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ABSTRACT
A number of recent research and industry proposals discussed using
encrypted data in web applications. We first present a systemati-
zation of the design space of web applications and highlight the
advantages and limitations of current proposals. Next, we present
ShadowCrypt, a previously unexplored design point that enables
encrypted input/output without trusting any part of the web ap-
plications. ShadowCrypt allows users to transparently switch to
encrypted input/output for text-based web applications. Shadow-
Crypt runs as a browser extension, replacing input elements in a
page with secure, isolated shadow inputs and encrypted text with
secure, isolated cleartext. ShadowCrypt’s key innovation is the use
of Shadow DOM, an upcoming primitive that allows low-overhead
isolation of DOM trees. Evaluation results indicate that Shadow-
Crypt has low overhead and of practical use today. Finally, based on
our experience with ShadowCrypt, we present a study of 17 popular
web applications, across different domains, and the functionality
impact and security advantages of encrypting the data they handle.

ACM Classification: D.4.6 Security and Protection

1. INTRODUCTION
Users today face the privacy diffusion problem: a number of web

applications handle their data but users lack control of and visibility
into who can access their data, who can modify it, and who can
summarize or embed their data without permission. Violations of the
user’s expectation of data usage abound, from rogue employees [8]
and government agencies [49], to unexpected changes in policies by
the web application itself [20, 28].

A promising solution to this problem is providing only encrypted
data to web applications. The user can control the decryption keys
and only provide them to trusted principals. A large body of prior
work in the cryptography community [7, 16, 44] as well as in the
systems community [37, 38] discusses techniques to encrypt and
compute on data handled by web (or cloud-based) applications.

Few, if any, of these proposals have achieved broad adoption. A
possible reason could be that all the proposals require significant ap-
plication rewrites. The resulting deployment and usability difficulty
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is an insurmountable mountain for typical users and developers. Re-
quiring application rewrites also means that users cannot make the
switch to encrypted data; instead, they have to wait for developers.

Clearly, there is a need for a secure, usable mechanism for en-
crypting data in web applications that puts the users back in control.
For this reason, companies such as Virtru [48] have emerged. Virtru
offers a browser plugin that performs email encryption, such that
web-mail providers like Gmail cannot see users’ data in the clear.
However, Virtru provides only a point solution for a handful of Web-
mail providers, and does not generalize to other web applications.

1.1 Our Contributions: ShadowCrypt
We present ShadowCrypt, a general solution for encrypting tex-

tual data for existing web applications. With ShadowCrypt, security
conscious users are back in control of their data: they have the
choice of sending encrypted data to web apps (e.g., Gmail, Face-
book, Twitter, Reddit, etc.), while still being able to use much of the
functionality of existing web apps.1

ShadowCrypt sits between the web application and the user,
where it captures user input and provides encrypted data to the
application. When the application displays encrypted data to the
user, ShadowCrypt again transparently captures encrypted text in the
page and renders decrypted text instead. Our experiments indicate
that ShadowCrypt causes minimal overhead on web pages, which is
unnoticeable to the user.

ShadowCrypt is designed to be secure against potentially mali-
cious or compromised web applications. Therefore, a key challenge
in developing ShadowCrypt is successfully isolating private data
from the web application’s JavaScript and HTML code. While
the browser provides primitives to isolate JavaScript code, the user
only interacts with the DOM (i.e., the UI tree). Secure input/output
requires securely isolating the application’s DOM from the DOM
containing the private data in the clear. To isolate the DOM, Shadow-
Crypt relies on Shadow DOM, an upcoming W3C standard already
supported in modern web browsers like Google Chrome and Firefox.
In this sense, ShadowCrypt’s design minimizes the trusted comput-
ing base to the browser and ShadowCrypt itself. As we discuss
in Section 2.1, in all previous proposals of encrypting data to web
applications, the web application’s JavaScript/HTML code can ac-
cess the user’s data in the clear, while in some proposals even the
server-side PHP or Java code can access the user data in the clear.

ShadowCrypt defaults to random encryption, a good fit for tex-
tual data common in web applications. ShadowCrypt also supports
deterministic encryption. This allows search to continue working
without application modification, a trade-off also made in previous
work [37]. To study to what extent ShadowCrypt would impact

1ShadowCrypt is available for download in the Google Chrome
Store as well as open-source online [43].
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Figure 1: Architecture of typical web applications and chokepoints for data
encryption.

the functionality of existing web applications, we tested Shadow-
Crypt with 17 popular web applications covering a broad range of
functionality such as email, social networks, task management, and
medical records. We found that the combination of deterministic and
random encryption facilitates transparent data encryption while still
maintaining prominent functionality in 14 out of the 17 applications
we studied, including popular applications like Gmail.

In our current prototype, users manually share the encryption
keys with collaborators through a separate, trusted channel. We
designed ShadowCrypt to handle key distribution independently of
its isolation system. We hope that ShadowCrypt provides a new,
easily deployed platform for the broader community to develop and
evaluate novel key management and sharing systems for security
and usability.

Our experience with popular web applications is (to our knowl-
edge) the first empirical study of the trade-off between functionality
and data-encryption in wide-ranging applications such as publishing,
task management, and medical records. Section 7 provides the de-
tails of our case studies. The issues we present help identify future
work opportunities for encrypted data in the cloud. Some of the
issues we identify are fundamental: for example, it is not clear how
to support current advertising practices with encrypted user data.
Supporting encryption requires advertisers to adopt new targeting
and ad-serving practices.

2. PROBLEM AND APPROACH OVERVIEW
A number of recent proposals investigated encrypting data han-

dled by web applications. In this section, we first systematize the
design space and organize previous work throughout this space (Sec-
tion 2.1). Then, we present ShadowCrypt and position it in the
design space (Section 2.2). We also discuss our threat model and
the security goals ShadowCrypt aims to ensure (Section 2.3).

2.1 Understanding the Design Space
Consider a simplified architecture of typical web applications

(including our running example), outlined in Figure 1. The server
consists of a database and a publicly accessible “frontend.” The
database stores user data, and the frontend (written in, for example,
PHP, NodeJS, or Rails) generates HTML from this data and serves
it to clients over the network. The frontend also receives data from
the client, processes it, and stores it in the database.

The client is a web browser, which transforms the HTML it
receives into the “DOM,” a tree-structured representation of the
application’s user interface. The user interacts with the application
through the DOM.

The application’s HTML can also include JavaScript code, which
the browser runs. JavaScript interacts with the user indirectly,

through the DOM’s APIs. Both JavaScript (via, e.g., XMLHttpRe-
quest) and the DOM (via, e.g., form submissions) can send data to
the server. We refer to the combination of HTML, JavaScript, and
CSS code as client-side code.

All proposals to encrypt web application data attempt to reduce
the amount of code that can access data in the clear. Typically, these
proposals operate at a “chokepoint” to ensure complete mediation.
Figure 1 shows three chokepoints (a, b, and c).

An encryption system running at a chokepoint enforces the in-
variant that all code to the left (in Figure 1) of the chokepoint can
access only encrypted data. Code to the right of the encryption
system’s chokepoint is part of the application’s trusted computing
base (TCB); it has access to data in the clear, and users must trust it
to maintain the data’s confidentiality.

A system using a chokepoint farther to the right has the benefit
of a smaller TCB, but it is less flexible. By contrast, a typical
web application without any data encryption has a large TCB that
encompasses all of its code, including the database.

(a) Between front end and database
Systems that rely on chokepoint (a) (Figure 1) give both the server-
side and client-side application code (i.e., the DOM and JavaScript
code) access to data in the clear. Data is encrypted before reaching
the database server. This design protects against a curious database
administrator or an untrusted/compromised database server.

Previous Work. CryptDB [37] adopts this design. CryptDB mod-
ifies the database schema to store encrypted values. CryptDB also
includes a proxy that interposes on application queries and translates
normal queries into queries on the encrypted database. This allows
an application’s unmodified queries to work transparently, easing
the system’s adoption.

Limitations. The user needs to trust both the server-side and
client-side code for ensuring data confidentiality. While crypto-
graphic and remote attestation techniques can help prove code iden-
tity [36], authentic applications could still be vulnerable to (for
example) SQL Injection or XSS attacks leading to data theft.

CryptDB does support a user-aware mode to mitigate the large
TCB, but using it requires providing the CryptDB proxy with the
whole application’s access control logic, which impacts backwards
compatibility. Further, if an administrator with access to all users’
data logs in, an adversary could still get all the data in the clear.

(b) Between the client and the network
A system at this chokepoint (Figure 1 (b)) allows only the applica-
tion’s client side (i.e., JavaScript/HTML) to access private data in
the clear. The application’s client-side JavaScript code encrypts data
before sending any data to the server-side

Previous Work. This design is the most commonly used solution
today. Popular applications encrypting at this chokepoint include
password managers (e.g., LastPass), file hosting providers (e.g.,
Mega), messaging applications (e.g., CryptoCat), and secure note
providers (e.g., LastPass).

Christodorescu proposed the idea of separating the client’s UI
and networking code and inserting a crypto layer in between [9],
but their proposal requires a browser and application rewrite. Mylar
is an extension of the Meteor JavaScript framework for building
applications that encrypt all their data sent to the server [38]. Devel-
opers need to write their applications in Meteor (affecting backwards
compatibility) and tell Mylar what data needs encryption.

Limitations. In this design, everything to the right of the choke-
point (Figure 1 (b)) is part of the TCB. Thus, security of user data
requires authenticating the client-side (i.e., JavaScript/HTML) code.



Bugs in the client-side code (e.g., XSS) could also compromise
security by leaking data in the clear.

Applications such as LastPass and Mega trust their servers (via
an HTTPS channel) to provide correct code and thus only protect
against the passive adversary at the server side. CryptoCat is a
browser extension and does not load code from remote servers
(except, of course, during installation and updates). Mylar takes a
middle route: it requires the developer sign all client-side code and
a browser extension verifies this signature before allowing the load.

These authentication measures only prove the identity of the code,
not that it is bug free. It is not trivial to implement encryption at
chokepoint (b) correctly. The browser does not provide any API to
interpose on all network channels. In addition to cross-site scripting
attacks, the application needs to protect against HTML injection
attacks, which can leak sensitive data without any JavaScript code
execution.

For example, if an attacker can insert the HTML string <img
src=’http://evil.com/log.cgi? (unclosed single quote)
before a secret value in HTML, the user’s secret data would end
up on the attacker’s servers without any JavaScript involved. Za-
lewski [52] and Heiderich [24] identify a number of attacks to steal
sensitive data even in the absence of code injection attacks.

Given the large size and complexity of modern HTML5 applica-
tions, ensuring correctness of client-side code and that it does not
leak sensitive data is difficult. LastPass, Mega, and CryptoCat all
have suffered from client-side vulnerabilities [10, 12, 29]

2.2 ShadowCrypt
ShadowCrypt works at the chokepoint (c) in Figure 1. This

chokepoint encrypts data before the application code (including
the client-side code) can access it. The application can only view
an encrypted version of the data. This requires isolating the input
and output fields while still providing the application access to the
encrypted data.

Choosing this chokepoint means that no application code is in
the TCB. This leads to a system secure against attackers at the
client-side as well as the server-side. It also gives the user complete
control over the data. In contrast, previous proposals required trust-
ing application developers to handle data in a privacy-preserving
manner.

The key challenge is providing a secure user interface and an
isolated environment in which to store keys and to perform the
encryption. ShadowCrypt relies on the browser extension infrastruc-
ture to provide a secure isolated environment for executing code
and storing keys. Unfortunately, this is not sufficient since the user
only interacts with the DOM (Figure 1), which is shared between
the application and browser extensions. ShadowCrypt relies on a
new upcoming primitive, the Shadow DOM [19], to securely isolate
cleartext from the application code (Section 3).

Key Storage. ShadowCrypt stores encryption keys on the user’s
computer. Only the ShadowCrypt code has access to them. A
ShadowCrypt user can share keys with anyone she wants via Shadow-
Crypt’s key import/export interface. ShadowCrypt’s user interface
supports multiple keys at run time, and the user can choose which
key to use. This design puts the user in control of her data and helps
mitigate the privacy diffusion problem.

2.3 Threat Model
Our key threat model is the web attacker. We do not trust the

application’s server and client-side code (including the DOM and
JavaScript code).

We declare two threats that ShadowCrypt does not defend against.
These two issues are not addressed by the same-origin policy either.
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Figure 2: Overview of the ShadowCrypt architecture. ShadowCrypt runs in
the browser, isolated from web pages but modifying the DOM via secure
APIs. It creates an isolated Shadow DOM that interacts with the user.

Web security research is working towards addressing these two
issues on the web in general.

First, ShadowCrypt does not defend against side channel data
leakage. Because ShadowCrypt causes the page to render with
the cleartext, the dimensions of the cleartext are available to the
untrusted page. In comparison, many features of HTML, such as
images, allow access to the dimensions resources loaded from other
origins.

Second, one mode of text input supported by ShadowCrypt does
not defend against clickjacking. ShadowCrypt allows users to en-
ter text into a text field directly on the page (another supported
method is to open a dedicated window). It may be possible to create
an arrangement of transparent elements that intercepts keystrokes
while showing a proper encrypted input underneath. In comparison,
this kind of attack also affects sensitive cross-origin content that is
included through an iframe.

Our system’s TCB includes the operating system and the browser—
we do not protect against a compromised browser or OS. Currently,
we also do not provide protection against side-channel attacks such
as length of text on the encrypted text.

2.4 Goals
Security Goal. ShadowCrypt aims to ensure that any data entered

into a secure input widget that encrypts the data with key k is only
visible to principals with knowledge of the key k. We rely on
the user to authenticate the secure input widget via a passphrase
(Section 5) and not to input sensitive data in a widget that lacks this
passphrase.

Usability Goals. ShadowCrypt focuses on supporting current,
popular web applications transparently. The user should be able to
interact with the application in the same way whether ShadowCrypt
is enabled or disabled. ShadowCrypt aims to preserve, as much as
possible, the application’s look and feel. A user should be able to
use ShadowCrypt on any site without having to modify the site. This
goal aims to ensure broad usability and backwards compatibility.
Previous experience has shown that secure systems with serious
usability constraints fail to achieve adoption beyond a niche.

Non-Goals. We do not aim to protect against denial-of-service
attacks by the application. A trivial denial-of-service attack on
our system would be for the web application to simply delete all
encrypted data. We also do not guarantee the “freshness” of the
application’s data. Applications are free to display a previously
entered value, whether by intended functionality or by malicious
interference.

3. SHADOWCRYPT DESIGN
Figure 2 summarizes the ShadowCrypt architecture. Shadow-

Crypt runs as a browser extension and relies on the security of the
user’s browser and operating system.



The user interacts with the page as normal. ShadowCrypt seam-
lessly replaces encrypted data in the page with the cleartext stored
in an isolated Shadow DOM. ShadowCrypt also replaces input
elements in the page with new inputs, isolated from the page. The
user provides her sensitive data to these isolated input elements
and ShadowCrypt provides only encrypted text to the rest of the
application’s DOM and JavaScript code.

ShadowCrypt needs to isolate its own JavaScript code, which
stores keys and performs encryption. We rely on the browser exten-
sion infrastructure to provide this isolated environment, which we
describe in Section 3.1.

Isolating ShadowCrypt’s JavaScript code is not sufficient for
protecting the data that it handles. ShadowCrypt needs to show the
decrypted data to the user as well as accept sensitive data input. This
needs to occur in the application’s DOM, since the user does not
interact with JavaScript directly. In Section 3.2.1, we show how
ShadowCrypt relies on an upcoming primitive, Shadow DOM, to
securely isolate content in the DOM.

3.1 Isolating JavaScript
In order to meet our security goal, ShadowCrypt must isolate

cleartext data, decryption keys, and its own logic from the applica-
tion. ShadowCrypt is a browser extension, written in HTML and
JavaScript just like a web page. Extensions can interact with and
modify web pages via the page’s DOM, just like scripts on the web
page.

Browsers protect extension logic by running the extension code in
a separate JavaScript environment—even code that interacts directly
with the web page. The JavaScript isolation also includes isolated
DOM APIs. Barth et al. present details about this isolation in Google
Chrome [22]. This mechanism protects ShadowCrypt’s logic from
the untrusted page. Mozilla Firefox implements a similar isolation
mechanism called NativeWrappers [35].

The extension’s JavaScript code is more privileged than the page’s
JavaScript code. It can execute code in the page’s JavaScript en-
vironment by inserting <script> elements into the page. But
the page’s JavaScript code cannot inject code into the extension’s
JavaScript environment.

3.2 Isolating DOM
The DOM isolation mechanism should isolate both input and

output widgets, and it should maintain the look and feel of the ap-
plication. Isolating parts of the DOM while preserving fine-grained
styling has not been explored in previous work. In this section, we
first discuss two unsatisfactory approaches. Then, we introduce the
upcoming Shadow DOM standard and discuss how we used it in
ShadowCrypt.

Strawman 1. iframes leverage a browser’s built-in frame and
origin isolation properties. This provides strong, browser-vetted
secrecy, but iframes create discord, because they disregard the
surrounding page’s text styling.2

Furthermore, cross-origin iframes are resource intensive, par-
ticularly given Chrome’s plans for out-of-process iframes [47].
ShadowCrypt creates a large number of isolated widgets for appli-
cations with many pieces of user data per page, like Facebook and
Reddit.

Strawman 2. We could modify the DOM API such that it hides
the secret content from JavaScript code, for example, by overriding
the getters/setters of an input element to return encrypted values.

DOM has an intricate, complex API that is hard to reason about,
so implementing this technique securely is difficult. We are not
2The seamless attribute could help with the styling issue, but
neither Chrome, Firefox, nor Internet Explorer support it.

1 <p>Enter your name: <input id="nameField"></p>
2 <p style="color:red" id="nameDisplay"></p>
3 <script>
4 nameField.addEventListener(’change’, function (event) {
5 nameDisplay.textContent = ’Hello, ’ + nameField.value + ’!’;
6 });
7 </script>

Figure 3: Simple Hello World Application.

aware of any work on formalizing the DOM API and its semantics.
Even if such a formal model existed, the DOM API is continuously
evolving, and ShadowCrypt would always run the risk of vulnerabil-
ity by falling out of sync with the browser’s DOM implementation.

Second, there exist pure HTML mechanisms for sending data to
the server, such as forms. Since form submission only involves the
native browser behavior, it is not subject to our modified API, and it
acts on the secret data.

3.2.1 Shadow DOM
ShadowCrypt relies on an upcoming standard, the Shadow DOM,

for isolating cleartext input/output in the DOM. Shadow DOM
specifies a way for an application to define a separate “shadow”
tree for a particular node in the DOM. The browser then renders a
composition of the main document and shadow trees. We explain
the nature of this composition in more detail with an example in
Section 3.2.2.

ShadowCrypt identifies input and output nodes in the main ap-
plication document and defines a new shadow tree for each. The
shadow tree contains cleartext, while the original node only sees the
ciphertext. The browser composes the main document and shadow
trees, and the user sees the cleartext from the shadow trees.

An explicit goal of the Shadow DOM standard is encapsulation.
It specifies only a few explicit ways for the application to access
the content of a shadow tree. The list of JavaScript objects that can
cross the boundary between DOM and Shadow DOM is a whitelist3

and ShadowCrypt redefines these objects to nulls.
Keystroke events still traverse the encapsulation boundary. We

rely on the privileged ShadowCrypt extension code to ensure that
keystroke events for secure input do not trigger the application’s lis-
teners. ShadowCrypt checks the target property of any keystroke
events and stops the event propagation if the target is a secure input
widget.

Together, the above two ensure isolation of the shadow tree with
clear text from the main document. The W3C is currently consid-
ering proposals to extend the Shadow DOM standard to include
browser-vetted isolation [18].

3.2.2 Example
Consider a simple Hello World application (shown in Figure 3).

The application waits for a user, Alice, to type in her name and
updates the page with a simple greeting.

Input Shadowing. When Alice loads this page with Shadow-
Crypt enabled, the ShadowCrypt JavaScript code notices the pres-
ence of a text input element. ShadowCrypt creates a shadow tree
for this input element containing a “shadow” input. The shadow
input handles the cleartext data in place of the original, application-
provided input element (Figure 4, left). The shadow input is in a
separate shadow tree, but the browser composes it with the main
document and renders the shadow input element next to the “Enter
your name:” message.

3Appendix A discusses this list in more detail.
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a shadow input. Right: The example application presenting a personalized
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<p style="color:red" id="nameDisplay">
Hello, <span>Alice</span>!

</p>

Listing 1: The browser renders a composed tree equivalent to this HTML
snippet

When Alice clicks on the rendered input element and starts typing,
she is interacting with the shadow input element created by Shadow-
Crypt. As she types, the browser notifies ShadowCrypt of each
keystroke. Each time Alice types a letter of her name, ShadowCrypt
reads the cleartext in the shadow element, encrypts it, and updates
the original input node’s value with the ciphertext. The encrypted
text also includes the fingerprint of the key used for encryption as
well as a sentinel string (=?shadowcrypt) to help easily identify
ciphertext in the page.

Application Processing. When Alice finishes typing, the appli-
cation receives a change event. Line 4, Figure 3 reads the value
of the original input node, which is the ciphertext set by Shadow-
Crypt. The application concatenates it with “Hello” before setting
the textContent property of the p element (Line 5).

Output Substitution. When the application sets the textContent
property, it adds a text node to the document. ShadowCrypt’s
JavaScript code notices the sentinel value in the text node and finds
the ciphertext inserted. ShadowCrypt then uses the key fingerprint
to identify the decryption key and attempts to decrypt the ciphertext.

If decryption succeeds, ShadowCrypt’s JavaScript code has the
sensitive data in the clear. It now needs to show this data to the user
while still isolating it from the application. To do this, it surrounds
the ciphertext string with a span element, creates a shadow tree
for the span element, and writes the cleartext into the shadow tree.
Figure 4 (right) shows the resulting DOM trees.

The composed tree of the output p element would look like the
HTML in Listing 1. Alice sees a personalized greeting as the original
application would show.

3.3 Defending against Active Client-side At-
tacker

Providing a thorough defense against an active attacker at the
client side is difficult. We found a number of challenges in defending
against such a powerful adversary, especially while building a user
interface that fits in with the untrusted page’s visual style. We
discuss two concrete attacks below.

In order to match the page’s look and feel, ShadowCrypt inherits
CSS styles when displaying data to the user. Combined with the
ancillary information such as the dimensions of the output element,
an active attacker can learn information about the cleartext displayed
to the user. For example, Heiderich et al. present an efficient way to
determine the characters in a string from its size by using custom
fonts [24]. Similarly, Stone demonstrated a number of cross-origin
timing attacks leaking text across cross-origin iframes [46].

For seamless integration, ShadowCrypt allows untrusted content
and secure input/output widgets to run in a single page. This design
is vulnerable to mashup integrity attacks like clickjacking. For
example, an attacker could try to layer an unencrypted input over a
passphrase-bearing encrypted input.

Defending against such UI attacks is a broad problem. Extensions
such as NoScript already provide protections against such attacks,
while Huang et al. present the InContext defense, which is also on
standards track at the W3C [25, 32].

Both the attacks above result from our design constraints of seam-
less integration and usability. It is a trivial extension to use separate
tabs/windows instead of Shadow DOM; such a design would be se-
cure from the clickjacking attack mentioned above. We implement
this kind of input for discretionary use: pressing a keyboard com-
mand (Ctrl+Backtick) with a secure input selected causes Shadow-
Crypt to open a dedicated window with the user’s passphrase and a
single text input.

Mitigating the first attack is also easy, as long as we disregard
the page’s look and feel: the Shadow DOM specification allows the
construction of shadow trees that do not inherit styles.

Our experience shows that enacting these protective measures
tremendously limits the usability of our system, and thus we default
to in-page input and output despite the vulnerabilities above. In the
future, we will investigate mechanisms that compromise between
information leakage and styling flexibility.

3.4 Functionality Impact
Enabling ShadowCrypt means that the main application code

never gets access to the user data in the clear. As a result, the un-
modified application cannot process the data (save for operations
that work equally well on encrypted data). Depending on the appli-
cation, this can minimally or severely impact the functionality of
the application. We discuss our experience with various classes of
applications and the functionality impact in Section 7.

One limitation that we observed broadly is that the application
code can no longer sanitize the encrypted text. Rich text inputs (such
as comments or blog posts) normally work by providing HTML code
to the application. The application can then sanitize it before render-
ing it again. However, with ShadowCrypt enabled, the application
only sees an encrypted blob and cannot sanitize the untrusted input
values. If ShadowCrypt rendered this potentially untrusted input, it
would create an XSS vulnerability.

Instead, in our current design, we always render the decrypted
value as plaintext. We can also add support for simple formatting
tags, but the fundamental limitation remains: ShadowCrypt does not
have information on which HTML constructs to allow or disallow.
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Figure 5: An encrypted messsage. We have set delimiters of the major parts
in bold.

4. SHADOWCRYPT IMPLEMENTATION
We have implemented ShadowCrypt as a Google Chrome browser

extension. The extension is available on the Chrome Store for
anyone to try out [43]. Since we do not use any non-standard
features, we believe ShadowCrypt should work just as well on any
other modern, standards-compliant browser with extension support.
We are currently working on an implementation for Firefox.

4.1 Shadowing Application UI
ShadowCrypt monitors the application’s user interface to iden-

tify encrypted text and input widgets, inserting appropriate shadow
inputs and outputs as needed. Content can make its way into the
application’s web page in different ways, such as when the page
first loads as an HTML file, when JavaScript code inserts markup
through document.write(), or when JavaScript code uses the
DOM API to modify the document tree.

To monitor the page as it changes, ShadowCrypt relies on the
standard MutationObserver interface to register a callback that
the browser will invoke after every modification to the document.
Recall that while the application code and ShadowCrypt share the
DOM, the browser provides trusted, isolated (or native) DOM APIs
to ShadowCrypt. Relying on MutationObservers has the added
advantage that these observers also run as the page is progressively
rendered.

ShadowCrypt searches all insertions for HTML text input wid-
gets and inserts shadows as needed. ShadowCrypt also supports the
textarea element and elements with the contentEditable
attribute set to true. The core idea behind supporting these elements
is the same as presented in Section 3.2.2 for input type=text
elements. We discuss the element specific details in Appendix B.
The essential concept behind ShadowCrypt applies equally to in-
put fields of type “file.” We are currently working to expand our
coverage to files, particularly images.

One limitation of our current implementation is that creating a
shadow tree does not result in a mutation event: shadow trees are
separate from the main document. As a result, an application using
Shadow DOM for its own input would not work with ShadowCrypt
today. We did not find any application currently relying on Shadow
DOM.

To work around this limitation, we can modify the application’s
DOM APIs to detect new shadow trees and insert ShadowCrypt
mutation observers into the shadow trees as well. We have not done
this in our implementation, as we did not find any application relying
on Shadow DOM right now. We stress that the above issue does not
affect the security of ShadowCrypt. We already require the user to
authenticate ShadowCrypt inputs via a passphrase.

4.2 Encrypting Text
ShadowCrypt encrypts text using the AES-CCM algorithm. In

the near future, the Web Cryptography API will make native and
hardware-based cryptography available to the web platform. For
now, we used the Stanford JavaScript Crypto Library’s (SJCL) im-
plementation [45]. Figure 5 presents an example of an encrypted
message. This encoded payload includes a format signature, the
fingerprint of the key used to encrypt, and the encoded ciphertext,
including initialization vector and authentication data.

Format Signature (=?shadowcrypt-) This eases implementa-
tion of output decryption. ShadowCrypt’s mutation observer
examines content as it enters the document tree. The format
signature explicitly marks all ciphertext strings, making them
easy to find via a regular expression search.

Key Fingerprint (ce4d...97a1) ShadowCrypt uses this finger-
print to look up the right key to decrypt the ciphertext, since
there may be data encrypted with different keys on the same
page. A question mark follows this as a separator.

Payload (/FnX...yDU=) This base64-encoded string internally con-
sists of the random initialization vector, the raw ciphertext,
and the message authentication code. Another question mark
follows this as a separator.

EOF Finally, the sequence “?=” denotes the end of the ciphertext
string.

4.2.1 Other Encryption Schemes
ShadowCrypt, by default, uses AES-CCM with a random IV for

maximum security, but it can easily support arbitrary encryption
schemes for more functionality. We currently also support a search-
able encryption scheme that works transparently with existing web
services such as Gmail and Facebook.

The key difference between the searchable encryption scheme and
the default scheme is the addition of encrypted keywords at the end
of the encrypted message. When encrypting text, ShadowCrypt’s
code computes a deterministic hash (keyed with the encryption key)
of each unique word in the input. ShadowCrypt then appends these
hashes at the end of the encrypted text sent to the application.

To search, ShadowCrypt prepares an encrypted query by perform-
ing just the keyword extraction procedure on the cleartext query,
resulting in the hashes of each cleartext keyword in the query. The
application can use its original keyword searching functionality to
find encrypted documents from this query.

Our searchable encryption scheme creates a new side-channel
vulnerability, but we chose this scheme because it works transpar-
ently with the search functionality of current web applications. It is
not difficult to support other (more-secure) searchable encryption
schemes if we can modify application code. Further, users inter-
ested in stronger security can always use the more secure encryption
schemes (but without search functionality).

We also built a variant of ShadowCrypt that uses asymmetric
encryption. This variant uses the OpenPGP.js library [40] to handle
the cryptographic operations. Thus far, we have not incorporated
PGP into our release due to performance reasons. The asymmetric
cryptography takes a long time to process each message. The slowest
part has been decrypting a message, when we used RSA keys. The
keys tend to have small public exponents, so encrypting was much
faster than decrypting. This meant that, while one could enter
text relatively smoothly, the page would freeze up whenever the
application tried to display encrypted content. See Section 6 for our
timing measurements.

4.2.2 Manifest Files
By default, ShadowCrypt applies AES-CCM encryption to all in-

put elements on a page. Often, encryption of all inputs would break
critical functionality. For example, while encrypting the email body
in Gmail is OK, encrypting the contents of the “To” field would ren-
der the message undeliverable. ShadowCrypt supports a keyboard
command (Ctrl+Space) to disable encryption on a particular input
widget.

To ease usability, we have also implemented support for mani-
fest files in ShadowCrypt. These files specify which input fields



Figure 6: User interface for managing keys at the input widget. Clicking on
“Unlock” turns off encryption, and clicking on a particular key encrypts with
that key.

ShadowCrypt should not encrypt. Manifest files can also list which
input fields should apply the searchable encryption scheme or the en-
crypted query generation scheme. We envision a centralized, trusted
market for these manifest files. We currently have manifest files for
Gmail, Twitter, Facebook, and Asana.

Manifest files are a usability improvement and do not affect the
security of ShadowCrypt. Users can still verify the presence of
secure input based on the passphrase.

5. USER INTERFACE
Our goal with ShadowCrypt is transparent usability as well as

security. A good user interface that helps the user make the right
decision by default is a key component of ShadowCrypt. Critical
to security is ensuring that the user only enters sensitive data in the
ShadowCrypt elements and a good key management interface.

Authenticating to the User. ShadowCrypt ensures that the user
only enters clear text input into the secure shadow inputs by au-
thenticating shadow inputs with a secret passphrase. While set-
ting up ShadowCrypt, the user and ShadowCrypt identify a secret
passphrase. ShadowCrypt includes this passphrase in all the shadow
inputs it creates.

We rely on the user to input sensitive data only after checking for
the presence of this passphrase. Figure 6 shows an example widget
with the secret passphrase. Such reverse passwords are common in
web applications [2, 3].

Key Management UI. ShadowCrypt maintains a key database in
the private storage area that the browser provides to each extension.
Google Chrome automatically synchronizes this database across all
of a user’s browsers. The database supports an arbitrary number of
keys tied to each application (identified by the origin). Our released
version of ShadowCrypt only supports symmetric encryption, and
keys are 128 bits. Figure 7 shows the key management page for
ShadowCrypt.

Figure 7: Main ShadowCrypt key management user interface.

When the user clicks on a particular key icon, the individual
key’s management page pops up (Figure 8). Each key has a friendly
mnemonic name and a unique color. Users can also set a default
key for the application. Users can import and export keys by copy-

ing/pasting a text string. ShadowCrypt also allows users to annotate
keys with text reminders to help remember their history and prove-
nance. ShadowCrypt thus relieves the privacy diffusion problem by
putting the users back in charge of sharing data (by controlling key
distribution).

Figure 8: User interface for managing individual keys, reached by clicking
on a key icon in Figure 7.

Key management is a well-known, hard, but important problem
that is orthogonal to our work. We designed our system to handle
key distribution independently of the isolation system that we have
developed. ShadowCrypt also provides a new platform for the
broader community to develop and evaluate novel key management
systems. Many of today’s well-known encryption products also rely
on the user to manually export and share keys, including Google’s
recently released End-to-End extension. PGP uses a collection
of public key servers to distribute keys and associate them with
identities. We are currently working on integrating several key
management mechanisms such as keybase.io [27] and cloud-based
key management services proposed in usable security literature [14].

We are currently extending the current key management mecha-
nism in three directions. First, we are adding support for per user
(or user group) keys instead of the current per-site keys. A user can
designate a particular key (across applications) for (say) her family
or for her co-workers. We believe that such a design will be more
intuitive for the typical user. Second, we are investigating designs
for managing public keys and specifying multiple recipients for our
PGP-based variant. Finally, we are investigating an easier interface
for sharing and distributing keys (e.g., via a centralized service, such
as Keybase [27]).

The shadow input widgets that ShadowCrypt creates have a cou-
ple of features to help with key management. First, the shadow input
widget has a color border around it that matches the color of the
key currently in use. Second, ShadowCrypt adds a lock icon at the
bottom right corner of the widget. Clicking the lock icon, users can
choose alternate keys or disable encryption altogether (Figure 6).

6. PERFORMANCE EVALUATION
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Figure 9: Time taken for ShadowCrypt to create shadow inputs. Median
and quartile measurements from 100 trials on pages as the number of inputs
varies.
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Figure 10: Time taken for ShadowCrypt to rewrite encrypted messages on
a page. Median and quartile measurements from 100 trials on pages as the
number of encrypted messages varies. Solid line shows PGP variant. Dotted
line shows AES-CCM variant.

Next, we discuss the performance overhead of ShadowCrypt on
the user’s browsing.

We first measured the overhead introduced by ShadowCrypt’s
MutationObserver to the user’s day-to-day browsing. We
conducted these tests on an Intel 2.5GHz x 4 with 8GB of RAM. We
ran the Dromaeo DOM benchmark [13]. This test only measures the
overhead introduced by ShadowCrypt to a page’s normal operation
since the page does not contain any encrypted input/outputs. We
found that the Dromaeo benchmark scores dropped from 1,617
runs/second to 1,153 runs/second. We find that this loss is not
noticeable by a user. In contrast, popular extensions like LastPass
(with over a million users) drop the score to 1494 runs/second.

Second, we measured the performance overhead of ShadowCrypt
as the number of encrypted input/output elements changed. We
conducted these tests on an Intel Core i7 3.40GHz with 16GB of
RAM.

We created pages with between 1 and 1000 input elements and
between 1 and 1000 encrypted messages (each 5 characters long).
We measured the extra time ShadowCrypt takes to replace these
elements with their isolated shadows containing the cleartext.

Figure 9 and Figure 10 plot the median time overhead for 100
trials for each case. We find that ShadowCrypt has an overhead
of 151 ms for 100 inputs and 24 ms for 100 encrypted messages.
The PGP variant was much slower at decrypting messages, taking 4
seconds on just 10 encrypted messages.
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Figure 11: Time taken for ShadowCrypt to encrypt a message. Median and
quartile measurements from batches of 100 messages for each length. Solid
line shows PGP variant. Dotted line shows AES-CCM variant.

Such a number of inputs/outputs are not representative of typical
web application behavior. For example, Gmail normally loads 50
email threads on the inbox page and only has 3 input elements.
ShadowCrypt’s impact on performance in those cases is negligible.

To measure the overhead of cryptographic operations as the length
of the message varies, we measure the timing of ShadowCrypt’s
encryption functions as we varied the length of cleartext from 20 to
2,621,440 characters. Figure 11 shows the results of 100 trials of
each. We find that encryption takes under 1 ms for messages up to
640 characters long. Thus, ShadowCrypt’s repeated encryption for
user inputs does not add any noticeable overhead on a page.

The Web Cryptography API is already available in Chrome’s
Canary and Firefox’s Nightly release channel. We benchmarked the
Web Cryptography API in Google Chrome Canary and found that it
performs AES operations 4.7 times as fast as SJCL (encrypting a
1 KiB message with a 256-bit key 1,000 times) and RSA operations
12 times faster than OpenPGP.js (encrypting/decrypting a 256-bit
message with a 2048-bit key 1,000 times). It performs better than
the JavaScript-based cryptography implementation we used in our
overall performance tests, so we have not tried to optimize the
cryptography code.

To estimate ShadowCrypt overhead for real-world applications,
we loaded a typical page from three of our case studies (discussed
next) and estimated the overhead if all inputs and user-generated
strings switched to using ShadowCrypt. Table 1 lists the number
of user-generated strings and input fields for each page and the
estimated load time increase in milliseconds. To estimate the per-
centage overhead, we measured the page load time on a cold and hot
cache.4 Table 1 also lists these times and the percentage overhead
introduced by ShadowCrypt in each case.

Overall, we find that ShadowCrypt does not impose significant
overheads on the page, with a high of 8% overhead on hot cache
for a long Reddit comments page. Our estimates of load times are
conservative (particularly in the hot cache case). Google Analytics’
Site Speed Data, which measures real-world page-load times (even
with caching), reports a median (mean) page load time of just under
3000 ms (6000 ms) around the world [26].

7. CASE STUDIES
4We used the webpagetest.org infrastructure (standard
amongst the Web Performance community) with the connection
type set to “Cable” [34]. The load times on our machines are com-
parable.

webpagetest.org


Application Str In OH
(ms)

Load
(ms)

Load2
(ms)

Reddit comments
page

196 6 61 2,507
(2%)

731 (8%)

Twitter user page 33 13 49 3,017
(2%)

1,492
(3%)

Facebook profile
page

25 1 23 2,984
(1%)

2,177
(1%)

Table 1: Load time of a typical page in popular web applications. “Str”
is the number of user-generated strings present on the page. “In” is the
number of text inputs on the page. “OH” is the estimated overhead from
using ShadowCrypt. “Load” is page load time (without ShadowCrypt) and
the overhead as a percentage of this time. “Load2” is the load time with the
cache populated and the overhead as a percentage of this time.

Application Fields encrypted
OpenEMR freeform patient information
WordPress posts and comments
Blogger posts (plaintext only) and comments
Tumblr text posts
Reddit text submissions and comments
Pinterest submission descriptions and comments
Asana task titles, descriptions, and comments
Trello task titles, descriptions, and comments
Wunderlist tasks titles, descriptions, and comments
Etherpad classic document and chat
Gmail subject and body
Twitter tweets
Facebook status updates and comments

Table 2: List of case studies that retained prominent application functionality
and the fields encrypted.

We tested the ShadowCrypt extension on a wide variety of pop-
ular applications that handle textual data, which is the focus of
ShadowCrypt. While encrypting data always impacts some appli-
cation functionality, we find that for a broad range of applications,
encrypting textual data still retains prominent functionality.

ShadowCrypt’s contribution is providing the option of encrypting
text and putting the user back in control of her data. ShadowCrypt
is a general mechanism for secure input/output in web applications.
Our experience (discussed below) highlights the challenges and
limitations of moving to encrypted data for web applications. Fu-
ture work can investigate how we can enable lost functionality by
modifying application code.

7.1 Applications Retaining Prominent Func-
tionality

Table 2 lists 14 applications that retained prominent functionality
when we used them with ShadowCrypt. Table 2 also lists the data
encrypted with ShadowCrypt. After switching to encrypted data,
typical functionality affected includes targeted advertising and rich
text output. Encryption also disables application-mediated data
sharing; instead the user needs to explicitly share keys with users
she wants to share data with.

OpenEMR manages a database of patient data. Typical input
to the OpenEMR application is free-form text. ShadowCrypt was
able to encrypt all the free-form text fields including patient name,
symptoms, physician notes, and so on. We used the deterministic
encryption scheme to allow search, but this meant that non-keyword
searches stopped working. For example, searching for “Jo” would

previously return patients named “John,” but would not under our
deterministic encryption scheme. Nonetheless, this did demonstrate
that ShadowCrypt is scalable to applications with a large number of
user input fields with no additional effort.

We also tested publishing applications, namely WordPress, Red-
dit, Blogger, Tumblr, and Pinterest. For all these applications,
ShadowCrypt was able to support encrypted post-titles, posts, and
comments. Per Section 3.4, ShadowCrypt does disable rich-text
input/output including turning URLs in plaintext to links.

For all the applications above, the decrypted post title correctly
showed up in the page body. However, ShadowCrypt could not
replace the value in the title tag (shown in the tab/window bar),
since HTML does not allow markup (i.e., the shadow tree) in the
title element.

We also tested ShadowCrypt with popular task management appli-
cations such as Asana, Trello, and Wunderlist (each of which has
millions of users [1, 11, 15]). We used ShadowCrypt to encrypt any
textual task data. These three services all supported task descriptions
and comments, which we were able to encrypt with ShadowCrypt.
Additionally, all three of these services support realtime sync across
multiple clients, which continued to work.

ShadowCrypt did break Asana’s “diff” feature. Asana uses this
to highlight modifications to a particular task but in the case of
encrypted tasks, the server-side diff mangled the encoded ciphertext.

A possible solution for this issue is that ShadowCrypt offer a
platform for side-effect free computations; the server can provide
JavaScript code (e.g., diff) that ShadowCrypt could execute on the
decrypted data in an isolated environment. This solution could
also mitigate the formatting/sanitization issue discussed above. Of
course, this would require modifications to the application.

We also used Gmail with ShadowCrypt. We were able to use
ShadowCrypt to encrypt the subject and body of email messages.
Gmail was not able to serve relevant ads next to email threads; it
mistakenly showed ads related to short letter sequences present in
the ciphertext. One feature that broke due to ShadowCrypt was the
message preview in message lists (e.g., at the inbox)—the snippet
preview in the thread list view would truncate the body’s ciphertext
and ShadowCrypt refuses to decrypt the invalid ciphertext.

We also used ShadowCrypt to tweet on Twitter and post status
updates on Facebook. In both cases, ShadowCrypt successfully
encrypted and decrypted the messages. Since the servers do not
see the contents of the messages, they cannot detect “mentions” of
another user and send notifications. While it is trivial to modify
ShadowCrypt to not encrypt any word following an @-sign, it is not
clear whether users would understand the security implications of
this change.

Twitter’s length limitation combined with our lengthy ciphertext
encoding meant that using ShadowCrypt limited users to 45 charac-
ter tweets. A specialized encoding scheme will fare better,5 but we
did not investigate this further.

Encryption and Key Sharing. ShadowCrypt allows a user to
switch to encrypted data. The user can now choose the strength
of encryption and collaborators to share keys with. For example,
deterministic encryption schemes allow search functionality but
without the security offered by random encryption.

The user also needs to share keys with other users to share data.
For example, social applications such as Twitter, Facebook, Gmail
or any blogging application, the user will need to manually share
the encryption keys. While an additional step, it is a necessary one
to put the user back in control of her data.

5Recall that Twitter’s length limitation is really 140 Unicode code-
points, not ASCII characters.



Application Comments
Google Drive
Spreadsheets

cannot evaluate encrypted formulas;
static data only

Google Drive Docs custom keystroke-based input;
would require application redesign
to encrypt

Office 365
Etherpad lite

Table 3: List of applications that did not work or had severe loss of function-
ality with ShadowCrypt.

In the case of applications like Wunderlist (for task management),
the need for sharing keys and the encryption strength depends on
the user. Often, users rely on task-management applications for
personal use without sharing their data with others. We also found
these list-based applications usable without search functionality.
Again, this is a user-specific decision.

7.2 Applications with degraded functionality
In other cases, turning on ShadowCrypt severely degraded applica-

tion functionality or ShadowCrypt was unable to achieve encryption
for textual data. Table 3 lists these applications and the reasons for
their lost functionality.

Spreadsheets. On using ShadowCrypt with the Google Drive
Spreadsheet application, we immediately hit an error: our cipher-
text encoding scheme surrounds the cipher-text with a sentinel value
that starts with an =-sign. The spreadsheet program interprets this
as an (invalid) formula and throws an error.

We were able to work around this by using a different sentinel
string. This experience does point to a fundamental issue: whatever
sentinel string we choose, we always run the risk of interfering with
some application.

The ShadowCrypt+Google Spreadsheets application works best
with textual data and Google Forms, which in turn fill in data into
the spreadsheet. Using ShadowCrypt does break functionality like
sorting and arithmetic on numeric values.

Word Processing Applications. We tested Google Drive, Office
365, Etherpad classic, and Etherpad lite. Of these, ShadowCrypt
only succeeded in encrypting the document in Etherpad classic.

On investigating further, we found that Google Drive Docs, Office
365 Word, and Etherpad lite, did not rely on standard HTML input
widgets. Instead, these applications relied on keystroke events to
build their own text editing functionality. In view of such a design,
it is unlikely that a ShadowCrypt like system can ever work with
these applications without changes.

Further, while ShadowCrypt does work with Etherpad classic, it
does break the author attribution feature. Etherpad classic tries to
maintain the author information of each character in the document.
Due to the nature of random encryption, each changed character
appears as if the user rewrote the entire document. One direction for
future work is how to support such a design while still maintaining
the privacy of document content.

8. RELATED WORK
We provided a detailed comparison to closely related work in

Section 2.1. Here, we discuss literature we did not cover earlier.
Privly [39] is a browser extension that allows users to share en-

crypted text on existing web applications, somewhat like Shadow-
Crypt. Instead of storing encrypted text with the web application,
Privly stores the encrypted text on a third-party dedicated storage
server. Privly creates a hyperlink to the message with the decryption
key in the hyperlink’s fragment identifier [33]. Privly sends this
hyperlink to the web application, in place of the text. Thus, the

decryption key is never sent to the storage server, but it is visible
to the web application’s client-side code. In contrast, ShadowCrypt
does not trust the web application with the decryption key. Addi-
tionally, Privly requires a dedicated storage server, which increases
the cost and reduces performance. Finally, Privly relies on replacing
hyperlinks with iframes that renders the decrypted text, which has
performance and usability limitations (Section 2.1).6

Virtru [48] is another browser extension, which focuses on email.
Virtru supports Outlook, Gmail, and Yahoo! Mail. Users of the
Virtru extension interact with Virtru’s own server to exchange en-
cryption keys. This allows the service to revoke access to messages
after they have been sent. ShadowCrypt, by contrast, is more gen-
eral, and targets any web application. ShadowCrypt users share keys
through any channel other than the untrusted site, so there is no way
to revoke access to a message that has already been sent.

A number of researchers proposed cryptographic constructs that
allow an untrusted server to “blindly” compute on encrypted user
data. Constructions for general functions include Fully Homomor-
phic Encryption [16], Functional Encryption [6, 42], Oblivious
RAM [21], and secure computation in either the circuit [51] or
the RAM model [23, 30]. Researchers have also proposed more
efficient schemes for specific functionalities, such as searchable
encryption [7, 44].

While these schemes offer strong security guarantees, they have
a high performance cost and often require a rewrite of application
code handling encrypted data. As a result, we do not currently
rely on them but these schemes are not at odds with ShadowCrypt.
Applications that want to rely on such schemes only need to modify
their code and implement the scheme in ShadowCrypt as another
type of encryption algorithm.

Instead of relying on encrypted data in the cloud, another option
is to rely on remote attestation and trusted computing techniques to
ensure that the cloud handles the data per the user’s expectations.
Maniatis et al. provide an overview of all the related techniques in
this direction [31]. We are not aware of work in this direction that
specifically targets web applications.

Data breaches and privacy violating information flows in web
applications can occur due to bugs (such as missing access checks).
A large body of research aims to improve the developer’s ability to
reason about data flow in web applications: Giffin et al. provide a
comprehensive survey of research in the system’s community [17].
Yang et al. [50] present Jeeves, a new language mechanism for en-
forcing access checks as well as survey research in the programming
languages community.

These techniques typically require application rewrites and only
protect the user from unintentional developer mistakes. In contrast,
ShadowCrypt does not require application rewrite and aims to put
the user back in control—intentional or unintentional violations of
user expectation by the developer notwithstanding.

ShadowCrypt aims to provide a secure, isolated UI widget inline
to an application. Roesner et al. propose secure widgets as a permis-
sion granting mechanism [41]. Huang et al. discuss a secure defense
against clickjacking attacks [25].

9. CONCLUSION
We presented ShadowCrypt, a system for transparently switch-

ing to encrypted text for web applications. In contrast to previous
approaches, ShadowCrypt does not trust any part of a web applica-
tion with the user data. Instead, ShadowCrypt puts the user back

6We were unable to conduct a security review of Privly’s isolation
mechanism because it is currently invitation-only. We did not find a
publication detailing its technical architecture.



in control by sharing keys with the principals she wants. We also
highlighted the functionality and usability challenges of switching
to encrypted data in modern applications. Future work can focus on
extending the ShadowCrypt design to protect against active attack-
ers.

ShadowCrypt’s secure infrastructure and usable interface de-
sign provide a basis for implementing wide variety of encryp-
tion schemes. We are currently working on supporting additional
schemes that can work transparently such as Format Preserving
Encryption (FPE) [4] and Attribute-based Encryption [5, 42] (ABE).
The former allows us to textual and non-textual fields that place
constraints on its format (e.g., images) and the latter enables easier
key management. In the longer run, we aim to support encryption
schemes that rely on modifications to existing web applications to
work, such as Searchable Encryption [7,44], or Fully Homomorphic
Encryption [16].

ShadowCrypt’s contribution lies in providing the user the choice
of encrypting arbitrary fields—the user can enable/disable (random
or deterministic) encryption as she desires. ShadowCrypt also sup-
ports manifest files that identify fields to encrypt/not-encrypt and the
algorithm to use for a particular application. We envision seeding
ShadowCrypt with sane default manifests for popular applications.
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APPENDIX
A. THE SHADOW DOM BOUNDARY
host.shadowRoot. The host has a dedicated property that

provides access to its shadow tree through the shadow tree’s root.
shadowRoot.olderShadowRoot. Shadow DOM allows

one element to host multiple shadow trees. The shadowRoot
property returns the “youngest” shadow tree (the one registered
last), and the olderShadowRoot property on each shadow tree
provides access to the next “older” shadow tree.
insertionPoint.getDistributedNodes(). Shadow

DOM defines a mechanism for combining an older shadow tree’s
content with younger shadow tree’s content. When this happens,
the getDistributedNodes() method provides access to the
content taken from the older shadow tree.

We harden the encapsulation by removing the host element’s
shadowRoot property and preventing the creation of any more
shadow trees on the element.

B. SUPPORTING HTML TEXT INPUTS
In Section 3.2.2, we focused mainly on the HTML input

type=text widget. HTML also defines two other ways to declare
inputs: the textarea element and the contenteditable at-
tribute on any element (for rich input). In this section, we detail how
our Chrome implementation handles these elements.

Recall that the browser notifies ShadowCrypt’s mutation observer
about everything that the application puts in the document tree. To
find all text input widgets, ShadowCrypt uses querySelectorAll()
(with the CSS selector input,textarea,[contenteditable])
to find candidate text inputs in the added subtree. It then examines
the candidate elements for more detailed criteria: input elements
must be of text type, and elements with the contenteditable
attribute must have it set to true.

Next, it proceeds with the transformation described in Section 3.2.1,
creating a shadow input. ShadowCrypt privately annotates the orig-
inal element to prevent further attempts to rewrite it, in case the
application removes the element and adds it back later.

ShadowCrypt needs to support bidirectional data flow between the
application (which has the ciphertext) and the shadow tree (which
has the cleartext). First, when the user modifies the cleartext in
the shadow tree, ShadowCrypt needs to update the corresponding
ciphertext in the document. When the user types into Shadow-
Crypt’s created input element, the browser dispatches input events.
ShadowCrypt registers an event listener that encrypts the new data
and updates the original element with the ciphertext.

In the other direction, the application’s JavaScript code can set
the value of an input widget, and ShadowCrypt needs to update
the corresponding cleartext. For input and textarea elements,
ShadowCrypt defines a custom setter on the value property on
the web page’s DOM object. This custom setter exists in the appli-
cation’s JavaScript environment. When the application assigns a
new value to this property, the custom setter notifies ShadowCrypt’s
JavaScript environment by dispatching a custom event carrying the
new value. An event listener in ShadowCrypt’s environment de-
crypts the ciphertext string provided by the application and updates
the shadow input with the clear text.

For elements with the contenteditable attribute, the ap-
plication sets the value by modifying the element’s descendants.
This triggers ShadowCrypt’s document mutation observer, and
ShadowCrypt updates the shadow input with the decrypted data.
Recall that ShadowCrypt privately annotates input widgets having a
shadow tree. This allows ShadowCrypt to differentiate changes to
contenteditable inputs from other document mutations.
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