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Abstract. Intruders on the Internet often prefer to launch network in-
trusions indirectly, i.e., using a chain of hosts on the Internet as relay
machines using protocols such as Telnet or SSH. This type of attack is
called a stepping-stone attack. In this paper, we propose and analyze al-
gorithms for stepping-stone detection using ideas from Computational
Learning Theory and the analysis of random walks. Our results are the
first to achieve provable (polynomial) upper bounds on the number of
packets needed to confidently detect and identify encrypted stepping-
stone streams with proven guarantees on the probability of falsely accus-
ing non-attacking pairs. Moreover, our methods and analysis rely on mild
assumptions, especially in comparison to previous work. We also examine
the consequences when the attacker inserts chaff into the stepping-stone
traffic, and give bounds on the amount of chaff that an attacker would
have to send to evade detection. Our results are based on a new approach
which can detect correlation of streams at a fine-grained level. Our ap-
proach may also apply to more generalized traffic analysis domains, such
as anonymous communication.

Key words: Network intrusion detection. Evasion. Stepping stones. Inter-
active sessions. Random walks.

1 Introduction

Intruders on the Internet often launch network intrusions indirectly, in order to
decrease their chances of being discovered. One of the most common methods
used to evade surveillance is the construction of stepping stones. In a stepping-
stone attack, an attacker uses a sequence of hosts on the Internet as relay ma-
chines and constructs a chain of interactive connections using protocols such as
Telnet or SSH. The attacker types commands on his local machine and then the
commands are relayed via the chain of “stepping stones” until they finally reach
the victim. Because the final victim only sees traffic from the last hop of the
chain of the stepping stones, it is difficult for the victim to learn any informa-
tion about the true origin of the attack. The chaotic nature and sheer volume
of the traffic on the Internet makes such attacks extremely difficult to record or
trace back.



To combat stepping-stone attacks, the approach taken by previous research
(e.g., [1–4]), and the one that we adopt, is to instead ask the question “What
can we detect if we monitor traffic at the routers or gateways?” That is, we
examine the traffic that goes in and out of routers, and try to detect which
streams, if any, are part of a stepping-stone attack. This problem is referred
to as the stepping-stone detection problem. A stepping-stone monitor analyzes
correlations between flows of incoming and outgoing traffic which may suggest
the existence of a stepping stone. Like previous approaches, in this paper we
consider the detection of interactive attacks: those in which the attacker sends
commands through the chain of hosts to the target, waits for responses, sends
new commands, and so on in an interactive session. Such traffic is characterized
by streams of packets, in which packets sent on the first link appear on the next
a short time later, within some maximum tolerable delay bound ∆. Like previous
approaches, we assume traffic is encrypted, and thus the detection mechanisms
cannot rely on analyzing the content of the streams. We will call a pair of streams
an attacking pair if it is a stepping-stone pair, and we will call a pair of streams
a non-attacking pair if it is not a stepping-stone pair.

Researchers have proposed many approaches for detecting stepping stones
in encrypted traffic. (e.g., [1–3]. See more detailed related work in Section 2.)
However, most previous approaches in this area are based on ad-hoc heuristics
and do not give any rigorous analysis that would provide provable guarantees of
the false positive rate or the false negative rate [2, 3]. Donoho et al. [4] proposed a
method based on wavelet transforms to detect correlations of streams, and it was
the first work that performed rigorous analysis of their method. However, they do
not give a bound on the number of packets that need to be observed in order to
detect attacks with a given level of confidence. Moreover, their analysis requires
the assumption that the packets on the attacker’s stream arrive according to
a Poisson or a Pareto distribution — in reality, the attacker’s stream may be
arbitrary. Wang and Reeves [5] proposed a watermark-based scheme which can
detect correlation between streams of encrypted packets. However, they assume
that the attacker’s timing perturbation of packets is independent and identically
distributed (iid), and their method breaks when the attacker perturbs traffic in
other ways.

Thus, despite the volume of previous work, an important question still re-
mains open: how can we design an efficient algorithm to detect stepping-stone
attacks with (a) provable bounds on the number of packets that need to be mon-
itored, (b) a provable guarantee on the false positive and false negative rate, and
(c) few assumptions on the distributions of attacker and normal traffic?

The paper sets off to answer this question. In particular, in this paper we use
ideas from Computational Learning Theory to produce a strong set of guarantees
for this problem:

Objectives: We explicitly set our objective to be to distinguish attacking pairs
from non-attacking pairs, given our fairly mild assumptions about each. In
contrast, the work of Donoho et al. [4] detects only if a pair of streams
is correlated. This is equivalent to our goal if one assumes non-attacking
pairs are perfectly uncorrelated, but that is not necessarily realistic and



our assumptions about non-attacking pairs will allow for substantial coarse-
grained correlation among them. For example, if co-workers work and take
breaks together, their typing behavior may be correlated at a coarse-grained
level even though they are not part of any attack. Our models allow for this
type of behavior on the part of “normal” streams, and yet we will still be
able to distinguish them from true stepping-stone attacks.

Fewer assumptions: We make very mild assumptions, especially in compar-
ison with previous work. For example, unlike the work by Donoho et al.,
our algorithm and analysis do not rely on the Poisson or Pareto distribu-
tion assumption on the behavior of the attacking streams. By modeling a
non-attack stream as a sequence of Poisson processes with varying rates and
over varying time periods, our analysis results can apply to almost any dis-
tribution or pattern of usage of non-attack and attack streams. This model
allows for substantial high-level correlation among non-attackers.

Provable bounds: We give the first algorithm for detecting stepping-stone at-
tacks that provides (a) provable bounds on the number of packets needed
to confidently detect and identify stepping-stone streams, and (b) provable
guarantees on false positive rates. Our bounds on the number of packets
needed for confident detection are only quadratic in terms of certain natural
parameters of the problem, which indicates the efficiency of our algorithm.

Stronger results with chaff: We also propose detection algorithms and give
a hardness result when the attacker inserts “chaff” traffic in the stepping-
stone streams. Our analysis shows that our detection algorithm is effective
when the attacker inserts chaff that is less than a certain threshold fraction.
Our hardness results indicate that when the attacker can insert chaff that
is more than a certain threshold fraction, the attacker can make the attack-
ing streams mimic two independent random processes, and thus completely
evade any detection algorithm. Note that our hardness analysis will apply
even when the monitor can actively manipulate the timing delay. Our results
on the chaff case are also a significant advance from previous work. The work
of Donoho et al. [4] assumes that the chaff traffic inserted by the attacker
is a Poisson process independent from the non-chaff traffic in the attacking
stream, while our results make no assumption on the distribution of the chaff
traffic.

The type of guarantee we will be able to achieve is that given a confidence
parameter δ, our procedure will certify a pair as attacking or non-attacking
with error probability at most δ, after observing a number of packets that is
only quadratic in certain natural parameters of the problem and logarithmic
in 1/δ. Our approach is based on a connection to sample-complexity bounds
in Computational Learning Theory. In that setting, one has a set or sequence
of hypotheses h1, h2, . . ., and the goal is to identify which if any of them has
a low true error rate from observing performance on random examples [6–8].
The type of question addressed in that literature is how much data does one
need to observe in order to ensure at most some given δ probability of failure.
In our setting, to some extent packets play the role of examples and pairs of
streams play the role of hypotheses, though the analogy is not perfect because



it is the relationship between packets that provides the information we use for
stepping-stone detection.

The high-level idea of our approach is that if we consider two packet streams
and look at the difference between the number of packets sent on them, then
this quantity is performing some type of random walk on the one-dimensional
line. If these streams are part of a stepping-stone attack, then by the maximum-
tolerable delay assumption, this quantity will never deviate too far from the
origin. However, if the two streams are not part of an attack, then even if the
streams are somewhat correlated, say because they are Poisson with rates that
vary in tandem, this walk will begin to experience substantial deviation from the
origin. There are several subtle issues: for example, our algorithm may not know
in advance what an attacker’s tolerable delay is. In addition, new streams may
be arriving over time, so if we want to be careful not to have false-positives, we
need to adjust our confidence threshold as new streams enter the system.

Outline. In the rest of the paper, we first discuss related work in Section 2, then
give the problem definition in Section 3. We then describe the stepping-stone
detection algorithm and confidence bounds analysis in Section 4. We consider
the consequences of adding chaff in Section 5. We finally conclude in Section 6.

2 Related Work

The initial line of work in identifying interactive stepping stones focused on
content-based techniques. The interactive stepping stone problem was first for-
mulated and studied by Staniford and Heberlein [1]. They proposed a content-
based algorithm that created thumbprints of streams and compared them, look-
ing for extremely good matches. Another content-based approach, Sleepy Water-
mark Tracing, was proposed by Wang et al. [10]. These content-based approaches
require that the content of the streams under consideration do not change signif-
icantly between the streams. Thus, for example, they do not apply to encrypted
traffic such as SSH sessions.

Another line of work studies correlation of streams based on connection tim-

ings. Zhang and Paxson [2] proposed an algorithm for encrypted connection
chains based on periods of activity of the connections. They observed that in
stepping stones, the On-periods and Off-periods will coincide. They use this
observation to detect stepping stones, by examining the number of consecutive
Off-periods and the distance of the Off-periods. Yoda and Etoh [3] proposed
a deviation-based algorithm to trace the connection chains of intruders. They
computed deviations between a known intruder stream and all other concurrent
streams on the Internet, compared the packets of streams which have small de-
viations from the intruder’s stream, and utilize these analyses to identify a set
of streams that match the intruder stream. Wang et al. [11] proposed another
timing-based approach that uses the arrival and departure times of packets to
correlate connections in real-time. They showed that the inter-packet timing
characteristics are preserved across many router hops, and often uniquely iden-
tify the correlations between connections. These algorithms based on connection



timings, however, are all vulnerable to active timing pertubation by the attacker
– they will not be able to detect stepping stones when the attacker actively
perturbs the timings of the packets on the stepping-stone streams.

We are aware of only two papers [4, 5] that study the problem of detecting
stepping-stone attacks on encrypted streams with the assumption of a bound on
the maximum delay tolerated by the attacker. In Section 1, we discuss the work
of Donoho et al. [4] in relation to our paper. We note that their work does not
give any bounds on the number of packets needed to detect correlation between
streams, or a discussion of the false positives that may be identified by their
method. Wang and Reeves [5] proposed a watermark-based scheme, which can
detect correlation between streams of encrypted packets. However, they assume
that the attacker’s timing perturbation of packets is independent and identically
distributed (iid). Our algorithms do not require such an assumption. Further,
they need to actively manipulate the inter-packet delays in order to embed and
detect their watermarks. In contrast, our algorithms require only passive moni-
toring of the arrival times of the packets.

Wang [12] examined the problem of determining the serial order of correlated
connections in order to determine the intrusion path, when given the complete
set of correlated connections.

3 Problem Definition

Our problem definition essentially mirrors that of Donoho et al. [4]. A stream is
a sequence of packets that belong to the same connection. We assume that the
attacker has a maximum delay tolerance ∆, which we may or may not know.
That is, for every packet sent in the first stream, there must be a corresponding
packet in the second stream between 0 and ∆ time steps later. The notion of
maximum delay bound was first proposed by Donoho et al. [4]. We also assume
that there is a maximum number of packets that the attacker can send in a
particular time interval t, which we call pt. We note that p∆ is unlikely to be
very large, since we are considering interactive stepping-stone attacks. As in prior
work, we assume that a packet on either stream maps to only one packet on the
other stream (i.e., packets are not combined or broken down in any manner).

Similar to previous work, we do not pay attention to the content or the sizes
of the packets, since the packets may be encrypted. We assume that the real-
time traffic delay between packets is very small compared to ∆, and ignore it
everywhere. We have a stepping-stone monitor that observes the streams going
through the monitor, and keeps track of the total number of packets on each
stream at each time of observation. We denote the total number of packets in
stream i by time t as Ni(t), or simply Ni if t is the current time step.

By our assumptions, for a pair of stepping-stone streams S1, S2, the following
two conditions hold for the true packets of the streams, i.e., not including chaff
packets:

1. N1(t) ≥ N2(t).
Every packet in stream 2 comes from stream 1.



2. N1(t) ≤ N2(t + ∆).
All packets in stream 1 must go into stream 2 — i.e., no packets on stream
1 are lost enroute to stream 2, and all the packets on stream 1 arrive on
stream 2 within time ∆.

If the attacker sends no chaff on his streams, then all the packets on a stepping
stone pair will obey the above two conditions.

We will find it useful to think about the number of packets in a stream in
terms of the total number of the packets observed in the union of two streams:
in other words, viewing each arrival of a packet in the union of the two streams
as a “time step”. We will use N i(w) for the number of packets in stream i, when
there are a total of w packets in the union of the two streams.

In Section 4.1, we assume that a normal stream i is generated by a Poisson
process with a constant rate λi. In Section 4.2, we generalize this, allowing for
substantial high-level correlation between non-attacking streams. Specifically,
we model a non-attacking stream as a “Poisson process with a knob”, where
the knob controls the rate of the process and can be adjusted arbitrarily by
the user with time. That is, the stream is really generated by a sequence of
Poisson processes with varying rates for varying lengths of time. Even if two
non-attacking streams correlate by adjusting their knobs together — e.g., both
having a high rate at certain times and low rates at others — our procedure will
nonetheless (with high probability) not be fooled into falsely tagging them as an
attacking pair.

The guarantees produced by our algorithm will be described by two quanti-
ties:

– a monitoring time M measured in terms of total number of packets that
need to be observed on both streams, before deciding whether the pair of
streams is an attack pair, and

– a false-positive probability δ, given as input to the algorithm (also called
the confidence level), that describes our willingness to falsely accuse a non-
attacking pair.

The guarantees we will achieve are that (a) any stepping-stone pair will be
discovered after M packets, and (b) any normal pair has at most a δ chance of
being falsely accused. Our algorithm will never fail to flag a true attacking pair, so
long as at least M packets are observed. For instance, our first result, Theorem 1,
is that if non-attacking streams are Poisson, then M = 2(p∆ + 1)2 log 1

δ
packets

are sufficient to detect a stepping-stone attack with false-positive probability δ.
One can also adjust the confidence level with the number of pairs of streams
being monitored, to ensure at most a δ chance of ever falsely accusing a normal
pair.

All logarithms in this paper are base 2. Table 1 summarizes the notation we
use in this paper.



Table 1. Summary of notation

∆ maximum tolerable delay bound
p∆ maximum number of packets that may be sent in time interval ∆.
δ false positive probability
Si stream i

M number of packets that we need to observe on the union of the two streams
in the detection algorithms

Ni(t) number of packets sent on stream i in time interval t.

N i(w) number of packets sent on stream i when a total of w packets is present on
the union of the pair of stream under consideration.

4 Main Results: Detection Algorithms and Confidence

Bounds Analysis

In this section, we give an algorithm that will detect stepping stones with a low
probability of false positives. We only consider streams that have no chaff, which
means that every packet on the second stream comes from the first stream, and
packets can only be delayed, not dropped. We will discuss the consequences of
adding chaff in Section 5.

Our guarantees give a bound on the number of packets that need to be
observed to confidently identify an attacker. These bounds have a quadratic de-
pendence on the maximum tolerable delay ∆ (or more precisely, on the number
of packets p∆ an attacker can send in that time frame), and a logarithmic de-
pendence on 1/δ, where δ is the desired false-positive probability. The quadratic
dependence on maximum tolerable delay comes essentially from the fact that
on average it takes Θ(p2) steps for a random walk to reach distance p from the
origin. Our basic bounds assume the value of p∆ is given to the algorithm (The-
orems 1 and 2); we then show how to remove this assumption, increasing the
monitoring time by only an O(log log p∆) factor (Theorem 3).

We begin in Section 4.1 by considering a simple model of normal streams —
we assume that any normal stream Si can be modeled as a Poisson process, with
a fixed Poisson rate λi. We then generalize this model in Section 4.2. We make
no additional assumptions on the attacking streams.

4.1 A Simple Poisson Model

We first describe our detection algorithm and analysis for the case that p∆ is
known, and then later show how this assumption can be removed.

The Detection Algorithm Our algorithm is simple and efficient: for a given
pair of streams, the monitor watches the packet arrivals, and counts packets on
both streams until the total number of packets (on both streams) reaches a cer-



tain threshold 2(p∆ + 1)2.1 If in this time, the difference in the number of packets
of the two streams ever exceeds the packet bound p∆, we know the streams are
normal; otherwise, the monitor restarts. If the difference stays bounded for a
sufficiently long time (log 1

δ
such trials of 2(p∆ + 1)2 packets), the monitor de-

clares that the pair of streams is a stepping stone. The algorithm is shown in
Fig. 1.

We note that the algorithm is memory-efficient — we only need to keep track
of the number of packets seen on each stream. We also note that the algorithm
does not need to know or compute the Poisson rates; it simply needs to observe
the packets coming in on the streams.

Detect-Attacks (δ, p∆)

Set m = log 1

δ
, n = 2(p∆ + 1)2.

For m iterations
For w = 1 to n packets observed on S1 ∪ S2.

Compute d(w) = N1(w) − N2(w)
If |d(w)| > p∆ return Normal.

Reset N1 = N2 = 0.
return Attack.

Fig. 1. Algorithm for stepping-stone detection (without chaff) with a simple Poisson
model

Analysis We first note that, by design, our algorithm will always identify a

stepping-stone pair, providing they send M packets. We then show that the false
positive rate of δ is also achieved by the algorithm. Under the assumption that
normal streams may be modeled as Poisson processes, we show three analytical
results in the following analysis:

1. When p∆ is known, the monitor needs to observe no more than M =
2(p∆ + 1)2 log 1

δ
packets on the union of the two streams under consider-

ation, to guarantee a false positive rate of δ for any given pair of streams
(Theorem 1).

2. Suppose instead that we wish to achieve a δ probability of false positive over
all pairs of streams that we examine. For instance, we may wish to achieve
a false positive rate of δ over an entire day of observations, rather than over
a particular number of streams. When p∆ is known, the monitor needs to

observe no more than M = 2(p∆ + 1)2 log i(i+1)
δ

packets on the union of the
ith pair of streams, to guarantee a δ chance of false positive among all pairs
of streams it examines (Theorem 2).

1 The intuition for the parameters as well as the proof of correctness is in the analysis
section.



3. When p∆ is unknown, we can achieve the above guarantees with only an
O(log log p∆) factor increase in the number of additional packets that need
to observe (Theorem 3).

Below, we first give some intuition and then the detailed theorem statements
and analysis.

Intuition We first give some intuition behind the analysis. Consider two normal
streams as Poisson processes with rates λ1 and λ2. We can treat the difference
between two Poisson processes as a random walk, as shown in Fig. 2. Consider a
sequence of packets generated in the union of the two streams. The probability
that a particular packet is generated by the first stream is λ1

λ1+λ2

(which we

denote µ1), and probability that it is generated by the second stream is λ2

λ1+λ2

(which we call µ2). We can define a random variable Z to be the difference
between the number of packets generated by the streams. Every time a packet is
sent on either S1 or S2, Z increases by 1 with probability µ1, and decreases by
1 with probability µ2. It is therefore a one-dimensional random walk. Assuming
that our observation of the random walk begins at some unknown position x, we
care about the expected time for Z to exit the bounded region [x− p∆, x + p∆].
Without loss of generality, we may take x = 0. Then, if |Z| > p∆, the delay
bound has to be violated for some packet.

Stream 2

Stream 1

Stream 2

Stream 1

Stream 2

Stream 1

Stream 2

Stream 1

1100-1-1-2-2 22

1λ

2λ

1λ 1λ 1λ

2λ2λ 2λ

(a) (b)

Fig. 2. (a) Packets arriving in the two streams. (b) Viewing the arrival of packets as a
random walk with rates λ1 and λ2.

Theorem 1. Under the assumption that normal streams behave as Poisson pro-

cesses, the algorithm Detect-Attacks will correctly detect stepping-stone at-

tacks with a false positive probability at most δ for any given pair of streams,

after monitoring 2(p∆ + 1)2 log 1
δ

packets on the union of the two streams.

Proof. Let Z = N1(w) − N2(w). We first bound the probability that Z of n
packets. Let T be the time taken for a one-dimensional random walk starting
the origin to reach p∆ + 1 or −p∆ − 1 for the first time. Then, as in Feller[13],
for a fair random walk,

E[T ] = (p∆ + 1)2.

For a biased random walk starting at the origin, E[T ] is always strictly less than
(p∆ + 1)2.



By Markov’s inequality,

Pr[T ≥ 2(p∆ + 1)2] ≤ 1

2
.

Thus, the probability that Z remains in the interval [−p∆, p∆] throughout the
arrival of n packets on the union of the streams is bounded by 1

2 .
To ensure that this is bounded by the given confidence level, we take m such

observations of n time steps, so that
(

1
2

)m ≤ δ, or

m ≥ log
1

δ
.

We need to observe m sets of n packets; therefore, we need log 1
δ

intervals. ut

We have just shown in Theorem 1 that our algorithm in Fig. 1 will identify
any given stepping-stone pair correctly, and will have a probability δ of a false
positive for any given non-attacking pair of streams. We can also modify our
algorithm so that it only has a probability δ of a false positive among all the
pairs of streams that we observe. That is, given δ, we distribute it over all the
pairs of streams that we can observe, by allowing only δ

i(i+1) probability of false

positive for the ith pair of streams, and using the fact that
∑∞

i=1
δ

i(i+1) = δ.

To see why this might be useful, suppose δ = 0.001. Then, we would expect to
falsely accuse one pair out of every 1000 pairs of (normal) streams. It could be
more useful at times to be able to give a false positive rate of 0.001 over an entire
month of observations, rather than give that rate over a particular number of
streams.

Theorem 2. Under the assumption that normal streams behave as Poisson pro-

cesses, the algorithm Detect-Attacks will have a probability at most δ of a

false positive among all the pairs of streams it examines if, for the ith pair of

streams, it uses a monitoring time of 2(p∆ + 1)2 log i(i+1)
δ

packets.

Proof. We need to split our allowed false positives δ among all the pairs we will
observe; however, since we do not know the number of pairs in advance, we do
not split the δ evenly.

Instead, we allow the ith pair of streams a false positive probability of δ
i(i+1) ,

and then use the previous algorithm with the updated false positive level. The
result then follows from Theorem 1 and the fact that

∑∞
i=1

δ
i(i+1) = δ. ut

The arguments so far assume that the algorithm knows the quantity p∆.
We now remove this assumption by using a “guess and double” strategy. Let
pj = 2j − 1. When a pair of streams is “cleared” as not being a stepping-stone
attack with respect to pj , we then consider it with respect to pj+1. By setting the
error parameters appropriately, we can maintain the guarantee that any normal
pair is falsely accused with probability at most δ, while guaranteeing that any
attacking pair will be discovered with a monitoring time that depends only on
the actual value of p∆. Thus, we can still obtain strong guarantees. In addition,



even though this algorithm “never” finishes monitoring a normal pair of streams,
the time between steps at which the monitor compares the difference N1 − N2

increases over the sequence. This means that for the streams that have been
under consideration for a long period of time, the monitor tests differences less
often, and thus does not need to do substantial work, so long as the stream
counters are running continuously.

Theorem 3. Assume that normal streams behave as Poisson processes. Then,

even if p∆ is unknown, we can use algorithm Detect-Attacks as a subroutine

and have a false positive probability at most δ, while correctly catching stepping-

stone attacks within O(p2
∆(log log p∆ + log 1

δ
)) packets, where p∆ is the actual

maximum value of N1(t) − N2(t) for the attacker.

Proof. As discussed above, we run Detect-Attacks using a sequence of “p∆”
values pj , where pj = 2j−1, incrementing j when the algorithm returns Normal.
As in Theorem 2, we use δ

j(j+1) as our false-positive probability on iteration j,

which guarantees having at most a δ false-positive probability overall. We now
need to calculate the monitoring time. For a given attacking pair, the number
of packets needed to catch it is at most:

dlog p∆e
∑

j=1

2 · 22j log
j(j + 1)

δ
.

Since the entries in the summation are more than doubling with j, the sum is
at most twice the value of its largest term, and so the total monitoring time is

O(p2
∆(log log p∆ + log

1

δ
)). ut

4.2 Generalizing the Poisson Model

We now relax the assumption that a normal process is Poisson with a fixed rate
λ. Instead, we assume that a normal process can be modeled as a sequence of
Poisson processes, with varying rates, and over varying time periods. From the
point of view of our algorithm, one can view this as a Poisson process with a
user-adjustable “knob” that is being controlled by an adversary to fool us into
making a false accusation.

Note that this is a general model; we could use it to coarsely approximate
almost any distribution, or pattern of usage. For example, at a high level, this
model could approximately simulate Pareto distributions which are thought to
be a good model for users’ typing patterns [14], by using a Pareto distribution
to choose our Poisson rates for varying time periods, which could be arbitrarily
small. Correlated users can be modeled as having the same sequence of Poisson
rates and time intervals: for example, co-workers may work together and take
short or long breaks together.

Formally, for a given pair of streams, we will assume the first stream is a
sequence given by (λ11, t11), (λ12, t12), . . ., and the second stream by (λ21, t21),
(λ22, t22), . . .. Let Ni(t) denote the number of packets sent in stream i by time



t. Then, the key to the argument is that over any given time interval T , the
number of packets sent by stream i is distributed according to a Poisson process
with a single rate λ̂i,T , which is the weighted mean of the rates of all the Poisson
processes during that time. That is, if time interval T contains a sequence of
time intervals jstart, . . . , jend, then λ̂i,T = 1

|T |

∑jend

j=jstart
λij tij (breaking intervals

if necessary to match the boundaries of T ).

Theorem 4. Assuming that normal streams behave as sequences of Poisson pro-

cesses, the algorithm Detect-Attacks will have a false positive rate of at most

δ, if it observes at least 7
2 log 1

δ
intervals of n packets each, where n = 4(p∆ + 1)2.

Proof. Let S(t) be the number of packets on the union of the streams at time t.
Let D(t) be the difference in the number of packets at time t, i.e. N1(t)−N2(t).
Let n̂ = 2(p∆ + 1)2. Let Et be the event that at some time t′ ≤ t the quantity
|D(t′)| exceeded p∆.

We define T to be the time when Pr[S(T ) ≥ n̂] = 1
2 , and let T ′ ≥ T . Then,

Pr[ET ′ ] = Pr[ET ′ |S(T ′) ≥ n̂]Pr[S(T ′) ≥ n̂]

+ Pr[ET ′ |S(T ′) < n̂]Pr[S(T ′) < n̂],

≥ Pr[ET ′ |S(T ′) ≥ n̂]Pr[S(T ′) ≥ n̂],

≥ 1

2
Pr[ET ′ |S(T ′) ≥ n̂],

=
1

2
(1 − Pr[¬ET ′ |S(T ′) ≥ n̂]).

From the proof of Theorem 1, for n̂ = 2(p∆ + 1)2, we know

Pr[¬ET ′ |S(T ′) ≥ n̂] ≤ 1

2
.

Therefore, Pr[ET ′ ] ≥ 1

2
(1 − 1

2
) =

1

4
.

Now, note that Pr[S(T ) ≥ kn̂] ≤ 1
2k . Therefore, Pr[t < T |S(t) ≥ kn̂] ≤ 1

2k .
Then,

Pr[Et|S(t) ≥ kn̂] = Pr[Et|t ≥ T ]Pr[t ≥ T |S(t) ≥ kn̂]

+ Pr[Et|t < T ]Pr[t < T |S(t) ≥ kn̂]

≥ Pr[Et|t ≥ T ]Pr[t ≥ T |S(t) ≥ kn̂]

≥ 1

4

(

1 − 1

2k

)

.

Therefore, Pr[¬Et|S(t) ≥ kn̂] < 1 − 1
4

(

1 − 1
2k

)

.
To bound this by the given confidence level, we need to take m such obser-

vations of kn̂ packets in the union of the streams, so that:

(

1 − 1

4

(

1 − 1

2k

))m

≤ δ.



Setting k = 2,

(

1 − 1

4

(

3

4

))m

≤ δ.

m ≥ log 1
δ

log
(

16
13

) .

Since 1

log( 16

13 )
< 7

2 , we set m ≥ 7
2 log 1

δ
. ut

Likewise, we have the analogues of Theorem 2 and Theorem 3 for the gen-
eral model. We omit their proofs, since they are very similar to the proofs of
Theorem 2 and Theorem 3.

Theorem 5. Assuming that normal streams behave as sequences of Poisson pro-

cesses, the algorithm Detect-Attacks will have a probability at most δ of a

false positive over all pairs of streams it examines, if, for the ith pair of streams,

it observes 7
2 log i(i+1)

δ
intervals of n packets each, where n = 4(p∆ + 1)2.

Theorem 6. Assuming that normal streams behave as sequences of Poisson pro-

cesses, then if p∆ is unknown, we can use repeated-doubling and incur an extra

O(log log p∆) factor in the number of packets over that in Theorem 5, to achieve

false-positive probability δ.

5 Chaff: Detection and Hardness Result

All the results in Section 4 rely on the attacker streams obeying two assumptions
in Section 3 — in a pair of attacker streams, every packet sent on the first stream
arrives on the second stream, and any packet that arrives on the second stream
arrives from the first stream. In this section, we examine the consequences of
relaxing these assumptions.

Notice that only the packets that must reach the target need to obey these
two assumptions. However, the attacker could insert some superfluous packets
into either of the two streams, that do not need to reach the target, and therefore,
do not have to obey the assumptions. Such extraneous packets are called chaff.
By introducing chaff into the streams, the attacker would try to ensure that the
number of packets observed in his two streams appear less correlated, and thus
reduce the chances of being detected.

Donoho et al. [4] also examine the consequences of the addition of chaff to
attack streams. They show that under the assumption that the chaff in the
streams is generated by a Poisson process that is independent of the non-chaff
packets in the stepping-stone streams, it is possible to detect correlation between
stepping-stone pairs, as long as the streams have sufficient packets. However, an
attacker may not wish to generate chaff as a Poisson process. In this section,
we assume that a clever attacker will want to optimize his use of chaff, instead
of adding it randomly to the streams. In Section 5.1 we explain how to detect
stepping stones using our algorithm when the attacker uses a limited amount of
chaff (Theorem 7). In Section 5.2 we describe how an attacker could use chaff to
make a pair of stepping-stone streams mimic two independent Poisson processes,



and thus ensure that the pair of streams are not correlated. We then give upper
bounds on the minimum chaff the attacker needs to do this (Theorems 8 and 9).

5.1 Algorithm for Detection with Chaff

Recall that our algorithm Detect-Attacks is based on the observation that,
with high probability, two independent Poisson processes will differ by any fixed
distance given sufficient time. An attacker can, therefore, evade detection with
our algorithm by introducing a sufficient difference between the streams all the
time. Specifically, our algorithm checks if the two streams have a difference that
is greater than p∆ packets every time either stream gets a packet, until there
are 2(p∆ + 1)2 packets in the union of the streams. To evade our algorithm as it
stands (in Fig. 1), all that the attacker might need to do is to send one packet
of chaff on the faster stream.

Algorithm We now modify Detect-Attacks slightly, to detect stepping-
stone attacks under a limited amount of chaff. Instead of waiting for the differ-
ence to exceed p∆ packets between the two streams, we could wait for the differ-
ence to exceed 2p∆ packets. The independent Poisson processes would eventually
get a difference of 2p∆ + 1, but now, the attacker would need to send more than
p∆ packets in chaff in order to evade detection. He could get away with exactly
p∆ + 1 packets if he sends all of the chaff packets in the same time interval, on
the same stream. However, as long as he sends fewer than p∆ packets of chaff in
every time interval, the monitor will flag his streams as stepping stones.2 The
complete algorithm is shown in Fig. 3.

Detect-Attacks-Chaff (δ, p∆)

Set m = log 1

δ
, n = 8(p∆ + 1)2.

For m iterations
For w = 1 to n packets observed on S1 ∪ S2.

Compute d(w) = N1(w) − N2(w)
If |d(w)| > 2p∆ return Normal.

Reset N1 = N2 = 0. Normal.
return Attack.

Fig. 3. Algorithm for stepping-stone detection with fewer than p∆ packets of chaff
every 8(p∆ + 1)2 packets.

2 We choose to wait for a difference of 2p∆ packets here, because it is the integral
multiple of p∆ that maximizes the rate at which the attacker may send chaff. with
the non-integral multiple of p∆ that maximizes the rate at which the attacker must
send chaff, but we omit the details here.



Analysis We now show that Detect-Attacks-Chaff will correctly identify
stepping stones with chaff, as long as the attacker sends no more than p∆ packets
of chaff for every 8(p∆ + 1)2 packets. Further, any given non-attacking pair of
streams will have no more than a δ chance of being called a stepping stone.

Theorem 7. Under the assumption that normal streams behave as Poisson pro-

cesses, and the attacker sends fewer than p∆ packets of chaff every 8(p∆ + 1)2

packets, the algorithm Detect-Attacks-Chaff will have a false positive rate

of utmost δ, if we observe log 1
δ

intervals of 8(p∆ + 1)2 packets each.

Proof. The analysis is similar to that of Theorem 1.
Let Z = N1(w) − N2(w), and let T be the time taken for a one-dimensional

random walk starting the origin to reach 2p∆ +1 or −2p∆ − 1 for the first time.
Again, as in Feller[13],

E[T ] ≤ (2p∆ + 1)2 ≤ 4(p∆ + 1)2.

By Markov’s inequality,

Pr[T ≥ 8(p∆ + 1)2] ≤ 1

2
.

Thus, the probability that Z remains in the interval [−2p∆, 2p∆] throughout the
arrival of n packets on the union of the streams is bounded by 1

2 .

On the other hand, for an attack pair with no chaff, we know that N 1(w) −
N2(w) ≤ p∆. When the attacker can add less than p∆ packets of chaff in 8(p∆ +
1)2 packets, N1(w +n)−N2(w +n) < 2p∆, and thus, difference in packet count
an attack pair cannot exceed 2p∆ in n packets. ut

Note that Theorem 7 is the analogue of Theorem 1 when the chaff rate is
bounded as described above. The analogues to the other theorems in Section 4
can be obtained in a similar manner.

Obviously, the attacker can evade detection by sending more than p∆ packets
of chaff for every 8(p∆+1)2 packets. Further, if we count in pre-specified intervals,
the attacker would only need to send p∆ packets of chaff in one of the intervals,
since the algorithm only checks if the streams differ by the specified bound in
any of the intervals.

We could address the second problem by sampling random intervals, and
checking if the difference Z in those intervals is at least 2p∆. We could also
modify our algorithm to check if the difference Z stays outside 2p∆ for at least
a fourth of the intervals, and analyze the resulting probabilities with Chernoff
bounds. To defeat this, the attacker would have to send at least 1

8(p∆+1) fraction

the total packets on the union (p∆+1 packets of chaff every 8(p∆+1)2 packets) in
an independent interval, so that every (sufficiently long) interval is unsuspicious.

However, if the attacker just chooses to send a lot of chaff packets on his
stepping-stone streams, then he will be able to evade the algorithm we proposed.
This type of evasion is, to some extent, inherent in the problem, not just the
detection strategy we propose. In the next section, we show how an attacker could



successfully mimic two independent streams, so that no algorithm could detect
the attacker. We also give upper bounds on the minimum chaff the attacker
needs to add to his streams, so that his attack streams are completely masked
as independent processes.

5.2 Hardness Result for Detection with Chaff

If an attacker is able to send a lot of chaff, he can in effect ride his communication
on the backs of two truly independent Poisson processes. In this section, we
analyze how much chaff this would require. This gives limitations on what we
could hope to detect if we do not make additional assumptions on the attacker.

Specifically, in order to simulate two independent Poisson processes exactly,
the attacker could first generate two independent Poisson processes, and then
send packets on his streams to match them. He needs to send chaff packets
on one of the streams, when the constraints on the other stream do not allow
the non-chaff packet to be forwarded to/from it. In this way, he can mimic
the processes exactly, and pair of streams will not appear to be a stepping-
stone pair, to any monitor watching it. Note that even if the inter-packet delays
were actively manipulated by the monitor, the attacker can still mimic two
independent Poisson processes, and therefore, by our definition, will be able
to evade detection.

Let λ1 be the rate of the first Poisson process, and λ2 be the rate of the second
Poisson process. In our analysis, we assume λ1 = λ2 = λ � 1

∆
. If λ1 � λ2, or

λ1 � λ2 the attacker will need to send many more chaff packets on the faster
stream, so λ1 = λ2 will be the best choice for the attacker.

We model the Poisson processes as binomials. We choose to approximate
the two independent Poisson processes of rate λ as two independent binomial
processes, for cleaner analysis. To generate these processes, we assume that the
attacker flips two coins, each with λ bias (of getting a head), at each time step.3

He has to send a packet (either a real packet or chaff) on a stream when its
corresponding coin turns up heads, and should send nothing when the coin turn
up as tails. That way, he ensures that the two streams model two independent
binomial processes exactly. Since the attacker generates the independent bino-
mial processes, he could flip coins ∆ or more time steps ahead, and then decide
whether a non-chaff packet can be sent across for a particular coin flip that obeys
all constraints, or if it has to be chaff.

We now show how the attacker could simulate two independently-generated
binomial processes with minimum chaff. First, the attacker generates two se-
quences of independent coin flips. The following algorithm, Bounded-Greedy-

Match, then produces a strategy that minimizes chaff for the attacker, for any
pair of sequences of coin flips. Given two sequences of coin flips, the attacker
matches a head in first stream at time t to the first unmatched head in the
second stream in the time interval [t, t + ∆]. All matched heads become real

3 We could, equivalently, assume that the attacker flips a coin with λ

k
bias k times in

a time step. As k → ∞, the binomial approaches a Poisson process of rate λ.



(stepping-stone) packets, and all the remaining heads become chaff. An example
of the operation of the algorithm is shown in Fig. 5.2.

HTTHTT HHH TT H

TTHHHT TTHT TT HH

Normal Packets
Chaff
Normal Packets
Chaff

Fig. 4. An illustration of the matching produced by the algorithm Bounded-Greedy-

Match on two given sequences, with ∆ = 2.

The following theorem shows that Bounded-Greedy-Match will allow the
attacker to produce the minimum amount of chaff needed, when the attacker
simulates two binomial processes that were generated independently.

Theorem 8. Given any pair of sequences of coin flips generated by two indepen-

dent binomial processes, Bounded-Greedy-Match minimizes the chaff needed

for a pair of stepping-stone streams to mimic the given pair of sequences.

Proof. Suppose not, i.e., suppose there exists a sequence pair of coin flips σ
for which Bounded-Greedy-Match is not optimal. Let S be the strategy
produced by Bounded-Greedy-Match for σ. Let S ′ be a better matching
strategy, so that Chaff (S) > Chaff (S ′). Then there exists a head in σ such that
h is matched with a head h′ through S′, but not through S.

Assume, wlog, that h is on the first stream at time t, and h′ on the second
stream. For S to be a valid match, h′ should be in [t, t + ∆], and h′ must be
unmatched under S′ to any other head. Let us suppose that h′ is matched to
another (earlier than t) head on the first stream under S (otherwise Bounded-

Greedy-Match would have generated a match between h and h′ on S).
We track chain of the matching heads in the sequence backwards (starting

from h) in this way: we take the currently matched head in one strategy, and
look for the head that matches it in the other strategy. When this chain of
matchings stops, we must have an unmatched head, and one of following two
cases (the manner in which we trace the chain of matching heads, along with
the assumption that the unmatched head h is on the first stream, implies that
we find only matched heads on the second stream of S, and the first stream of
S′):

– Case 1 : The unmatched head is in stream 1 of S ′. In this case, an unmatched
head in S correlates with an unmatched head in S ′, and therefore, this
particular case is not our counterexample, since each unmatched head under
S will correspond to an unmatched head under S ′.



– Case 2 : The unmatched head is in stream 2 of S. In this case, we have to
have reached this head (call it g0) from its matching head g1 in S′; we have
to reach g1 from matched head g2 in S. Since we are tracing backwards in
time, time of g2 is greater than the time of g0. However, since g0 can be
matched to g1, we have a contradiction, since we are not matching the head
g1 to the earliest available head g0, as per Bounded-Greedy-Match.

The analysis when h is on the second stream of S is similar.
Thus, with the algorithm Bounded-Greedy-Match, every unmatched head

in S must have a corresponding unmatched head in S ′, therefore, Chaff (S) ≤
Chaff (S′), creating a contradiction. ut

hhh2h2h4h4g1g1

h’h’h3h3h5h5g2g2

Stream 1

Stream 2

Strategy S: Case 1

hhh2h2h4h4g1g1

h’h’h3h3h5h5g2g2

Stream 1

Stream 2

Strategy S’: Case 1

(a) (b)

hhh2h2h4h4g1g1

h’h’h3h3h5h5g0g0 g2g2

Stream 1

Stream 2

Strategy S: Case 2

hhh2h2h4h4g1g1

h’h’h3h3h5h5g0g0 g2g2

Stream 1

Stream 2

Strategy S’: Case 2

(c) (d)

Fig. 5. The proof of Theorem 8. All the figures give an illustration of how the heads
are traced back. (a) and (b) show case 1 of the proof, and (c) and (d) show case 2 of
the proof. By assumption, h is unmatched in S and matched in S ′. h is matched to h′

in the strategy S′; in S, h′ is matched to h2; then, we look at h2’s match in S′, call
it h3; use h3 to find h4 in S, h4 to find h5 in S′, and so on. We continue tracing the
matches of heads backwards in this manner until we stop, reaching either case 1 or
case 2. In case 1, g1 is unmatched in strategy S′, and in S, g0 is unmatched in S, but
g1 is not matched greedily.

Now we examine upper bounds on the chaff that will need to be sent by
the attacker, in terms of the total packets sent. We give an upper bound on the
amount of chaff that the attacker must send in Bounded-Greedy-Match. We
note that our analysis shows how the attacker could do this if he mimics two
independent Poisson processes, but it may not be necessary for him to do this
in order to evade detection.



Theorem 9. If the attacker ensures that his stepping-stone streams mimic two

truly independent Poisson processes, then, under Bounded-Greedy-Match,

the attacker will not need to send more than 1
√

2λ∆−2
√

2λ(1−2λ)∆
+0.05 fraction

of packets as chaff in expectation, when the Poisson rates of the streams are

equal with rate λ.

Proof. We divide the total time (coin flips) into intervals that are ∆ long, and
examine the expected difference in one of these intervals. Notice that for the
packets that are within a specific ∆ interval, matches are not dependent on the
times when they were generated. (i.e., any pair of packets in this interval is no
further than ∆ apart in time, and therefore, could be made a valid match). Many
more packets than this can be matched, across the interval boundaries, but this
gives us an easy upper bound.

Consider the packets in the union of the two streams in this interval. Each
packet in this union can also be considered as though it were generated from
a (different) unbiased coin, with heads as stream 1 and tails as stream 2; once
again, we have a uniform random walk. Since every head can be matched to any
available tail, the amount of chaff is the expected (absolute) difference in the
number of heads and tails. Call this difference Z, and the packets on the union
of the streams X . X is then a binomial with parameters 2λ, and ∆. Therefore,
E[X ] = 2λ∆. The expectation of Z

X
is then the following:

E[
Z

X
] =

∑

x

1

x
E[Z|X = x]P (X = x)

=
∑

x

1√
x

P (X = x)

≤ 0.05 +
1√

2λ∆ − 2σ
, where σ =

√

2λ(1 − 2λ)∆.

Since every interval of size ∆ is identical, the attacker needs to send no more
than 1

√

2λ∆−2
√

2λ(1−2λ)∆
+ 0.05 fraction as chaff in expectation. ut

6 Conclusion

In this paper, we have proposed and analyzed algorithms for stepping-stone de-
tection using techniques from Computational Learning Theory and the analysis
of random walks. Our results are the first to achieve provable (polynomial) up-
per bounds on the number of packets needed to confidently detect and identify
encrypted stepping-stone streams with proven guarantees on the probability of
falsely accusing non-attacking pairs. Moreover, our methods and analysis rely
on very mild assumptions, especially in comparison with previous work. We also
examine the consequences when the attacker inserts chaff into the stepping-stone
traffic, and give bounds on the amount of chaff that an attacker would have to
send to evade detection. Our results are based on a new approach which can
detect correlation of streams at a fine-grained level. Our approach may apply to
more generalized traffic analysis domains, such as anonymous communication.
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