Msg if s ≤ x ≤ t

⊥ otherwise

where ⊥ denotes the “invalid message”. Now one runs the encryption algorithm E , and for
all ranges [s, t] ⊆ [1, T], one encrypts δs,t(Msg, x) under pks,t. The result of encryption is a
tuple of length T 2, denoted (c1,1, c1,2, . . . , cT,T).

• To release a decryption key DKs,t for range [s, t] ⊆ [1, T], one releases the key sks,t.

• To decrypt a ciphertext C = (c1,1, c1,2, . . . , cT,T) with DKs,t, one uses DKs,t to decrypt cs,t.
Decryption either yields ⊥, if the point x encrypted does not fall within the range [s, t]; or it
yields the message Msg, if x falls within [s, t].

Clearly, the trivial MRQED1 construction results in O(T 2) public key size, O(T 2) encryption
overhead and ciphertext size, O(1) decryption key size and O(1) decryption cost.

One can easily extend the trivial construction into multiple dimensions. The resulting MRQEDD

scheme requires that one encrypt δB(Msg,X) for all hyper-rectangles B in space. Therefore, the
trivial MRQEDD scheme has O(T 2D) public key size, O(T 2D) encryption cost and ciphertext size,
O(1) decryption key size and O(1) decryption cost.

F AIBE-Based MRQEDD Construction

In Section 4.2, we described an AIBE-based MRQED1 scheme. The same idea can be applied to
construct an MRQEDD scheme by making the following analogy between MRQED1 and MRQEDD.

In MRQED1, if a range [s, t] can be represented by a single node in tr(T), then we say that
[s, t] is a simple range. In other words, a range [s, t] ⊆ [1, T] is a simple range iff |Λ(s, t)| = 1.

Recall that in MRQED1, tr(T) is the set of all nodes in the tree. We can also regard tr(T) as
the collection of all simple ranges: for ID ∈ tr(T), cv(ID) is a simple range. Therefore, we can
think of an ID as denoting a simple range in [1, T]. In MRQED1, when we encrypt under a point
x, we encrypt under all IDs in tr(T) covering x. In other words, we encrypt under every simple
range containing point x. When we issue decryption keys for range [s, t], we issue a key for every

42

ID ∈ Λ(s, t), that is to say, we denote [s, t] as the collection of simple ranges, and issue a key for
every simple range in that collection.

The analog of a simple range in multiple dimensions is a simple hyper-rectangle. To define
a simple hyper-rectangle, we first build D interval trees, one corresponding to each dimension.
We assign a globally unique ID to each tree node. Simply put, a simple hyper-rectangle is a
hyper-rectangle B0 in space, such that B0 can be represented by a single node in the tree of every
dimension. More specifically, a hyper-rectangle B(s1, t1, . . . , sD, tD) in space is composed of a
range along each dimension. If for all 1 ≤ i ≤ D, |Λ(si, ti)| = 1, i.e., [si, ti] is a simple range
in the ith dimension, then we say that the hyper-rectangle B(s1, t1, . . . , sD, tD) is a simple hyper-
rectangle. A simple hyper-rectangle can be defined by a single node from each dimension. We can
assign a unique identity to each simple-rectangle B0(s1, t1, . . . , sD, tD) in space. Define

idB0 = (ID1, ID2, . . . , IDD) ,

where IDi(1 ≤ i ≤ D) is the node representing [si, ti] in the ith dimension.
Analogous to tr(T), we now define U to be the set

{
idB0

∣∣B0 is a simple hyper-rectangle
}

. U

can be thought of as the set of all simple hyper-rectangles in space. Analogous to cv(ID) defined
for one dimension, define cv(idB0) = B0. Below we define P× and Λ× analogous to P and Λ in
one dimension:

• Set of id’s covering a point X. For a point X in space, P×(X) is the set of all id’s in U

such that X ∈ cv(id); hence, in this case, P×(X) is the set of all simple hyper-rectangles that
contain the point X. Let X = (x1, x2, . . . , xD). It is not hard to see that the cross-product
P1(X)× P2(X)× . . .× PD(X) define all simple hyper-rectangles containing X. Therefore,
P(X) = P1(X)× P2(X)× . . .× PD(X); and for any X ∈ LΔ, |P(X)| = O

(
(log T)D

)
.

• Hyper-rectangle as a collection of id’s. For any hyper-rectangle B(s1, t1, . . . , sD, tD) in
space, Λ×(B) is the the minimal subset of U such that

⋃
id∈Λ×(B) cv(id) = B. In other words,

Λ×(B) is the minimal set of simple hyper-rectangles that jointly cover the hyper-rectangle
B. For convenience, denote Λd(B) := Λ(sd, td), Λd(B) is the minimal set of nodes covering
range [sd, td] in the dth dimension. It is not hard to see that

Λ×(B) = Λ1(B)× Λ2(B)× . . .× ΛD(B)

In particular, for every id = (ID1, ID2, . . . , IDD) ∈ Λ×(B), where IDi(1 ≤ i ≤ D) is a
node in the tree corresponding to the ith dimension, id defines a simple hyper-rectangle B0;
and Λ×(B0) = {(ID1, ID2, . . . , IDD)}. It is not hard to check that for any hyper-rectangle
B ⊆ LΔ, |Λ×(B)| = O

(
(log T)D

)
.

The above definitions satisfy the following properties: For a point X and a hyper-rectangle B, if
X ∈ B, then P×(X) ∩ Λ×(B)
= ∅; in addition, they intersect at only one simple hyper-rectangle.
Otherwise, if X /∈ B, then P×(X) ∩ Λ×(B) = ∅.

Now we may apply the same AIBE-based construction of Section 4.2 to the multi-dimension
case. The resulting scheme encrypts a message Msg under every simple hyper-rectangle in spaces
that contain the point X = (x1, x2, . . . , xD). This is equivalent to encrypting Msg under every

43

id ∈ P×(X), where P×(X) is the cross-product of all paths from a leaf node representing xi, to
the root of the tree in the ith dimension: P×(X) = P1(X) × P2(X) × . . . × PD(X). To release
the decryption key for hyper-rectangle B, it releases the key for a set of simple hyper-rectangles
that compose B. In other words, we release the key for every id ∈ Λ×(B). Since both P×(X) and
Λ×(B) have size O

(
(log T)D

)
, the AIBE-based MRQEDD scheme has O

(
(log T)D

)
encryption

cost, ciphertext size, and decryption key size.
Now we examine the cost of decryption. Suppose DKB is our decryption key for hyper-

rectangle B, and DKB is composed of a key kB0 for every simple hyper-rectangle in Λ×(B). Let
C denote a ciphertext under point X. C consists of a component cB0 for every simple hyper-
rectangle containing the point X. Now if we naively try every kB0 over every cB′

0
, then de-

cryption cost would be O (|P×(X)| · |Λ×(B)|), and in this case, O
(
(log T)2D

)
. However, just

as in the one dimensional case, we know that ID and ID′ cannot be equal if they are at dif-
ferent depths in the tree. Define �(ID) to extract the depth of node ID in its tree. For id =
(ID1, ID2, . . . , IDD), where IDi is a node in the tree corresponding to the ith dimension, de-
fine �(id) = (�(ID1), �(ID2), . . . , �(IDD)). Therefore, we only need to try kB0 over cB′

0
when

�(idB0) = �(idB′
0
). Of course, we cannot directly release B′

0 for the ciphertext cB′
0
, since the

ciphertext is meant to hide the point X being encrypted. However, observe that since we are en-
crypting a message under all id ∈ P1(X) × P2(X) × . . . × PD(X), �(id) naturally establishes
a bijection between cid ∈ C and (l1, l2, . . . , lD) ∈ [L]D. Therefore, we can release �(id) along
with every ciphertext cid without leaking any information about X. Now since we only need to try
kB0 over cB′

0
when �(idB0) = �(idB′

0
), the decryption cost is reduced to O

(
(log T)D

)
instead of

O
(
(log T)2D

)
.

44

