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Abstract—Face authentication is commonly offered as an
alternative to passwords for device unlock. However, available
face authentication systems are vulnerable to simple spoofing
attacks. We demonstrate the impact of image quality on
spoofing, using low resolution photo representative of those
commonly posted online. We also show that videos and
slideshows of images at different angles, and crude 3D avatars
are effective. To defend against these vulnerabilities, we propose
a face authentication system that includes a secrecy challenge.
We present SAFE (Secure Authentication with Face and Eyes1),
an improved face authentication method that uses a commodity
gaze tracker to input a secret. During authentication, the
user must not only show her face but also gaze at a secret
icon that moves across the screen. Using a novel method for
estimating the noise level in the gaze tracking data, SAFE
adapts the system’s parameters to enable secure, hands-free
authentication.

I. INTRODUCTION

Screenlock is an ubiquitous feature, available on almost
all of today’s laptops, tablets, and smartphones. A screenlock
hides what the user was last viewing. It also prevents
unauthorized use of the device and access to sensitive data.

Mobile device users employ screenlocks with distressing
infrequency. Industry surveys estimate that between 38%
and 70% of users do not even lock their mobile devices
with passwords or PINs [19, 25]. As a result, biometric
technologies are now offered as alternatives to passwords,
including face authentication on devices with front-facing
cameras [24]. However, face authentication is vulnerable to
spoofing attacks, with attacks demonstrated as recently as
Android’s Jelly Bean release [13, 18, 20].

In the social media era, users’ faces are often available
online. Faces should be considered public knowledge, which
means face authentication lacks a secrecy component. Se-
crecy is the strength behind passwords and PINs; to be
secure, it may be something that face authentication must
incorporate.

To address the issues with face authentication, we take the
first step to design a Secure Authentication system with Face
and Eyes (SAFE) for device unlock. SAFE is a hands-free,
non-intrusive, and provably secure system that is appropriate
when users and devices are physically co-located. In SAFE,
we augment a face-based identity recognition module with
a secrecy-based challenge-response protocol using a gaze
tracker. During device unlock, a user tracks her secret
icon with her eyes. The system recognizes the user’s face

1Note that SAFE differs from SAfE, a method for ad-hoc pairing [7].

and evaluates whether she has followed the correct icon
using her gaze. SAFE integrates the passive and hands-free
advantages of face recognition with additional security from
the gaze-based challenge-response protocol. This leverages
the advantages of both face recognition and secret-based
authentication.

To account for the errors introduced by both human eyes
and gaze trackers, we develop a mathematical framework to
implement the challenge-response protocol using Principal
Component Analysis (PCA). This framework allows us to
quantify the robustness of the protocol and determine the
system parametrization. The key contributions of our work
include:
• The first analysis of the impact of image quality to suc-
cessfully spoofing commercial face authentication systems.
We show that attacks are successful even with low resolution
images, videos, and animations.
• A unlock system that augments face recognition with a
challenge-response protocol that uses gaze tracking.
• A secrecy challenge that could be deployed at any hands-
free gaze tracking device such as head-mounted displays.
• A mathematical framework for estimating the gaze di-
rection of a user. This framework is robust against the
imprecision introduced by human eyes and gaze trackers and
enables us to analyze the security of the challenge-response
protocol and to determine the system parametrization.

The remainder of the paper is organized as follows.
We evaluate the impact of image resolution on spoofing
success in Section II. Next, we present the design and
implementation of SAFE in Section III. Section IV outlines
a mathematical model for analyzing system security and
parametrization. We evaluate our system and model using
an empirical user study in Section V. Finally, we review
related work in Section VI and conclude in Section VII.

II. SPOOFING FACE AUTHENTICATION

Photos taken in conditions similar to users’ enrollment
conditions most likely result in successful logins [6]. How-
ever, existing work fails to examine one important question:
how “good” do these images need to be? How many pixels
does an attacker need to conduct a successful attack? Is it
possible to break a face authentication system with the low-
quality photographs that are widely posted online?

We tested four commercially available face authentication
systems: Dell FastAccess (version 2.4.95) [1]; HP Face



Figure 1: Left: Image quality declines with resolution. Image
snippets are shown at slightly lower scale than the printed
photographs. Right: Crude 3D avatar can spoof the Lenovo
and Toshiba systems using liveness detection.

Recognition for HP ProtectTools (version 2.0.1.651); Lenovo
Veriface (version 3.0) [2]; and Toshiba Face Recognition
(version 3.1.18) [4]. For each of the four systems, we
enrolled eight individuals (four male, four female) across
a variety of skin colors and races (Caucasian, East Asian,
South Asian, Latino).

On the Dell, Lenovo and Toshiba systems, we increased
the sensitivity levels to their highest level; there were no
adjustable settings on the HP. After enrollment, individuals
attempted to login to the system, without any change in
position or lighting. If the individual was unable to login, we
reduced the sensitivity by one level until the individual could
successfully login. At that maximal sensitivity level, we tried
to spoof the respective system. Also, Lenovo notebooks
provide an option to enable liveness detection, which is
disabled by default. To start with the most conservative
setting, we enabled liveness detection at its highest level
and reduced it until individuals could successfully login.

A. Photographs and Videos

We created a high-quality photograph of each individual
using a Canon Powershot SD1200IS digital camera. The
photos were taken in an indoor environment, with typical
fluorescent office lighting. Individuals were photographed
from the front against a plain, off-white wall while main-
taining a neutral expression.

We cropped and scaled the images to 1200×1500 pixels,
such that the face was about 750 pixels high, from the tip of
the chin to the top of the head. Then we downsampled the
photos to 600×750, 300×375, 150×188, 75×94, 38×47,
and 19×24 pixels.

Each photo was scaled to page size and printed on letter-
sized office paper using a Xerox Phaser 7400 color laser
printer. Figure 1 (left) illustrates the decline in image quality
with the decrease in resolution.

We also recorded VGA (640×480) videos of individuals
rotating their heads slightly to the left and right. Faces were
about 300±100 pixels large.

B. Spoofing Tests

We tried to login to each system with the photographs
or video. For the Dell and HP systems, we held the printed
photographs in front of the laptop’s webcam. For the Lenovo

and Toshiba systems, the video played on a 30” monitor
facing the laptop’s webcam. The distance of the images was
adjusted to roughly match the size of a live user’s head.

The Dell, Lenovo, and Toshiba systems all support five
discrete sensitivity levels. Assuming level 5 is the highest
sensitivity, individuals were able to login, on average, at
level 4.4 on the Dell system (default: 3); levels 2.6 for
liveness detection (default: off) and 5 for face recognition
(default: 5) on the Lenovo system; and level 4.8 (default: 1)
on the Toshiba system. The manufacturers most likely chose
low sensitivity levels to lower the rate of false negatives.

Figure 2 summarizes our spoofing results. The results
show that photographs with an extremely low resolution are
capable of spoofing both the Dell and HP systems. The HP
system was much easier to reliably spoof, perhaps because
we could not increase the sensitivity level over the default.
At higher sensitivity levels, the Dell system was sensitive to
changes in lighting and position. We were able to reliably
spoof the Dell system if we decreased the sensitivity level
back to its default. A video was also able to spoof the Dell
system. Turning off liveness detection on the Lenovo system
also allowed us to authenticate using still images.

Commercial face recognition systems have been rumored
to perform poorly with dark-skinned faces [8]. We observed
that all four systems struggled with dark-skinned individuals.
Our darkest-skinned participants were unable to enroll or
login under standard office lighting. They even struggled
to enroll next to a window with bright daylight. Similarly,
login was also very unreliable, even in bright daylight. One
individual was unable to login on the Toshiba system – at
any level of sensitivity – after enrollment.

C. Alternatives to Videos

Since attackers may not have access to videos of users
at specific angles, we tried two alternative strategies. First,
we cycled through slide shows of photographs from several
angles. The slide show attack was effective on both the
Lenovo and Toshiba systems. Second, we generated a video
of a 3D avatar rotating its head from side to side. Using
one frontal photograph of the individual’s face, we created
a 3D model of the individual’s head using FaceGen Modeler.
Using 3ds Max, a 3D animation tool, we generated an
animation of the model rotating and nodding its head. We
show a screenshot of an example avatar in Figure 1 (right).
The video of the avatar was also effective against the Lenovo
and Toshiba systems.

D. Summary of Attacks

The Dell and HP face authentication systems are eas-
ily spoofed by low-quality, high-contrast photographs of
users’ faces, such as pictures on Facebook or profile photos
on LinkedIn. The Lenovo and Toshiba face authentication
systems support liveness detection, but we were able to
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Figure 2: Summary of photo and video spoofing attempts at the systems’ highest sensitivity levels. Note that we were able
to reliably authenticate with images at the systems’ default sensitivity levels.

spoof both these systems with videos and animations of the
enrolled users.

In general, face authentication systems are vulnerable
because faces are publicly available information in the
social media era. The optical appearance of a face can be
reproduced with ease using consumer-grade equipment.

III. THE SAFE SYSTEM

While flawed, face authentication is still convenient, al-
lowing users to unlock their devices in a hands-free, non-
intrusive manner. Below we present the design and imple-
mentation of SAFE, a more secure hands-free system for
device unlock. Our system requires a front-facing camera,
as well as a gaze tracker consisting of two infrared light
sources and a camera with an infrared band-pass filter.

The system has two phases: an enrollment phase and an
authentication phase. In the enrollment phase, the user cali-
brates the gaze tracker and enrolls in the system. Enrollment
consists of two parts: taking pictures of the user for the face
recognition system, and selecting a set of secret icons for
a multi-phase challenge-response protocol. To successfully
login, a user needs to recognize her secret among a set of
decoy icons and follow it using her gaze.

In the authentication phase, the user faces her device’s
front-facing camera. If the user’s face is recognized as the
face of an enrolled user, the SAFE user interface is displayed
(there should be a password backup for adverse lighting
conditions). A window opens with n icons populating the
sides of the screen. One of the n icons is a member of the
user’s set of secret icons. Each icon sits on a line outlining
its path of movement, as shown in Figure 3 (bottom). The
system pauses for about one second so that the user can
locate her secret icon. The icons start moving with uniform
speed along their paths, and the user must follow her secret
icon with her eyes. As the challenge is solved by a minimal
gaze movement, it is very difficult for an observer to conduct
shoulder surfing attacks.

After the icons move off the screen, another set of
icons may appear. This second phase is similar to the first,
except the set of icons on the screen is different. The user
follows her next secret icon, and the process may repeat
until she completes p total phases. The number of icons
per phase n and the number of phases p depend on the

system configuration, which in turn depends on the security
requirements.

During device unlock, the video stream from the camera
appears as a transparent overlay below the icons. White
circles outline the target location of the user’s eyes. The
circles represent the location of the user’s eyes during
calibration to help the user maintain her head position dur-
ing authentication. We deliberately implement a transparent
overlay and circles of a certain size to make shoulder surfing
attacks more difficult.

A. System Architecture

The SAFE architecture, illustrated in Figure 3 (top), is
highly modular and comprises the following parts: the user
interface, the gaze tracker, the face recognizer, the authenti-
cation model, and the user icon and profile databases. The
user interface is shown in Figure 3 (bottom) and displays:
1) the challenge generated by the SAFE authentication
module; 2) the location of the user’s eyes during calibration,
represented as white circles; and 3) the current video stream
from the front-facing camera.

The gaze tracker is a software and hardware system that
reflects infrared lights on users’ eyes and calculates the eyes’
gaze location through pupil movement. The face recognition
system evaluates the similarity of the current user’s facial
features to the enrolled user(s). The face recognition system
must identify the current user as an enrolled user to initiate
device unlock. During unlock, the face recognition system
constantly runs in the background and communicates its
results to the authentication module.

The SAFE authentication module is responsible for two
main functions: generating a challenge and evaluating the
response; and matching a user’s gaze data to one of the
icon paths on the screen. The challenge-response generator
retrieves one of the user’s secret icons from the profile
database and constructs a challenge for each phase based
on the physical screen size, the screen resolution, the gaze
tracking error, and the desired security level. A challenge
includes a set of icons from the icon database, the location of
the icons on the screen, and the trajectories that the icons will
take. Using the measured gaze data, the gaze angle analyzer
determines the angle of a user’s gaze path and determines
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Figure 3: SAFE system architecture and the SAFE user
interface during device unlock.

whether the gaze path matches the secret icon’s path. We
will describe this process in Section III-B.

The SAFE user profiles database stores profiles of en-
rolled users. Profiles include facial feature data, as well as
the user’s set of secret icons and user-specific sets of decoy
icons. The SAFE icon database stores all of the icons used
in the authentication challenges.

B. Implementation

We implemented the SAFE user interface and authentica-
tion module on Windows 7 using the Microsoft Foundation
Classes (MFC). The initial development was completed on
a Samsung Series 7 Slate tablet with 64GB memory, but the
software works on any Windows 7 machine. We used off-
the-shelf technology for face recognition and gaze tracking.
SAFE’s modular architecture allows us to accommodate
other face recognition techniques or gaze tracking packages
as needed.

We use the ITU Gaze Tracker (version 2.1), an open-
source video-based gaze tracker developed by the IT Uni-
versity of Copenhagen [22]. The gaze tracking software
is paired with two Sony HVL-IRM infrared lights and a
Thorlabs DCC1545M camera. The camera is fitted with an
Arecont Vision MPL8-16 and an Opteka HD2 37mm R72
720nm infrared filter. The infrared lights and camera are
mounted to a custom-made aluminum rack using Giottos
MH 1004 mini ball heads and wing screws.

1) Calculating Gaze Trajectory Angles: All icons move
across the screen along different trajectories composed of
multiple line segments. A user gazes at her secret icon as

αg

φ

αs

|αs - α
g|

L

Icon trajectory

Gaze trajectory
Gaze measurement 

Figure 4: Diagram illustrating how SAFE compares gaze
trajectory αg and secret icon trajectory αs. For a successful
authentication with one-line trajectories, |αs − αg| must be
less than system tolerance φ.

it moves across the screen. All gaze measurements while
the icon moves along one line segment constitute a set of
gaze points in the 2-D plane. For each set of gaze points,
we compute the angle of the user’s gaze direction using
Principal Component Analysis (PCA). PCA can discriminate
the main direction of the gaze from noise in the gaze
measurements in a way that best explains the variance in
the set of points. We set the gaze direction as the first
principal component (PC) of the gaze point set, and refer
to its angle, relative to the horizontal line, as αg . The dotted
line in Figure 4 exaggerates how noisy data may cause αg
to deviate slightly from αs.

2) Matching Icon and Gaze Trajectories: Let αs be the
angle of trajectory of the user’s secret icon, and let φ be the
tolerance given by the system. The tolerance φ defines the
maximum angle that the user’s gaze can deviate from the
trajectory of the user’s secret icon where the two angles are
still considered a match. In other words, the system considers
αs and αg to be the same if |αs − αg| < φ. Figure 4
illustrates how SAFE matches a user’s gaze trajectory to
an icon trajectory.

When icons change direction partway across the screen,
we split the trajectory into two line segments. There are
then two icon angles, αs1 and αs2, and two measured gaze
angles, αg1 and αg2, each of which is associated with one
line segment. These two polylines are considered to be the
same if (|αs1 − αg1| < φ) ∧ (|αs2 − αg2| < φ).

3) Face Recognition: We use an online face recognition
module from [27] implemented in C/C++ using OpenCV [3].
To build a user’s identity model, we use two categories
of features extracted from user faces: the eigenface and
the geometry (triangle) between two eyes and the mouth.
For every new image, a face detection procedure uses pre-
trained Haar Cascade classifiers to detect faces [28], from
which we locate the eyes and mouth. We then proceed to
extract features from the face image and geometry. During
enrollment, we add the facial features to the user’s identity
model based on 8 pictures of the user. During authentication,
we test the facial features against the user’s identity model:
the face recognition system captures images from the video



stream continuously and runs each image through the face
recognition.

4) Device Unlock Criteria: Access is granted when the
user manages to satisfy following three conditions:

1) The user exceeds a certain threshold of positive iden-
tifications from the face recognition system.

2) The user follows her secret icons in such a way that
sufficiently many (e.g., more than 10) gaze points
overlap with a substantial fraction of the icon line.

3) The directions derived from gaze points, αg1 and αg2,
satisfy (|αs1 − αg1| < φ) ∧ (|αs2 − αg2| < φ).

Imposing a lockout penalty between unsuccessful unlock
attempts can render brute force attacks impractical, particu-
larly when the penalty increases between successive unlock
attempts. SAFE pairs a weak password with an exponential
lockout penalty to resist brute force attacks. After the third
unlock attempt, a one-second penalty is added that doubles
after every subsequent unsuccessful attempt.

IV. SYSTEM SECURITY AND PARAMETRIZATION

Several interrelated system parameters influence the se-
curity and usability of SAFE. In this section, we present a
mathematical framework that guides the system parametriza-
tion. The parameters that affect the security and usability of
our system are:

• L: the length of the line that the user follows,
• n: the number of icons on the screen during one phase,
• σ2: the error (noise) in the gaze data,
• m: the number of gaze points measured per line,
• φ: the angle matching tolerance.

Noise σ2 originates from two sources: (1) the imprecision
with which the user gazes at points on a line; and (2) the
statistical errors of the measurement process. Error (2) can
be measured and is reported in our findings in Section V. The
other parameters must be set when configuring the system.

The primary parameter that impacts security and usability
within a single challenge-response phase is the angle toler-
ance φ. It defines the maximum angle that a user’s gaze
path can deviate from that of the secret icon where the
two are still considered a match. In this way φ determines
the number of icons allowed to display and move over the
screen, which determines the security level of the protocol.
Thereby, φ itself depends on σ2, m, and L.

As follows, we derive a theoretical dependency between
all these parameters. We first show how φ determines the
maximal number of icons n in Section IV-A, and then derive
how φ depends on the given parameters in Section IV-B.

A. Number of Icons n as a Function of φ

As described in Section III-B2, the user’s gaze is matched
with the true icon if the difference of the gaze angle to the
true line is within angle tolerance φ. We derive the maximal
number of icons that we can put on the screen as a function
of φ. For simplicity, we start our analysis assuming that icons

move across the screen in one straight line. Then we extend
this analysis to a two-line trajectory where icons change
direction mid-screen. Since screens across different phases
are independent and similarly configured, we only need to
analyze the system with a single phase (one screen).

Theorem. Given the tolerance φ, the system can at most
securely distinguish n = b 360

◦

2φ c number of icons that move
along one-line trajectories. Please see [5] for a complete
proof. Intuitively, with more than b 360

◦

2φ c icons on the screen,
there must be at least two icon lines with an angle difference
below 2φ, where the factor of 2 comes from using the
absolute value of the angle difference. Then, by the setup
for matching gaze to flying icons in Section III, an attacker
may match her gaze to multiple lines by following only one
line. As a consequence the extra icons (exceeding b 360

◦

2φ c
icons) do not improve security.

Two-Line Trajectories. When icon movements have one
change of direction, the trajectory of the icon consists of two
line segments with different angles. Given φ, the system
can at most securely distinguish n = (b 360

◦

2φ c)
2 number

of icons that move along two-line trajectories. This can be
seen as follows. Consider (b 360

◦

2φ c)
2 icons on the screen.

We construct two sets of single distinguishable lines and
then combine them to distinguishable pairs. Let the sets
of single lines be S1 = {li = 2iφ, i ∈ {1, . . . , b 360

◦

2φ c}}
and S2 = {lj = 2jφ, j ∈ {1, . . . , b 360

◦

2φ c}}. The set
of distinguishable polylines is then the Cartesian product
P = S1×S2. The cardinality of this set is equal to (b 360

◦

2φ c)
2.

B. Derivation of Angle Tolerance φ

We use a statistical method based on PCA to estimate the
direction of the gaze line. As described in Section III-B1,
the gaze direction is the first principal component (PC) of a
set of user’s gaze points associated with one line segment.

When a user tracks a moving icon on the screen, her
gaze often deviates from the exact icon position with some
randomness as illustrated in Figure 4. In addition, the
gaze tracker produces gaze measurements with a statistical
error around the true gaze points. These two effects are
the primary sources of error when measuring users’ gaze
locations. We want to set the tolerance φ as small as possible
(to maximize security) while the system is still robust to the
noise in gaze data.

We view the user’s derived gaze trajectory as a noisy
version of the icon’s true trajectory. We determine the
tolerance φ such that, with high probability, the deviation
of the first PC from the icon (line) trajectory is smaller
than φ. To this end, we make the following assumptions:
(1) All components of the differences between the measured
gaze points and the moving icon points are independent and
identically distributed random variables with mean 0, vari-
ance σ2, and fourth moment µ4. As in [15], our theoretical
analysis can also accommodate anisotropic distributions. (2)



The user follows a moving icon over a distance L that is
significantly larger than σ.

With this setup, we are equipped with two versions of data
of equal sizes: one version is the data points defined by an
icon moving at uniform speed along the icon trajectory line,
while another version is the measured gaze points, which are
distributed around the corresponding icon points according
to the first assumption. For 2D data points uniformly dis-
tributed on a line, the first PC is the line itself, and the two
eigenvalues of its covariance matrix are λ1 = L2

12 , λ2 = 0,
respectively.

According to matrix perturbation theory [26], φ can be
bounded by the following inequality:

|sinφ| ≤ ‖∆‖F
λ1 − λ2

=
12‖∆‖F
L2

, (1)

where ‖ · ‖F is the Frobenius norm of a matrix, and ∆ is
the difference between the covariance matrix of measured
gaze points and that of moving icon points. According to
a statistical perturbation result on PCA [15], ‖∆‖F can be
bounded by expectation using:

E(‖∆‖F ) ≤ 2

√
σ2L2

6m
+

√
2σ4 +

2(µ4 + σ4)

m
. (2)

Using this expectation bound and assuming m� 1, we have

|sinφ| ≤ 12‖∆‖F
L2

.
12σ

L

(√
2

3m
+

√
2σ

L

)
. (3)

With more data points (larger m) it is more likely that the
noise cancels out. This leads to a smaller bound on φ. L/σ is
a measure of signal-to-noise ratio (SNR). More noise means
that the SNR is smaller and the bound on φ is larger. Recall
that σ is tied to individual users and specific gaze trackers.
By calibrating individuals with a given gaze tracker, we may
obtain a personalized value of σ and adapt the system to a
user and her device.

V. SYSTEM VALIDATION AND USER STUDY

Based on the model in the previous section, we
parametrize SAFE with calibration data from 10 users.
Then we conduct a user study to understand how many
phases users can reasonably handle in practice. Some work
has explored the use of gaze tracking for security appli-
cations [10, 12, 14, 17, 29], but they were not based on
following moving objects.

A. Setting System Parameters

In this section, we set SAFE’s parameters to achieve an
acceptable level of security and a practical level of usability.
The free parameters of our system, m and L, are primarily
determined by gaze error σ and the bound in (3).
Calibration and estimating σ: To estimate the precision
of our gaze tracker’s measurements, we asked 10 users
to complete the calibration exercise. Calibration allows us

to estimate σ using the differences between the measured
gaze points and the corresponding true (icon) points on the
screen. We performed nine rounds of calibration for each
of the 10 participants. In each round, a participant gazes
at nine locations on the screen. The locations are presented
in a random order, and the gaze tracker collects around 35
points for each location. Thus, we collected more than 3,000
gaze points for each user. We compute the mean and the
standard deviation σ for each participant’s calibration data.
The histograms of gaze errors for two users are shown in
Figure 5 . The means are very close to 0, and σ ranges from
20 pixels to 40 pixels.

Number of gaze points per line m: Our theoretical
analysis in Section IV shows that m influences φ and the
number of icons that we can put on the screen in any given
phase. For several realistic values of σ, we explore a variety
of values for m and L to see their effects on the angle
tolerance φ. Figures 5c and 5d show three important results.
First, σ has a significant impact on φ. For almost every pair
of m and L values, φ becomes more than three times larger
when σ changes from 20 to 40. Second, m has a relatively
small effect on φ. The marginal benefit of increasing m is
small, particularly when m ≥ 20. Finally, at the greatest
error level that we saw in our participants (σ = 40), the
bound on φ is 54.1◦ even when only 10 samples are collected
as the user tracks the icon along a line segment of length
L = 275. This allows us to display up to (b 360◦

108.2◦ c)
2 = 9

different icons per phase. If the eye tracker sampled at a
higher rate, we could collect more samples and support a
larger number of icons. However, during the user study,
participants exhibited some difficulty with nine icons on the
screen. They preferred fewer (six) icons on the screen.

B. User Study

We conducted a user study to answer two questions. First,
how many phases can users handle during login? Second,
does the theoretically derived angle tolerance φ provide
sufficient security while avoiding false rejections?

Thirteen participants (five female, age 25–45 years) com-
pleted the study. Participants were required to complete the
study without eyeglasses. Participants first selected their set
of secret icons from a predetermined pool of icons. Next,
they calibrated the gaze tracker using 9 calibration points on
the screen. Participants were asked to locate and follow their
secret icons. Each user logged in with two to five consecutive
phases with randomized order. During each phase, six icons
moved at uniform speed across the screen. The trajectories
were randomly selected such that the distance between all
pairs of first line segments and all pairs of second line
segments were at least 2φ, respectively. The length of each
line segment was 275 pixels or more. To successfully follow
her secret icon, a participant’s gaze must be measured along
each line segment of her secret icon for 10 or more points.
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Figure 5: 5a and 5b: Histogram of gaze errors, the differences (in unit of pixels) between the measured gaze points and
their corresponding icon points on the screen. For each user, more than 3000 gaze points are collected during the calibration
stage, which are used to estimate σ. 5c and 5d: The effects of m, σ, and L on the bound of φ.

We recorded the number of attempts required to suc-
cessfully login, the time required to successfully login, and
participants’ gaze data. Analysis of the gaze data enables us
to validate φ below. Also, participants provided qualitative
feedback by answering a 7-point Likert scale [23] for the
statement, “Overall, the task was:” .

Results: On average, participants were able to successfully
login with 2 to 4 phases in 1.1 attempts. This jumped to an
average of 1.5 attempts with 5 phases. Participants expressed
that 5 phases required too much concentration. This is
reflected in the questionnaire in Figure 6a. Participants spent
an average of 8s in each phase. Figure 6b shows the time
required to successfully login, including failed attempts. Our
results suggest that 4 or fewer phases work best for the SAFE
system.

Validating the bound of φ: From the 13 participants,
we accumulated around 450 sets of gaze data. Each set
of gaze data contains 10 or more gaze points associated
with an icon line segment. For each set of gaze data, we
compute the first PC of the gaze points. Next, we calculate
the angle difference between the PC and the corresponding
line segment of the secret icon. With the angle differences
for all participants, we compute the mean difference, which
is 0.4◦, and the standard deviation, which is 25.5◦. Figure 6c
shows a histogram of the angle differences. We find that our
theoretical bound |φ| = 54.1◦, indicated by the red dash
lines in Figure 6c, is indeed a high probability bound and
covers more than 95% of the angle differences in our user
study. Thus, it is unlikely that the system will fail to detect
when the user follows the correct line. At the same time, the
bound is not overly loose, providing maximal security for
the given error rate. The key space of our system is limited
by the imprecision of the device, not by the method itself.
As more precise eye trackers become available, SAFE will
support a larger key space and will have increased usability.

VI. RELATED WORK

Prior work in gaze tracking and security focuses on
methods for input selection and resistance to shoulder-

surfing attacks. Kumar et al. implemented a system that uses
gaze tracking to input the characters in a password or PIN,
in lieu of a standard keyboard [17]. Similarly, De Luca et al.
used gaze tracking to enter PINs into an ATM interface [11].
Both show that gaze-based input takes more time than
keyboard entry. More recently, researchers have tested gaze
tracking with non-alphanumeric passwords. Dunphy et al.
tested ATM interfaces using faces instead of numbers [12].
Forget et al. proposed Cued Gaze-Points, in which users
select secret points on a sequence of images [14]. De Luca
et al. evaluated an authentication system, EyePassShapes,
based on gaze gestures [10].

Biometrics-based authentication schemes are gaining pop-
ularity on mobile devices [16]. Extensive research has been
done and substantial progress has been achieved in develop-
ing authentication schemes based on fingerprints [21], iris
recognition [9] and facial patterns [27]. Our work shows
the benefit of combining multiple factors to achieve secure
authentication.

VII. CONCLUSION

We present SAFE, a system for secure device login
that augments face recognition with gaze tracking. SAFE
combines face recognition for identification with gaze track-
ing for the input of a secret. During login, while a face
recognizer continuously checks the identity of the user, a
number of icons are displayed on the screen; as the icons
move in incongruent line patterns, the user follows her secret
icon with her eyes. By adapting the number of icons and
repetitions, one can control the security of the system.

Our proof-of-concept is supported by a theoretical anal-
ysis that quantifies the impact of real-world measurement
errors on the user experience. SAFE is a novel system that
is ideal for hands-free login on mobile devices.
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