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ABSTRACT
In-network aggregation is an essential primitive for performing
queries on sensor network data. However, most aggregation algo-
rithms assume that all intermediate nodes are trusted. In contrast,
the standard threat model in sensor network security assumes that
an attacker may control a fraction of the nodes, which may misbe-
have in an arbitrary (Byzantine) manner.

We present the first algorithm for provably secure hierarchical
in-network data aggregation. Our algorithm is guaranteed to detect
any manipulation of the aggregate by the adversary beyond what is
achievable through direct injection of data values at compromised
nodes. In other words, the adversary can never gain any advan-
tage from misrepresenting intermediate aggregation computations.
Our algorithm incurs only O(∆ log2 n) node congestion, supports
arbitrary tree-based aggregator topologies and retains its resistance
against aggregation manipulation in the presence of arbitrary num-
bers of malicious nodes. The main algorithm is based on perform-
ing the SUM aggregation securely by first forcing the adversary to
commit to its choice of intermediate aggregation results, and then
having the sensor nodes independently verify that their contribu-
tions to the aggregate are correctly incorporated. We show how to
reduce secure MEDIAN, COUNT, and AVERAGE to this primitive.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection
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1. INTRODUCTION
Wireless sensor networks are increasingly deployed in security-

critical applications such as factory monitoring, environmental mon-
itoring, burglar alarms and fire alarms. The sensor nodes for these
applications are typically deployed in unsecured locations and are
not made tamper-proof due to cost considerations. Hence, an adver-
sary could undetectably take control of one or more sensor nodes
and launch active attacks to subvert correct network operations.
Such environments pose a particularly challenging set of constraints
for the protocol designer: sensor network protocols must be highly
energy efficient while being able to function securely in the pres-
ence of possible malicious nodes within the network.

In this paper we focus on the particular problem of securely and
efficiently performing aggregate queries (such as MEDIAN, SUM

and AVERAGE) on sensor networks. In-network data aggregation is
an efficient primitive for reducing the total message complexity of
aggregate sensor queries. For example, in-network aggregation of
the SUM function is performed by having each intermediate node
forward a single message containing the sum of the sensor readings
of all the nodes downstream from it, rather than forwarding each
downstream message one-by-one to the base station. The energy
savings of performing in-network aggregation have been shown to
be significant and are crucial for energy-constrained sensor net-
works [9, 11, 20].

Unfortunately, most in-network aggregation schemes assume that
all sensor nodes are trusted [12, 20]. An adversary controlling just
a few aggregator nodes could potentially cause the sensor network
to return arbitrary results, thus completely subverting the function
of the network to the adversary’s own purposes.

Despite the importance of the problem and a significant amount
of work on the area, the known approaches to secure aggregation
either require strong assumptions about network topology or ad-
versary capabilities, or are only able to provide limited probabilis-
tic security properties. For example, Hu and Evans [8] propose
a secure aggregation scheme under the assumption that at most a
single node is malicious. Przydatek et al. [17] propose Secure In-
formation Aggregation (SIA), which provides a statistical security
property under the assumption of a single-aggregator model. In the
single-aggregator model, sensor nodes send their data to a single
aggregator node, which computes the aggregate and sends it to the
base station. This form of aggregation reduces communications
only on the link between the aggregator and the base station, and is
not scalable to large multihop sensor deployments. Most of the al-
gorithms in SIA (in particular, MEDIAN, SUM and AVERAGE) can-
not be directly adapted to a hierarchical aggregation model since

1



they involve sorting all of the input values; the final aggregator in
the hierarchy thus needs to access all the data values of the sensor
nodes.

In this paper, we present the first provably secure sensor network
data aggregation protocol for general networks and multiple adver-
sarial nodes. The algorithm limits the adversary’s ability to ma-
nipulate the aggregation result with the tightest bound possible for
general algorithms with no knowledge of the distribution of sen-
sor data values. Specifically, an adversary can gain no additional
influence over the final result by manipulating the results of the
in-network aggregate computation as opposed to simply reporting
false data readings for the compromised nodes under its control.
Furthermore, unlike prior schemes, our algorithm is designed for
general hierarchical aggregator topologies and multiple malicious
sensor nodes. Our metric for communication cost is congestion,
which is the maximum communication load on any node in the
network. Let n be the number of nodes in the network, and ∆ be
the maximum degree of any node in the aggregation tree. Our algo-
rithm induces only O(∆ log2 n) node congestion in the aggregation
tree.

2. RELATED WORK
Researchers have investigated resilient aggregation algorithms to

provide increased likelihood of accurate results in environments
prone to message loss or node failures. This class of algorithms
includes work by Gupta et al. [7], Nath et al. [15], Chen et al. [3]
and Manjhi et al. [14].

A number of aggregation algorithms have been proposed to en-
sure secrecyof the data against intermediate aggregators. Such al-
gorithms have been proposed by Girao et al. [5], Castelluccia et
al. [2], and Cam et al. [1].

Hu and Evans [8] propose securing in-network aggregation against
a single Byzantine adversary by requiring aggregator nodes to for-
ward their inputs to their parent nodes in the aggregation tree. Jadia
and Mathuria [10] extend the Hu and Evans approach by incorpo-
rating privacy, but also considered only a single malicious node.

Several secure aggregation algorithms have been proposed for
the single-aggregator model. Przydatek et al. [17] proposed Se-
cure Information Aggregation (SIA) for this topology. Also for the
single-aggregator case, Du et al. [4] propose using multiple wit-
nessnodes as additional aggregators to verify the integrity of the
aggregator’s result. Mahimkar and Rappaport [13] also propose
an aggregation-verification scheme for the single-aggregator model
using a threshold signature scheme to ensure that at least t of the
nodes agree with the aggregation result. Yang et al. [19] describe
a probabilistic aggregation algorithm which subdivides an aggre-
gation tree into subtrees, each of which reports their aggregates
directly to the base station. Outliers among the subtrees are then
probed for inconsistencies.

Wagner [18] addressed the issue of measuring and bounding ma-
licious nodes’ contribution to the final aggregation result. The pa-
per measures how much damage an attacker can inflict by taking
control of a number of nodes and using them solely to inject erro-
neous data values.

3. PROBLEM MODEL
In general, the goal of secure aggregation is to compute aggre-

gate functions (such as SUM, COUNT or AVERAGE) of the sensed
data values residing on sensor nodes, while assuming that a por-
tion of the sensor nodes are controlled by an adversary which is
attempting to skew the final result. In this section, we present the
formal parameters of the problem.

3.1 Network Assumptions
We assume a general multihop network with a set S= {s1, . . . ,sn}

of n sensor nodes and a single (untrusted) base station R, which is
able to communicate with the querier which resides outside of the
network. The querier knows the total number of sensor nodes n,
and that all n nodes are alive and reachable.

We assume the aggregation is performed over an aggregation
treewhich is the directed tree formed by the union of all the paths
from the sensor nodes to the base station (one such tree is shown
in Figure 1(a)). These paths may be arbitrarily chosen and are not
necessarily shortest paths. The optimisation of the aggregation tree
structure is out of the scope of this paper—our algorithm takes the
structure of the aggregation tree as given. One method for con-
structing an aggregation tree is described in TaG [11].

3.2 Security Infrastructure
We assume that each sensor node has a unique identifier s and

shares a unique secret symmetric key Ks with the querier. We fur-
ther assume the existence of a broadcast authentication primitive
where any node can authenticate a message from the querier. This
broadcast authentication could, for example, be performed using
µTESLA [16]. We assume the sensor nodes have the ability to per-
form symmetric-key encryption and decryption as well as compu-
tations of a collision-resistant cryptographic hash function H.

3.3 Attacker Model
We assume that the attacker is in complete control of an arbitrary

numberof sensor nodes, including knowledge of all their secret
keys. The attacker has a network-wide presence and can record and
inject messages at will. The sole goal of the attacker is to launch
what Przydatek et al. [17] call a stealthy attack, i.e., to cause the
querier to accept a false aggregate that is higher or lower than the
true aggregate value.

We do not consider denial-of-service (DoS) attacks where the
goal of the adversary is to prevent the querier from getting any
aggregation result at all. While such attacks can disrupt the nor-
mal operation of the sensor network, they are not as potentially
hazardous in security-critical applications as the ability to cause
the operator of the network to accept arbitrary data. Furthermore,
any maliciously induced extended loss of service is a detectable
anomaly which will (eventually) expose the adversary’s presence
if subsequent protocols or manual intervention do not succeed in
resolving the problem.

3.4 Problem Definition and Metrics
Each sensor node si has a data value ai . We assume that the

data value is a non-negativebounded real value ai ∈ [0, r] for some
maximum allowed data value r . The objective of the aggregation
process is to compute some function f over all the data values,
i.e., f (a1, . . . ,an). Note that for the SUM aggregate, the case where
data values are in a range [r1, r2] (where r1, r2 can be negative)
is reducible to this case by setting r = r2 − r1 and add nr1 to the
aggregation result.

Definition 1 A direct data injection attack occurs when an attacker
modifies the data readings reported by the nodes under its direct
control, under the constraint that only legal readings in[0, r] are
reported.

Wagner [18] performed a quantitative study measuring the ef-
fect of direct data injection on various aggregates, and concludes
that the aggregates addressed in this paper (truncated SUM and AV-
ERAGE, COUNT and Φ-QUANTILE) can be resilient under such at-
tacks.
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Without domain knowledge about what constitutes an anoma-
lous sensor reading, it is impossible to detect a direct data injection
attack, since they are indistinguishable from legitimate sensor read-
ings [17,19]. Hence, if a secure aggregation scheme does not make
assumptions on the distribution of data values, it cannot limit the
adversary’s capability to perform direct data injection. We can thus
define an optimal level of aggregation security as follows.

Definition 2 An aggregation algorithm isoptimally secure if, by
tampering with the aggregation process, an adversary is unable to
induce the querier to accept any aggregation result which is not
already achievable by direct data injection.

As a metric for communication overhead, we consider node con-
gestion, which is the worst case communication load on any sin-
gle sensor node during the algorithm. Congestion is a commonly
used metric in ad-hoc networks since it measures how quickly the
heaviest-loaded nodes will exhaust their batteries [6,12]. Since the
heaviest-loaded nodes are typically the nodes which are most es-
sential to the connectivity of the network (e.g., the nodes closest to
the base station), their failure may cause the network to partition
even though other sensor nodes in the network may still have high
battery levels. A lower communication load on the heaviest-loaded
nodes is thus desirable even if the trade-off is a larger amount of
communication in the network as a whole.

For a lower bound on congestion, consider an unsecured aggre-
gation protocol where each node sends just a single message to
its parent in the aggregation tree. This is the minimum number
of messages that ensures that each sensor node contributes to the
aggregation result. There is Ω(1) congestion on each edge on the
aggregation tree, thus resulting in Ω(d) congestion on the node(s)
with highest degree d in the aggregation tree. The parameter d is
dependent on the shape of the given aggregation tree and can be as
large as Θ(n) for a single-aggregator topology or as small as Θ(1)
for a balanced aggregation tree. Since we are taking the aggrega-
tion tree topology as an input, we have no control over d. Hence,
it is often more informative to consider per-edge congestion, which
can be independent of the structure of the aggregation tree.

Consider the simplest solution where we omit aggregation al-
together and simply send all data values (encrypted and authenti-
cated) directly to the base station, which then forwards it to the
querier. This provides perfect data integrity, but induces O(n) con-
gestion at the nodes and edges nearest the base station. For an algo-
rithm to be practical, it must cause only sublinear edge congestion.

Our goal is to design an optimally secure aggregation algorithm
with only sublinear edge congestion.

4. THE SUM ALGORITHM
In this section we describe our algorithm for the SUM aggregate,

where the aggregation function f is addition. Specifically, we wish
to compute a1 + · · ·+ an, where ai is the data value at node i. We
defer analysis of the algorithm properties to Section 5, and discuss
the application of the algorithm to other aggregates such as COUNT,
AVERAGE and MEDIAN in Section 6.

We build on the aggregate-commit-prove framework described
by Przydatek et al. [17] but extend their single aggregator model
to a fully distributed setting. Our algorithm involves computing a
cryptographic commitment structure (similar to a hash tree) over
the data values of the sensor nodes as well as the aggregation pro-
cess. This forces the adversary to choose a fixed aggregation topol-
ogy and set of aggregation results. The individual sensor nodes
then independently audit the commitment structure to verify that

their respective contributions have been added to the aggregate. If
the adversary attempts to discard or reduce the contribution of a
legitimate sensor node, this necessarily induces an inconsistency
in the commitment structure which can be detected by the affected
node. This basic approach provides us with a lower bound for the
SUM aggregate. To provide an upper-bound for SUM, we can re-
use the same lower-bounding approach, but on a complementary
aggregate called the COMPLEMENT aggregate. Where SUM is de-
fined as ∑ai , COMPLEMENT is defined as ∑(r −ai) where r is the
upper bound on allowable data values. When the final aggregates
are computed, the querier enforces the constraint that SUM + COM-
PLEMENT = nr. Hence any adversary that wishes to increase SUM

must also decrease COMPLEMENT, and vice-versa, otherwise the
discrepancy will be detected. Hence, by enforcing a lower-bound
on COMPLEMENT, we are also enforcing an upper-bound on SUM.

The overall algorithm has three main phases: query dissemina-
tion, aggregation-commit, and result-checking.

Query dissemination. The base station broadcasts the query to
the network. An aggregation tree, or a directed spanning tree over
the network topology with the base station at the root, is formed as
the query is sent to all the nodes, if one is not already present in the
network.

Aggregation commit. In this phase, the sensor nodes iteratively
construct a commitment structure resembling a hash tree. First, the
leaf nodes in the aggregation tree send their data values to their par-
ents in the aggregation tree. Each internal sensor node in the ag-
gregation tree performs an aggregation operation whenever it has
heard from all its child sensor nodes. Whenever a sensor node s
performs an aggregation operation, s creates a commitment to the
set of inputs used to compute the aggregate by computing a hash
over all the inputs (including the commitments that were computed
by the children of s). Both the aggregation result and the commit-
ment are then passed on to the parent of s. After the final commit-
ment values are reported to the base station (and thus also to the
querier), the adversary cannot subsequently claim a different ag-
gregation structure or result. We describe an optimisation to ensure
that the constructed commitment trees are perfectly balanced, thus
requiring low congestion overhead in the next phase.

Result-checking. The result-checking phase is a novel distributed
verification process. In prior work, algorithms have relied on the
querier to issue probes into the commitment structure to verify its
integrity [17, 19]. This induces congestion nearest the base station,
and moreover, such algorithms yield at best probabilistic security
properties. We show that if the verification step is instead fully dis-
tributed, it is possible to achieve provably optimal security while
maintaining sublinear edge congestion.

The result-checking phase proceeds as follows. Once the querier
has received the final commitment values, it disseminates them to
the rest of the network in an authenticated broadcast. At the same
time, sensor nodes disseminate information that will allow their
peers to verify that their respective data values have been incor-
porated into the aggregate. Each sensor node is responsible for
checking that its own contribution was added into the aggregate.
If a sensor node determines that its data value was indeed added
towards the final sum, it sends an authentication code up the aggre-
gation tree towards to the base station. Authentication codes are ag-
gregated along the way with the XOR function for communication
efficiency. When the querier has received the XOR of all the au-
thentication codes, it can then verify that all the sensor nodes have
confirmed that the aggregation structure is consistent with their data
values. If so, then it accepts the aggregation result.

We now describe the details of each of the three phases in turn.
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(a) Example network graph.
Arrows: Aggregation tree.
R: Base station. Q: Querier.

G0 = 〈1,aG, r −aG,G〉

F1 = 〈2,vF1 ,vF1 ,H [N||2||vF1 ||vF1 ||F0||G0]〉

C1 = 〈4,vC1 ,vC1 ,H [N||4||vC1 ||vC1 ||C0||E0||F1]〉

A1 = 〈9,vA1 ,vA1 ,H [N||9||vA1 ||vA1 ||A0||B1||C1||D0]〉

R= 〈12,vR,vR,H [N||12||vR||vR||H0||A1||I0]〉

(b) Naive commitment tree, showing derivations of some of the vertices. For each sensor
node X, X0 is its leaf vertex, while X1 is the internal vertex representing the aggregate
computation at X (if any). On the right we list the labels of the vertices on the path of
node G to the root.

Figure 1: Aggregation and naive commitment tree in network context

4.1 Query Dissemination
First, an aggregation tree is established if one is not already

present. Various algorithms for selecting the structure of an ag-
gregation tree may be used. For completeness, we describe one
such process, while noting that our algorithm is directly applicable
to any aggregation tree structure. The Tiny Aggregation Service
(TaG) [11] uses a broadcast from the base station where each node
chooses as its parent in the aggregation tree, the node from which
it first heard the tree-formation message.

To initiate a query in the aggregation tree, the base station orig-
inates a query request message which is distributed following the
aggregation tree. The query request message contains an attached
nonce N to prevent replay of messages belonging to a prior query,
and the entire request message is sent using an authenticated broad-
cast.

4.2 Aggregation-Commit Phase
The goal of the aggregation-commit phase is to iteratively con-

struct a series of cryptographic commitments to data values and to
intermediate in-network aggregation operations. This commitment
is then passed on to the querier. The querier then rebroadcasts the
commitment to the sensor network using an authenticated broad-
cast so that the rest of the sensor network is able to verify that their
respective data values have been incorporated into the aggregate.

4.2.1 Aggregation-Commit: Naive Approach
We first describe a naive approach that yields the desired secu-

rity properties but has suboptimal congestion overhead when sensor
nodes perform their respective verifications. In the naive approach,
when each sensor node performs an aggregation operation, it com-
putes a cryptographic hash of all its inputs (including its own data
value). The hash value is then passed on to the parent in the aggre-
gation tree along with the aggregation result. Figure 1(b) shows a
commitment treewhich consists of a series of hashes of data values
and intermediate results, culminating in a set of final commitment
values which is passed on by the base station to the querier along
with the aggregation results. Conceptually, a commitment tree is
a hash tree with some additional aggregate accounting information
attached to the nodes. A definition follows. Recall that N is the
query nonce that is disseminated with each query.

Definition 3 A commitment tree is a tree where each vertex has
an associated label representing the data that is passed on to its
parent. The labels have the following format:

〈count, value, complement, commitment〉
Wherecount is the number of leaf vertices in the subtree rooted
at this vertex;value is the SUM aggregate computed over all
the leaves in the subtree;complement is the aggregate over the
COMPLEMENT of the data values; andcommitment is a crypto-
graphic commitment. The labels are defined inductively as follows:

There is one leaf vertex us for each sensor node s, which we
call the leaf vertex of s. The label of us consists ofcount=1,
value=as where as is the data value of s,complement=r −as
where r is the upper bound on allowable data values, and
commitment is the node’s unique ID.

Internal vertices represent aggregation operations, and have la-
bels that are defined based on their children. Suppose an internal
vertex has child vertices with the following labels: u1,u2, . . . ,uq,
where ui = 〈ci ,vi ,vi ,hi〉. Then the vertex has label〈c,v,v,h〉, with
c = ∑ci , v= ∑vi , v = ∑vi and h= H [N||c||v||v||u1||u2|| · · · ||uq].

For brevity, in the remainder of the paper we will often omit ref-
erences to labels and instead refer directly to the count, value,
complement or commitment of a vertex.

While there exists a natural mapping between vertices in a com-
mitment tree and sensor nodes in the aggregation tree, a vertex is
a logical element in a graph while a sensor node is a physical de-
vice. To prevent confusion, we will always refer to the verticesin
the commitment tree; the term nodesalways refers to the physical
sensor node device.

Since we assume that our hash function provides collision resis-
tance, it is computationally infeasible for an adversary to change
any of the contents of the commitment tree once the final commit-
ment values have reached the root.

With knowledge of the root commitment value, a node s may
verify the aggregation steps between its leaf vertex us and the root
of the commitment tree. To do so, s needs the labels of all its off-
pathvertices.

Definition 4 The set ofoff-path vertices for a vertex u in a tree is
the set of all the siblings of each of the vertices on the path from u
to the root of the tree that u is in (the path is inclusive of u).
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Figure 2: Off-path vertices for u are highlighted in bold. The
path from u to the root of its tree is shaded grey.

Figure 2 shows a pictorial depiction of the off-path vertices for a
vertex u in a tree. For a more concrete example, the set of off-path
commitment tree vertices for G0 in Figure 1 is {F0, E0, C0, B1,
A0, D0, H0, I0}. To allow sensor node G to verify its contribution
to the aggregate, the sensor network delivers labels of each off-
path vertex to G0. Sensor node G then recomputes the sequence of
computations and hashes and verifies that they lead to the correct
root commitment value.

Consider the congestion on the naive scheme. Let h be the height
of the aggregation tree and ∆ be the maximum degree of any node
inside the tree. Each leaf vertex has O(h∆) off-path vertices, and it
needs to receive all their labels to verify its contribution to the ag-
gregate, thus leading to O(h∆) congestion at the leaves of the com-
mitment tree. For an aggregation tree constructed with TaG, the
height h of the aggregation tree depends on the diameter (in number
of hops) of the network, which in turn depends on the node density
and total number of nodes n in the network. In a 2-dimensional
deployment area with a constant node density, the best bound on
the diameter of the network is O(

√
n) if the network is regularly

shaped. In irregular topologies the diameter of the network may be
Ω(n).

4.2.2 Aggregation-Commit: Improved Approach
We present an optimization to improve the congestion cost. The

main observation is that, since the aggregation trees are a sub-
graph of the network topology, they may be arbitrarily unbalanced.
Hence, if we decouple the structure of the commitment tree from
the structure of the aggregation tree, then the commitment tree
could be perfectly balanced.

In the naive commitment tree, each sensor node always com-
putes the aggregate sum of all its inputs. This can be considered
a strategy of greedy aggregation. Consider instead the benefit of
delayed aggregationat node C1 in Figure 1(b). Suppose that C,
instead of greedily computing the aggregate sum over its own read-
ing (C0) and both its child nodes E0 and F1, instead computes the
sum only over C0 and E0, and passes F1 directly to A along with
C1 = C0 + E0. In such a commitment tree, F1 becomes a child of
A1 (instead of C1), thus reducing the depth of the commitment tree
by 1. Delayed aggregation thus trades off increased communica-
tion during the aggregation phase in return for a more balanced
commitment tree, which results in lower verification overhead in
the result-checking phase. Greenwald and Khanna [6] used a form
of delayed aggregation in their quantile summary algorithm.

Our strategy for delayed aggregation is as follows: we perform
an aggregation operation (along with the associated commit oper-
ation) if and only if it results in a complete, binarycommitment
tree.

We now describe our delayed aggregation algorithm for produc-
ing balanced commitment trees. In the naive commitment tree,
each sensor node passes to its parent a single message contain-
ing the label of the root vertex of its commitment subtree Ts. In

the delayed aggregation algorithm, each sensor node now passes
on the labels of the root vertices of a setof commitment subtrees
F = {T1, . . . ,Tq}. We call this set a commitment forest, and we
enforce the condition that the trees in the forest must be complete
binary trees, and no two trees have the same height. These con-
straints are enforced by continually combining equal-height trees
into complete binary trees of greater height.

Definition 5 A commitment forest is a set of complete binary com-
mitment trees such that there is at most one commitment tree of any
given height.

A commitment forest has at most n leaf vertices (one for each
sensor node included in the forest, up to a maximum of n). Since
all the trees are complete binary trees, the tallest tree in any com-
mitment forest has height at most logn. Since there are no two trees
of the same height, any commitment forest has at most logn trees.

In the following discussion, we will for brevity make reference
to “communicating a vertex” to another sensor node, or “commu-
nicating a commitment forest” to another sensor node. The actual
data communicated is the label of the vertex and the labels of the
rootsof the trees in the commitment forest, respectively.

The commitment forest is built as follows. Leaf sensor nodes in
the aggregation tree originate a single-vertex commitment forest,
which they then communicate to their parent sensor nodes. Each
internal sensor node s originates a similar single-vertex commit-
ment forest. In addition, s also receives commitment forests from
each of its children. Sensor node s keeps track of which root ver-
tices were received from which of its children. It then combines all
the forests to form a new forest as follows.

Suppose s wishes to combine q commitment forests F1, . . . ,Fq.
Note that since all commitment trees are complete binary trees, tree
heights can be determined by inspecting the count field of the
root vertex. We let the intermediate result be F = F1 ∪·· ·∪Fq, and
repeat the following until no two trees are the same height in F :
Let h be the smallest height such that more than one tree in F has
height h. Find two commitment trees T1 and T2 of height h in F ,
and merge them into a tree of height h+1 by creating a new vertex
that is the parent of both the roots of T1 and T2 according to the
inductive rule in Definition 3. Figure 3 shows an example of the
process for node A based on the topology in Figure 1.

The algorithm terminates in O(qlogn) steps since each step re-
duces the number of trees in the forest by one, and there are at most
qlogn+ 1 trees in the forest. Hence, each sensor node creates at
most qlogn+1 = O(∆ logn) vertices in the commitment forest.

When F is a valid commitment forest, ssends the root vertices of
each tree in F to its parent sensor node in the aggregation tree. The
sensor node salso keeps track of every vertex that it created, as well
as all the inputs that it received (i.e., the labels of the root vertices
of the commitment forests that were sent to s by its children). This
takes O(d logn) memory per sensor node.

Consider the communication costs of the entire process of creat-
ing the final commitment forest. Since there are at most logn com-
mitment trees in each of the forests presented by any sensor node to
its parent, the per-node communication cost for constructing the fi-
nal forest is O(logn). This is greater than the O(1) congestion cost
of constructing the naive commitment tree. However, no path in the
forest is longer than logn hops. This will eventually enable us to
prove a bound of O(log2 n) edge congestion for the result-checking
phase in Section 5.2.

Once the querier has received the final commitment forest from
the base station, it checks that none of the SUM or COMPLEMENT

aggregates of the roots of the trees in the forest are negative. If
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A0 = 〈1,aA, r −aA,A〉
D0 = 〈1,aD, r −aD,D〉

K0 = 〈1,aK , r −aK ,K〉

C2 = 〈4,vC2 ,vC2 ,H [N||4||vC2 ||vC2 ||F1||C1]〉
B1 = 〈2,vB1 ,vB1 ,H [N||2||vB1 ||vB1 ||B0||J0]〉

(a) Inputs: A generates A0, and receives D0 from D, C2 from C, and (B1,K0) from B. Each dashed-line box shows the commitment
forest received from a given sensor node. The solid-line box shows the vertex labels, each solid-line box below shows the labels of the
new vertices.

vA1 = aA +aD

vA1 = r −aA + r −aD

A1 = 〈2,vA1 ,vA1 ,H [N||2||vA1 ||vA1 ||A0||D0]〉

(b) First merge: Vertex A1 created

vA2 = vA1 +vB1

vA2 = vA1 +vB1

A2 = 〈4,vA2 ,vA2 ,H [N||4||vA2 ||vA2 ||A1||B1]〉

(c) Second merge: Vertex A2 created

vA3 = vA2 +vC2

vA3 = vA2 +vC2

A3 = 〈8,vA3 ,vA3 ,H [N||8||vA3 ||vA3 ||A2||C2]〉

(d) Final merge: Vertex A3 created. A3 and K0 are sent to the parent of A in the aggregation tree.

Figure 3: Process of node A (from Figure 1) deriving its commitment forest from the commitment forests received from its children.

any aggregates are negative, the querier rejects the result and raises
an alarm: a negative aggregate is a sure sign of tampering since
all the data values (and their complements) are non-negative. Oth-
erwise, the querier then computes the final pair of aggregates SUM

and COMPLEMENT. The querier verifies that SUM + COMPLEMENT

= nr where r is the upper bound on the range of allowable data val-
ues on each node. If this verifies correctly, the querier then initiates
the result-checkingphase.

4.3 Result-checking phase
The purpose of the result-checking phase is to enable each sensor

node s to independently verify that its data value as was added into
the SUM aggregate, and the complement (r −as) of its data value
was added into the COMPLEMENT aggregate. The verification is
performed by inspecting the inputs and aggregation operations in
the commitment forest on the path from the leaf vertex of s to the
root of its tree; if all the operations are consistent, then the root

aggregate value must have increased by as due to the incorporation
of the data value. If each legitimate node performs this verification,
then it ensures that the SUM aggregate is at least the sum of all the
data values of the legitimate nodes. Similarly, the COMPLEMENT

aggregate is at least the sum of all the complements of the data
values of the legitimate nodes. Since the querier enforces SUM +
COMPLEMENT = nr, these two inequalities form lower and upper
bounds on an adversary’s ability to manipulate the final result. In
Section 5 we shall show that they are in fact the tightest bounds
possible.

A high level overview of the process is as follows. First, the
aggregation results from the aggregation-commit phase are sent us-
ing authenticated broadcast to every sensor node in the network.
Each sensor node then individually verifies that its contributions
to the respective SUM and COMPLEMENT aggregates were indeed
counted. If so, it sends an authentication code to the base station.
The authentication code is also aggregated for communication effi-
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Figure 4: Dissemination of off-path values: t sends the label of
u1 to u2 and vice-versa; each node then forwards it to all the
vertices in their subtrees.

ciency. When the querier has received all the authentication codes,
it is then able to verify that all sensor nodes have checked that their
contribution to the aggregate has been correctly counted.

For simplicity, we describe each step of the process with refer-
ence to the commitment tree visualised as an overlay networkover
the actual aggregation tree. Hence, we will refer to verticesin the
commitment tree sending information to each other; in the physical
world, it is the sensor node that created the vertex is the physical
entity that is responsible for performing communications and com-
putations on behalf of the vertex. Each edge in the commitment
tree may involve multiple hops in the aggregation tree; the routing
on the aggregation tree is straightforward.

Dissemination of final commitment values. After the querier
has received the labels of the roots of the final commitment forest,
the querier sends each of these labels to the entire sensor network
using authenticated broadcast.

Dissemination of off-path values. To enable verification, each
leaf vertex must receive all its off-path values. Each internal vertex
t in the commitment forest has two children u1 and u2. To dissemi-
nate off-path values, t sends the label of u1 to u2, and vice-versa (t
also attaches relevant information tagging u1 as the right child and
u2 as the left child). Vertex t also sends any labels (and left/right
tags) received from its parent to both its children. See Figure 4 for
an illustration of the process. The correctness of this algorithm in
delivering all the necessary off-path vertex labels to each vertex is
proven in Theorem 14 in Section 5.2. Once a vertex has received all
the labels of its off-path vertices, it can proceed to the verification
step.

Verification of inclusion. When the leaf vertex us of a sensor
node s has received all the labels of its off-path vertices, it may
then verify that no aggregation result-tampering has occurred on
the path between us and the root of its commitment tree. For each
vertex t on the path from us to the root of its commitment tree, us
derives the label of t (via the computations in Definition 3). It is
able to do so since the off-path labels provide all the necessary data
to perform the label computation. During the computation, us in-
spects the off-path labels: for each node t on the path from us to the
root, us checks that the input values fed into the aggregation oper-
ation at t are never negative. Negative values should never occur
since the data and complement values are non-negative; hence if
a negative input is encountered, the verification fails. Once us has
derived the label of the root of its commitment tree, it compares
the derived label against the label with the same count that was
disseminated by the querier. If the labels are identical, then us pro-
ceeds to the next step. Otherwise, the verification fails and us may
either immediately raise an alarm (for example, using broadcast),
or it may simply do nothing and allow the aggregate algorithm to
fail due to the absence of its confirmation message in the subse-
quent steps.

Collection of confirmations. After each sensor node s has suc-
cessfully performed the verification step for its leaf vertex us, it
sends an authentication code to the querier. The authentication code
for sensor node s is MACKs(N||OK) where OK is a unique message
identifier and Ks is the key that s shares with the querier. The col-
lation of the authentication codes proceeds as follows (note that we
are referring to the aggregationtree at this point, not the commit-
ment tree). Leaf sensor nodes in the aggregation tree first send their
authentication codes to their parents in the aggregation tree. Once
an internal sensor node has received authentication codes from all
its children, it computes the XOR of its own authentication code
with all the received codes, and forwards it to its parent. At the end
of the process, the querier will receive a single authentication code
from the base station that consists of the XOR of all the authenti-
cation codes received in the network.

Verification of confirmations. Since the querier knows the key
Ks for each sensor node s, it verifies that every sensor node has
released its authentication code by computing the XOR of the au-
thentication codes for all the sensor nodes in the network, i.e.,
MACK1(N||OK)⊕ ·· · ⊕MACKn(N||OK). The querier then com-
pares the computed code with the received code. If the two codes
match, then the querier accepts the aggregation result. Otherwise,
the querier rejects the result. A rejection may indicate the presence
of the adversary in some unknown nodes in the network, or it may
be due to natural factors such as node death or message loss. The
querier may either retry the query or attempt to determine the cause
of the rejection. For example, it could directly request the leaf val-
ues of every sensor node: if rejections due to natural causes are
sufficiently rare, the high cost of this direct query is incurred infre-
quently and can be amortised over the other successful queries.

5. ANALYSIS OF SUM
In this section we prove the properties of the SUM algorithm. In

Section 5.1 we prove the security properties of the algorithm, and
in Section 5.2 we prove bounds on the congestion of the algorithm.

5.1 Security Properties
We assume that the adversary is able to freely choose any ar-

bitrary topology and set of labels for the final commitment forest.
We then show that any such forest which passes all the verification
tests must report an aggregate result that is (optimally) close to the
actual result. First, we define the notion of an inconsistency, or
evidence of tampering, at a given node in the commitment forest.

Definition 6 Let t = 〈ct ,vt ,vt ,Ht〉 be an internal vertex in a com-
mitment forest. Let its two children be u1 = 〈c1,v1,v1,H1〉 and
u2 = 〈c2,v2,v2,H2〉. There is aninconsistency at vertex t in a com-
mitment tree if either (1) vt �= v1 +v2 or vt �= v1 +v2 or (2) any of
{v1,v2,v1,v2} is negative.

Informally, an inconsistency occurs at t if the sums don’t add up
at t, or if any of the inputs to t are negative. Intuitively, if there
are no inconsistencies on a path from a vertex to the root of the
commitment tree, then the aggregate value along the path should
be non-decreasing towards the root.

Definition 7 Call a leaf-vertex uaccounted-for if there is no in-
consistency at any vertex on the path from the leaf-vertex u to the
root of its commitment tree, including at the root vertex.

Lemma 8 Suppose there is a set of accounted-for leaf-vertices with
distinct labels u1, . . . ,um and committed data values v1, . . . ,vm in
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the commitment forest. Then the total of the aggregation values at
the roots of the commitment trees in the forest is at least∑m

i=1 vi .

Lemma 8 can be rigorously proven using induction on the height
of the subtrees in the forest (see Appendix A). Here we present a
more intuitive argument.

PROOF. (Sketch) We show the result for m = 2; a similar rea-
soning applies for arbitrary m. Case 1: Suppose u1 and u2 are in
different trees. Then, since there is no inconsistency on any ver-
tex on the path from u1 to the root of its tree, the root of the tree
containing u1 must have an aggregation value of at least v1. By a
similar reasoning, the root of the tree containing u2 must have an
aggregation value of at least v2. Hence the total aggregation value
of the two trees containing u1 and u2 is at least v1 +v2.

Case 2: Now suppose u1 and u2 are in the same tree. Since they
have distinct labels, they must be distinct vertices, and they must
have a lowest common ancestor t in the commitment tree. The ver-
tices between u1 and t (including u1) must have aggregation value
at least v1 since there are no inconsistencies on the path from u1
to t, so the aggregation value could not have decreased. Similarly,
the vertices between u2 and t (including u2) must have aggregation
value at least v2. Hence, one of the children of t has aggregation
value at least v1 and the other has aggregation value at least v2.
Since there was no inconsistency at t, vertex t must have aggrega-
tion value at least v1 +v2. Since there are no inconsistencies on the
path from t to the root of the commitment tree, the root also must
have aggregation value at least v1 +v2.

Negative root aggregate values are detected by the querier at the
end of the aggregate-commit phase, so the total sum of the aggre-
gate values of the roots of all the trees is thus at least v1 +v2.

The following is a restatement of Lemma 8 for the COMPLE-
MENTARY SUM aggregate; its proof follows an identical structure
and is thus omitted.

Lemma 9 Suppose there is a set of accounted-for leaf vertices
with distinct labels u1, . . . ,um with committed complement values
v1, . . . ,vm in the commitment forest. Then the totalCOMPLEMENT

aggregation value of the roots of the commitment trees in the forest
is at least∑m

i=1 vi .

Lemma 10 A legitimate sensor node will only release its confir-
mation MAC if it is accounted-for.

PROOF. By construction, each sensor node s only releases its
confirmation MAC if (1) s receives an authenticated message from
the querier containing the query nonce N and the root labels of all
the trees in the final commitment forest and (2) s receives all labels
of its off-path vertices (the sibling vertices to the vertices on the
path from the leaf vertex corresponding to s to the root of the com-
mitment tree containing the leaf vertex in the commitment forest),
and (3) s is able to recompute the root commitment value that it
received from the base station and correctly authenticated, and (4)
s verified that all the computations on the path from its leaf vertex
us to the root of its commitment tree are correct, i.e., there are no
inconsistencies on the path from us to the root of the commitment
tree containing us. Since the hash function is collision-resistant,
it is computationally infeasible for an adversary to provide s with
false labels that also happen to compute to the correct root com-
mitment value. Hence, it must be that s was accounted-for in the
commitment forest.

Lemma 11 The querier can only receive the correct final XOR
check value if all the legitimate sensor nodes replied with their con-
firmation MACs.

PROOF. To compute the correct final XOR check value, the ad-
versary needs to know the XOR of all the legitimate sensor nodes
that did not release their MAC. Since we assume that each of the
distinct MACs are unforgeable (and not correlated with each other),
the adversary has no information about this XOR value. Hence, the
only way to produce the correct XOR check value is for all the
legitimate sensor nodes to have released their relevant MACs.

Theorem 12 Let the finalSUM aggregate received by the querier
be S. If the querier accepts S, then SL ≤ S≤ (SL +µr) where SL is
the sum of the data values of all the legitimate nodes, µ is the total
number of malicious nodes, and r is the upper bound on the range
of allowable values on each node.

PROOF. Suppose the querier accepts the SUM result S. Let the
COMPLEMENT SUM received by the querier be S. The querier ac-
cepts S if and only if it receives the correct final XOR check value
in the result-checking phase, and S+S= nr. Since the querier re-
ceived the correct XOR check value, we know that each legitimate
sensor node must have released its confirmation MAC (Lemma 11),
and so the leaf vertices of each legitimate sensor node must be
accounted-for (Lemma 10). The set of labels of the leaf vertices of
the legitimate nodes is distinct since the labels contain the (unique)
node ID of each legitimate node. Since all the leaf vertices of the le-
gitimate sensor nodes are distinct and accounted-for, by Theorem 8,
S≥ SL where SL is the sum of the data values of all the legitimate
nodes. Furthermore, by Theorem 9, S≥ SL, where SL is the sum
of the complements of the data values of all the legitimate nodes.
Let L be the set of legitimate sensor nodes, with |L| = l . Observe
that SL = ∑i∈L r −ai = lr −SL = (n−µ)r −SL = nr− (SL + µr).
We have that S+ S = nr and S≥ nr − (SL + µr). Substituting,
S= nr−S≤ SL +µr. Hence, SL ≤ S≤ (SL +µr).

Note that nowhere was it assumed that the malicious nodes were
constrained to reporting data values between [0, r]: in fact it is pos-
sible to have malicious nodes with data values above r or below 0
without risking detection if SL ≤ S≤ (SL +µr).

Theorem 13 TheSUM algorithm is optimally secure.

PROOF. Let the sum of the data values of all the legitimate nodes
be SL. Consider an adversary with µ malicious nodes which only
performs direct data injection attacks. Recall that in a direct data in-
jection attack, an adversary only causes the nodes under its control
to each report a data value within the legal range [0, r]. The lowest
result the adversary can induce is by setting all its malicious nodes
to have data value 0; in this case the computed aggregate is SL. The
highest result the adversary can induce is by setting all µ nodes un-
der its control to yield the highest value r . In this case the computed
aggregate is SL +µr. Clearly any aggregation value between these
two extremes is also achievable by direct data injection. The bound
proven in Theorem 12 falls exactly on the range of possible results
achievable by direct data injection, hence the algorithm is optimal
by Definition 2.

The optimal security property holds regardless of the number or
fraction of malicious nodes; this is significant since the security
property holds in general, and not just for a subclass of attacker
multiplicities. For example, we do not assume that the attacker is
limited to some ρ fraction of the nodes in the network.

5.2 Congestion Complexity
We now consider the congestion induced by the secure SUM al-

gorithm. Recall that node congestion is defined as the communi-
cation load on the most heavily loaded sensor node in the network,
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and edge congestion is the heaviest communication load on a given
link in the network. We only need to consider the case where the
adversary is not performing an attack. If the adversary attempts
to send more messages than the proven congestion bound, legiti-
mate nodes can easily detect this locally and either raise an alarm
or refuse to respond with their confirmation values, thus expos-
ing the presence of the adversary. Recall that when we refer to a
vertexsending and receiving information, we are referring to the
commitment tree overlay network that lies over the actual physical
aggregation tree.

Theorem 14 Each vertex u receives the labels of its off-path ver-
tices and no others.

PROOF. Since, when the vertices are disseminating their labels
in the result-checking phase, every vertex always forwards any la-
bels received from its parents to both its children, it is clear that
when a label is forwarded to a vertex u′, it is eventually forwarded
to the entire subtree rooted at u′.

By definition, every off-path vertex u1 of u has a parent p which
is a node on the path between u and the root of its commitment
tree. By construction, p sends the label of u1 to its sibling u2 which
is on the path to u (i.e., either u2 is an ancestor of u, or u2 = u).
Hence, the label u1 is eventually forwarded to u. Every vertex u′1
that is not an off-path vertex has a sibling u′2 which is not on the
path between u and the root of its commitment tree. Hence, u is not
in the subtree rooted at u′2. Since the label of u′1 is only forwarded
to the subtree rooted at its sibling and nowhere else, the label of u′1
never reaches u.

Theorem 15 TheSUM algorithm induces O(log2 n) edge conges-
tion (and hence O(∆ log2 n) node congestion) in the aggregation
tree.

PROOF. Every step in the algorithm except the label dissemi-
nation step involves either broadcast or convergecast of messages
that are at most O(logn) size. The label-dissemination step is the
dominating factor.

Consider an arbitrary edge in the commitment-tree between par-
ent vertex x and child vertex y. In the label dissemination step,
messages are only sent from parent to child in the commitment tree.
Hence the edge xy carries exactly the labels that y receives. From
Theorem 14, y receives O(logn) labels, hence the total number of
labels passing through xy is O(logn). Hence, the edge congestion
in the commitmenttree is O(logn). Now consider an arbitrary ag-
gregation tree edge with parent node u and child node v. The child
node v presents (i.e., sends) at most logn commitment-tree vertices
to its parent u, and hence the edge uv is responsible for carrying
traffic on behalf of at most logn commitment-tree edges — these
are the edges incident on the commitment tree vertices that v pre-
sented to u. Note that v may not be responsible for creating all
the vertices that it presents to u, but v is nonetheless responsible
for forwarding the messages down to the sensor nodes which cre-
ated those vertices. Since each edge in the commitment tree has
O(logn) congestion, and each edge in the aggregation tree carries
traffic for at most logn commitment-tree edges, the edge congestion
in the aggregation tree is O(log2 n). The node-congestion bound
of O(∆ log2 n) follows from the O(log2 n) edge congestion and the
definition of ∆ as the greatest degree in the aggregation tree.

6. OTHER AGGREGATION FUNCTIONS
In this section we briefly discuss how to use the SUM algorithm

as a primitive for the COUNT, AVERAGE and Φ-QUANTILE aggre-
gates.

The COUNT Aggregate. The query COUNT is generally used
to determine the total number of nodes in the network with some
property; without loss of generality it can be considered a SUM ag-
gregation where all the nodes have value either 1 (the node has the
property) or 0 (otherwise). More formally, each sensor node s has
a data value as ∈ {0,1}, and we wish to compute f (a1, . . . ,an) =
a1 +a2 + · · ·+an. Since count is a special case of SUM, we can use
the basic algorithm for SUM without modification.

The AVERAGE Aggregate. The AVERAGE aggregate can be
computed by first computing the SUM of data values over the nodes
of interest, and then the COUNT of the number of nodes of interest,
and then dividing the SUM by the COUNT.

The Φ-QUANTILE Aggregate. In the Φ-QUANTILE aggregate,
we wish to find the value that is in the Φn-th position in the sorted
list of data values. For example, the median is a special case where
Φ = 0.5. Without loss of generality we can assume that all the data
values are distinct; ties can be broken using unique node IDs.

If we wished to verify the correctness of a proposed Φ-quantile q,
we can perform a COUNT computation where each node spresents a
value a′s = 1 if its data value as≤ q and presents a′s = 0 otherwise. If
q is the Φ-quantile, then the computed sum should be equal to Φn.
Hence, we can use any insecure approximate Φ-quantile aggrega-
tion scheme to compute a proposed Φ-quantile, and then securely
test to see if the result truly is within the approximation bounds of
the Φ-quantile algorithm.

7. CONCLUSION
In-network data aggregation is an important primitive for sensor

network operation. The strong standard threat model of multiple
Byzantine nodes in sensor networks requires the use of aggrega-
tion techniques that are robust against malicious result-tampering
by covert adversaries.

We present the first optimally secure aggregation scheme for ar-
bitrary aggregator topologies and multiple malicious nodes. This
contribution significantly improves on prior work which requires
strict limitations on aggregator topology or malicious node multi-
plicity, or which only yields a probabilistic security bound. Our al-
gorithm is based on a novel method of distributing the verification
of aggregation results onto the sensor nodes, and combining this
with a unique technique for balancing commitment trees to achieve
sublinear congestion bounds. The algorithm induces O(∆ log2 n)
node congestion (where ∆ is the maximum degree in the aggre-
gation tree) and provides the strongest security bound that can be
proven for any secure aggregation scheme without making assump-
tions about the distribution of data values.
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APPENDIX

A. PROOF OF LEMMA 8
We first prove the following:

Lemma 16 Let F be a collection of commitment trees of height at
most h. Suppose there is a set U of accounted-for leaf-vertices with
distinct labels u1, . . . ,um and committed values v1, . . . ,vm in F. Let
the set of trees that contain at least one member of U be TF . Define
val(X) for any forest X to be the total of the aggregation values at
the roots of the trees in X. Then val(TF ) ≥ ∑m

i=1 vi .

PROOF. Proof: By induction on h.
Base case: h= 0. Then all the trees are singleton-trees. The total

aggregation value of all the singleton-trees that contain at least one
member of U is exactly ∑m

i=1 vi .
Induction step: Assume the theorem holds for h, and consider

an arbitrary collection F of commitment trees with at most height
h+1 where the premise holds. If there are no trees of height h+1
then we are done. Otherwise, let the set R be all the root vertices
of the trees of height h+ 1. Consider F ′ = F\R, i.e., remove all
the vertices in R from F . The result is a collection of trees with
height at most h. Let TF ′ be the set of trees in F ′ containing at
least one member of U . The induction hypothesis holds for F ′, so
val(TF ′) ≥ ∑m

i=1 vi . We now show that replacing the vertices from
R cannot produce an TF such that val(TF ) < val(TF ′). Each vertex
r from R is the root of two subtrees of height h in F . We have three
cases:

Case 1: Neither subtree contains any members of U . Then the
new tree contains no members of U , and so is not a member of TF .

Case 2: One subtree t1 contains members of U . Since all the
members of U are accounted-for, this implies that there is no in-
consistency at r . Hence, the subtree without a member of U must
have a non-negative aggregate value. We know that r performs the
aggregate sum correctly over its inputs, so it must have aggregate
value at least equal to the aggregate value of t1.

Case 3: Both subtrees contain members of U . Since all the mem-
bers of U are accounted-for, this implies that there is no inconsis-
tency at r . The aggregate result of r is exactly the sum of the ag-
gregate values of the two subtrees.

In case 2 and 3, the aggregate values of the roots of the trees of
height h+1 that were in TF , was no less than the sum of the aggre-
gate values of their constituent subtrees in TF ′ . Hence, val(TF ) ≥
val(TF ′) ≥ ∑m

i=1 vi .

Let the commitment forest in Lemma 8 be F . Let the set of trees
in F that contain at least one of the accounted-for leaf-vertices be
T. By the above lemma, val(T) ≥ ∑m

i=1 vi . We know that there are
no root labels with negative aggregation values in the commitment
forest, otherwise the querier would have rejected the result. Hence,
val(F) ≥ val(T) ≥ ∑m

i=1 vi .
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