
Efficient and Secure Source Authentication for Multicast
�

Adrian Perrig
���

Ran Canetti
�

Dawn Song
�

J. D. Tygar
�

�
UC Berkeley,

�
Digital Fountain,

�
IBM T.J. Watson

�
perrig,dawnsong,tygar@cs.berkeley.edu, canetti@watson.ibm.com �

Abstract

One of the main challenges of securing multicast com-
munication is source authentication, or enabling receivers
of multicast data to verify that the received data origi-
nated with the claimed source and was not modified en-
route. The problem becomes more complex in common
settings where other receivers of the data are not trusted,
and where lost packets are not retransmitted.

Several source authentication schemes for multicast
have been suggested in the past, but none of these schemes
is satisfactorily efficient in all prominent parameters. We
recently proposed a very efficient scheme, TESLA, that is
based on initial loose time synchronization between the
sender and the receivers, followed by delayed release of
keys by the sender.

This paper proposes several substantial modifications
and improvements to TESLA. One modification allows re-
ceivers to authenticate most packets as soon as they arrive
(whereas TESLA requires buffering packets at the receiver
side, and provides delayed authentication only). Other
modifications improve the scalability of the scheme, re-
duce the space overhead for multiple instances, increase
its resistance to denial-of-service attacks, and more.

1 Introduction

With the growth and commercialization of the Internet,
simultaneous transmission of data to multiple receivers
becomes a prevalent mode of communication. Often the
transmitted data is streamed and has considerable band-

�
This publication was sponsered in part by the Defense Advanced

Research Projects Agency under DARPA contract N6601-99-28913 (un-
der supervision of the Space and Naval Warfare Systems Center San
Diego), by the National Science foundation under grant FD99-79852,
and by the United States Postal Service under grant USPS 1025 90-98-
C-3513. Views and conclusions contained in this document are those
of the authors and do not necessarily represent the official opinion or
policies, either expressed or implied of the US government or any of its
agencies, DARPA, NSF, USPS.

width. To avoid having to send the data separately to each
receiver, several multicast routing protocols have been
proposed and deployed, typically in the IP layer. (Exam-
ples include [12, 13, 23, 16, 6]). The underlying principle
of multicast communication is that each data packet sent
from the source reaches a number of receivers.

Securing multicast communication introduces a number
of difficulties that are not encountered when trying to se-
cure unicast communication. See [9] for a taxonomy of
multicast security concerns and some solutions. A major
concern is source authentication, or allowing a receiver to
ensure that the received data is authentic (i.e., it originates
with the source and was not modified on the way), even
when none of the other receivers of the data is trusted.
Providing source authentication for multicast communi-
cation is the focus of this work.

Simply deploying the standard point-to-point authenti-
cation mechanism (i.e appending a message authentica-
tion code to each packet, computed using a shared key)
does not provide source authentication in the case of mul-
ticast. The problem is that any receiver that has the shared
key can forge data and impersonate the sender. Conse-
quently, it is natural to look for solutions based on asym-
metric cryptography to prevent this attack, namely digi-
tal signature schemes. Indeed, signing each data packet
provides good source authentication; however, it has high
overhead, both in terms of time to sign and verify, and
in terms of bandwidth. Several schemes were proposed
that mitigate this overhead by amortizing a single signa-
ture over several packets, e.g. [14, 33, 29]. However, none
of these schemes is fully satisfactory in terms of band-
width and processing time, especially in a setting where
the transmission is lossy and some data packets may never
arrive. Even though some schemes amortize a digital
signature over multiple data packets, a serious denial-of-
service attack is usually possible where an attacker floods
the receiver with bogus packets supposedly containing a
strong signature. Since signature verification is computa-
tionally expensive, the receiver is overwhelmed verifying
the signatures.

Another approach to providing source authentication
uses only symmetric cryptography, more specifically on
message authentication codes (MACs), and is based on
delayed disclosure of keys by the sender. This technique
was first used by Cheung [11] in the context of authenti-
cating communication among routers. It was then used in
the Guy Fawkes protocol [1] for interactive unicast com-
munication. In the context of multicast streamed data it
was proposed by several authors [8, 4, 5, 25]. In partic-
ular, the TESLA scheme described in [25] was presented
to the reliable multicast transport (RMT) working group
[26] of the IETF and the secure multicast (SMuG) work-
ing group [30] of the IRTF and was favorably received.
TESLA is particularly well suited to provide the source
authentication functionality for the MESP header [10], or
for the ALC protocol proposed by the RMT [19]. Conse-
quently, an Internet-Draft describing the scheme was re-
cently written [24].

The main idea of TESLA, is to have the sender attach to
each packet a MAC computed using a key � known only
to itself. The receiver buffers the received packet with-
out being able to authenticate it. If the packet is received
too late, it is discarded. A short while later, the sender dis-
closes � and the receiver is able to authenticate the packet.
Consequently, a single MAC per packet suffices to pro-
vide source authentication, provided that the receiver has
synchronized its clock with the sender ahead of time.

This idea seems quite attractive at first. However, it has
several shortcomings. This work points to these short-
comings and proposes methods to overcome them. Our
description is based mostly on TESLA, although the im-
provements apply to the other schemes as well. We sketch
some of these points:

1. In TESLA the receiver has to buffer packets, until
the sender discloses the corresponding key, and un-
til the receiver authenticates the packets. This may
delay delivering the information to the application,
may cause storage problems, and also generates vul-
nerability to denial-of-service (DoS) attacks on the
receiver (by flooding it with bogus packets). We pro-
pose a method that allows receivers to authenticate
most packets immediately upon arrival, thus reduc-
ing the need for buffering at the receiver side and
in particular reduces the susceptibility to this type of
DoS attacks.

This improvement comes at the price of one extra
hash per packet, plus some buffering at the sender
side. We believe that buffering at the sender side is
often more reasonable and acceptable than buffering
at the receiver side. In particular, it is not susceptible
to this type of DoS attacks.

We also propose other methods to alleviate this type

of DoS attacks. These methods work even when the
receiver buffers packets as in TESLA.

2. When operating in an environment with heteroge-
nous network delay times for different receivers,
TESLA authenticates each packet using multiple
keys, where the different keys have different disclo-
sure delay times. This results in larger overhead, both
in processing time and in bandwidth. We propose
a method for achieving the same functionality (i.e.,
different receivers can authenticate the packets at dif-
ferent delays) with a more moderate increase in the
overhead per packet.

3. In TESLA the sender needs to perform authenticated
time synchronization individually with each receiver.
This may not scale well, especially in cases where
many receivers wish to join the multicast group and
synchronize with the sender at the same time. This
is so, since each synchronization involves a costly
public-key operation. We propose a method that uses
only a single public-key operation per time-unit, re-
gardless of the number of time synchronizations per-
formed during this time unit. This reduces the cost of
synchronizing with a receiver to practically the cost
of setting up a simple, unauthenticated connection.

4. We also explore time synchronization issues in
greater depth and describe direct and indirect time
synchronization. For the former method, the receiver
synchronizes its time directly with the sender, in the
latter method both the sender and receiver synchro-
nize their time with a time synchronization server.

For both cases, we give a detailed analysis on how to
choose the key disclosure delay, a crucial parameter
for TESLA.

5. TESLA assumes that all members have joined the
group and have synchronized with the sender be-
fore any transmission starts. In reality, receivers may
wish to join after the transmission has started; fur-
thermore, receivers may wish to receive the transmis-
sion immediately, and perform the time synchroniza-
tion only later. We propose methods that enable both
functionalities. That is, our methods allow a receiver
to join in “on the fly” to an ongoing session; they also
allow receivers to synchronize at a later time and au-
thenticate packets only then.

Organization Section 2 reviews TESLA, providing fur-
ther details than in [25]. Section 3 contains the improve-
ments and extensions proposed in this paper. Section 4
provides further discussion on the security of the im-
proved scheme, with emphasis on resistance to denial-of-
service attacks.

2 An Overview of TESLA
The security property TESLA guarantees is that the re-

ceiver never accepts ��� as an authentic message unless
��� was actually sent by the sender. Note that TESLA
does not provide non-repudiation, that is, the receiver can-
not convince a third party that the stream arrived from the
claimed source.

TESLA is efficient and has a low space overhead mainly
because it is based on symmetric-key cryptography. Since
source authentication is an inherently asymmetric prop-
erty (all the receivers can verify the authenticity but they
cannot produce an authentic data packet), we use a de-
layed disclosure of keys to achieve this property. Simi-
larly, the data authentication is delayed as well. In prac-
tice, the authentication delay is on the order of one round-
trip-time (RTT).

TESLA has the following properties. First, it has a low
computation overhead, which is typically only one MAC
function computation per packet, for both sender and re-
ceiver. TESLA also has a low per-packet communication
overhead, which is about 20 bytes per packet. In addi-
tion, TESLA tolerates arbitrary packet loss. Each packet
that is received in time can be authenticated. Except for
an initial time synchronization, it has only unidirectional
data flow from the sender to the receiver. No acknowl-
edgments or other messages are necessary. This implies
that the sender’s stream authentication overhead is inde-
pendent of the number of receivers, hence TESLA is very
scalable. TESLA can be used both in the network layer or
in the application layer. The delayed authentication, how-
ever, requires buffering of packets until authentication is
completed.

For TESLA to be secure, the sender and the receiver
need to be loosely time synchronized, which means that
the synchronization does not need to be precise, but the
receiver needs to know an upper bound on the sender’s
time.

2.1 Sender Setup

In our model, a sender distributes a stream of data com-
posed of message chunks ������� . Generally, the sender
sends each message chunk ��� in one network packet 	
� .
Many multicast distribution protocols do not retransmit
lost packets. The goal is therefore that the receiver can
authenticate each message chunk � � separately.

For the purpose of TESLA, the sender splits the time
into even intervals � � . We denote the duration of each time
interval with � ��
�� , and the starting time of the interval � � is
� � . Trivially, we have � ��� ������� � � ��
�� . In each interval,
the sender may send zero or multiple packets.

Before sending the first message, the sender determines
the sending duration (possibly infinite), the interval dura-
tion, and the number N of keys of the key chain. This

key chain is analogous to the one-way chain introduced
by Lamport [18], and the S/KEY authentication scheme
[15]. The sender picks the last key ��� of the key chain
randomly and pre-computes the entire key chain using a
pseudo-random function F, which is by definition a one-
way function. Each element of the chain is defined as
� �����! � ��"�#%$. Each key can be derived from �&� as
��� �'� �)(� � � $, where �)*+ � $,�'�)* (# -�! � $.$ and
� � � $/� � . Each key of the key chain corresponds to
one interval, i.e., � * is active in interval � * .

Since we do not want to use the same key multiple
times in different cryptographic operations, we use a sec-
ond pseudo-random function F’ to derive the key which
is used to compute the MAC of messages in each inter-
val (we will explain the algorithm in detail later). Hence,
�10� �2� 0 � �-$. Figure 1 depicts this key derivation. We
propose to use HMAC in conjunction with a cryptograph-
ically secure hash function for the pseudo-random func-
tion [2]. For example, a possibility is to use the following:
�! 435$6� HMAC 73�8:9+$ and � 0 73�$;� HMAC 43�8=<�$, where
9 and < are 8-bit integers. Note that the first argument of
the MAC function is the key and the second argument is
the data.

2.2 Bootstrapping a new Receiver

TESLA requires an initially authenticated data packet to
bootstrap a new receiver. This authentication is achieved
with a digital signature scheme, such as RSA [28], or DSA
[32].

We consider two options for synchronizing the time, di-
rect and indirect synchronization. We improve the time
synchronization from our original work and describe the
details in section 3.3. Whichever time synchronization
mechanism is used, the receiver only needs to know an
upper bound on the sender time.

The initial authenticated packet contains the following
information about the time intervals and key chain:

> The beginning time of a specific interval � * , along
with its id � *

> The interval duration �?��
��
> Key disclosure delay @ (unit is interval)

> A commitment to the key chain ��� (�BADC)EF@ where
C is the current interval index)

2.3 Sending Authenticated Packets

Each key of the key chain is used in one time interval.
However many messages are sent in each interval, the key
which corresponds to that interval is used to compute the
MAC of all those messages. This allows the sender to

send packets at any rate and to adapt the sending rate dy-
namically. The key remains secret for d-1 future intervals.
Packets sent in interval � * can hence disclose key � * (�� .
As soon as the receivers receive that key, they can verify
the authenticity of the packets sent in interval � * (�� .

The construction of packet 	 * sent in interval � � is:
��� *

�
MAC � 0� 8 � * $

� � � (�� � .
Figure 1 shows the key chain construction and the MAC

key derivation. If the disclosure delay is 2 intervals, the
packet 	 * "�� sent in interval �=��"�� discloses key ��� . From
this key, the receiver can also recover �&� (# and verify the
MAC of 	 * , in case 	 * "�� is lost.

2.4 Receiver Tasks

Since the security of TESLA depends on keys that re-
main secret until a pre-determined time period, the re-
ceiver must verify for each packet that the key, which is
used to compute the MAC of that packet, is not yet dis-
closed by the sender. Otherwise, an attacker could have
changed the message data and re-computed the MAC.
This motivates the security condition, which the receiver
must verify for each packet it receives.

Security condition: A packet arrived safely, if the re-
ceiver is assured that the sender cannot yet be in the time
interval in which the corresponding key is disclosed.

The intuition is that if a packet satisfies the security con-
dition, then no attacker could have altered it in transit, be-
cause the corresponding MAC key is not yet disclosed. In
case the security condition is not valid, the receiver must
drop that packet, because the authenticity is not assured
any more. We would like to emphasize that the security of
this scheme does not rely on any assumptions on network
propagation delay. The original paper sketches a security
proof [25].

We now explain how the authentication with TESLA
works with a concrete example. When the receiver re-
ceives packet 	 * sent in interval �=� at local time �
	 , it
computes an upper bound on the sender’s clock � * (we
describe in section 3.3 how to compute this). To evalu-
ate the security condition, the receiver computes the high-
est interval 3 the sender could possibly be in, which is
3 ��� � * E � � $

 �?��
���� . The receiver now verifies that
3 A �=��� @ (where �%� is the interval index), which means
that the sender must not have been in the interval in which
the key � � is disclosed, hence no attacker can possibly
know that key and spoof the message contents.

The receiver cannot, however, verify the authentic-
ity of the message yet. Instead, it stores the triplet
 � � 8 � * 8 MAC � 0� 8 � * $.$ to verify the authenticity later
when it knows � 0� . Two possibilities exist on how to
handle the unauthenticated message chunk � * . The first
possibility is to hand � * to the application, and notify it
through a callback mechanism as soon as � * is verified.

The second possibility is to buffer � * until the authentic-
ity can be checked and pass it to the application as soon as
� * is authenticated.

If the packet contains a disclosed key � � (�� , regardless
of whether the security condition is verified or not, the
receiver checks whether it can use � � (�� to authenticate
previous packets. Clearly, if it has received � � (�� previ-
ously, it does not have any work to do. Otherwise, let
us assume that the last key value in the reconstructed key
chain is ��� . The receiver verifies if �&� (�� is legitimate by
verifying that ��� � � � (�� (� � � (�� $. If that condition is
correct, the receiver updates the key chain. For each new
key ��� , it computes � 0� � � 0 ��� $ which might allow it
to verify the authenticity of previously received packets.

It is clear that this system can tolerate arbitrary packet
loss, because the receiver can verify the authenticity of all
received packets that satisfy the security condition even-
tually.

3 Our Extensions
We extend TESLA in a number of ways to make it more

efficient and practical. First, we present a new method
to support immediate authentication, meaning that the re-
ceiver can authenticate packets as soon as they arrive.

Second, we propose optimizations concerning key
chains. In particular, for applications that use multiple
authentication chains with different disclosure delays, we
present a new algorithm that reduces the communication
overhead.

Finally, we give discussions on the time synchroniza-
tion issues and derive a tight lower bound on the key dis-
closure delay, which makes the scheme much more practi-
cal. Next, we remove a scalability limitation of the simple
time synchronization protocol. Furthermore, we discuss
how a receiver can authenticate received packets even if
it is not time synchronized at the moment in which it re-
ceives the packet.

3.1 Immediate Authentication

A drawback of the original TESLA protocol is that the
receiver needs to buffer packets during one disclosure de-
lay before it can authenticate them. This might not be
practical for certain applications if the receivers cannot af-
ford much buffer space and bursty traffic might cause the
receivers to drop packets due to insufficient buffer space.
Moreover, as we show later in section 4.2, the require-
ment of receiver buffering introduces a vulnerability to a
denial-of-service attack. To solve these problems caused
by receiver-buffering, we propose a new method to sup-
port immediate authentication, which allows the receiver
to authenticate packets as soon as they arrive.

The basic observation of this method is that we can
replace receiver buffering with sender buffering. If the

time

PSfrag replacements

MAC

��� ������� ������� ������	 ������
�������
 �������

������� ��� ������� �������

�������� � �� �������� � ������

���! #"%$ ���! #"����&$ ���! #"����'$ ���! #"���	'$

�)(*�+ #"-,��&$ � (�+ #"�$ �)(��! �".���/$ �)(��! �".�)�0$

1 ����� 1 � 1 ����� 1 �����

Figure 1: TESLA key chain and the derived MAC keys

sender can buffer packets during one disclosure delay,
then it could store the hash value of the data of a later
packet in an earlier packet and hence as soon as the ear-
lier packet is authenticated, the data in the later packet is
authenticated through the hash value as well.

In the new scheme, the sender buffers packets for the
duration of one disclosure delay. For simplicity of illus-
tration, we assume that the sender sends out a constant
number 2 of packets per time interval. To construct the
packet for the message chunk � * in time interval � � ,
the sender appends the hash value of the message chunk
� * "�� � to � * and then computes the MAC value also over3 � * "�� � $ with the key ��� . Figure 2 illustrates how
the packet 	 * is constructed by appending

3 � * "�� � $,
MAC ��� 8 � *

� 3 � * "�� � $ $, along with the disclosed key
� � (�� . (Note that the

�
stands for message concatenation).

When the packet 	 * "�� � arrives at the receiver which dis-
closes the key ��� it allows authentication of packet 	 *
sent in interval �%� . 	 * carries a hash of the data � * " � � in
	 * "�� � . If 	 * is authentic,

3 � * "�� � $ is also authentic and
therefore the data � * " � � is immediately authenticated.
Also note that if 	 * is lost or dropped due to violation
of the security condition, 	 * "�� � will not be immediately
authenticated and can still be authenticated later using the
MAC value.

PSfrag replacements

465

MAC

7�8

9;:<4 5&=�>/?A@
MAC

:�B6C8EDGF 5 @
B 8-H ?

F 5 F 50=#>&?4 50=#>&?

9;:<4 5&=�IJ>/?K@
MAC

:�B6C8 =#? DGF 50=#>&?L@

Figure 2: Immediate authentication packet exam-
ple. M * � 3 � * "�� � $

� � * and M * "�� � �3 � * "�� � � $
� � * "�� � .

If each packet can only carry the hash of one other
packet, it is clear that the sending rate needs to remain
constant. Also it is clear that if a packet is lost, the corre-
sponding packet cannot be immediately authenticated. To
achieve flexibility for dynamic sending rate and robust-
ness to packet loss, the sender can add the hash values of
multiple future packets to a packet, similar to the EMSS
scheme [25].

3.2 Concurrent TESLA instances

In this section, we present a space optimization tech-
nique in the case the sender uses multiple TESLA in-
stances for one stream.

Choosing the disclosure delay involves a tradeoff. Re-
ceivers with a low network delay welcome short key dis-
closure delays because that translates into a short authenti-
cation delay. Unfortunately, receivers with a long network
delay could not operate with a short disclosure delay be-
cause most of the packets will violate the security con-
dition and hence cannot be authenticated. Conversely, a
long disclosure delay would suit the long delay receivers,
but causes unnecessarily long authentication delay for the
receivers with short network delay. The solution is to use
multiple instances of TESLA with different disclosure de-
lays simultaneously, and each receiver can decide which
disclosure delay, and hence, which instance to use. A sim-
ple approach to use concurrent TESLA instances is to treat
each TESLA instance independently, with one key chain
per instance. The problem for this approach is that each
extra TESLA instance also causes extra space overhead in
each packet. If each instance requires 20 bytes per packet
(80 bit for key disclosure and 80 bit for the MAC value),
using three instances results in 60 bytes space overhead
per packet. We present a new optimization which reduces
the space overhead of concurrent instances.

The main idea is that instead of using one independent
key chain per TESLA instance, we could use the same

key chain but a different key schedule for all instances.
The basic scheme works as follows. All TESLA instances
for a stream share the same time interval duration and the
same key chain. Each key � � in the key chain is associ-
ated with the corresponding time interval � � , and � � will
be disclosed in � � .1 Assume that the sender uses � in-
stances of TESLA, which we denote with � #������ � � . Each
TESLA instance ��� has a different disclosure delay @�� ,
and it will have a MAC key schedule derived from the key
schedule shifted by @�� time intervals from the key dis-
closure schedule. Let � ���" �	� denote the MAC key used
by instance
 in time interval � � . We derive � ���" � � as
� ���" � � � HMAC ����" � � 8
 $. Note that we use HMAC as
a pseudo-random function, which is the same key deriva-
tion construction as we use in TESLA (see section 2.1 and
figure 1). In fact, the keys of the first instance are derived
with the same pseudo-random function as the TESLA pro-
tocol that uses only one instance. The reason for generat-
ing all different, independent keys for each instance is to
prevent an attack where an attacker moves the MAC value
of an instance to another instance, which might allow it
to claim that data was sent in a different interval. Our
approach of generating independent keys prevents this at-
tack. Thus to compute the MAC value in packet 	 * in
time interval � � , the sender computes one MAC value of
the message chunk � * per instance and append the MAC
values to � * . In particular, for the instance ��� with dis-
closure delay @�� , the sender will now use the key � ���" � �
as mentioned above for the MAC computation.

Figure 3 shows an example with two TESLA instances,
one with a key disclosure time of two intervals and the
other of four intervals. The lowest line of keys shows
the key disclosure schedule, i.e. which key is disclosed
in which time interval. The middle and top line of keys
shows the key schedule of the first and second instance
respectively, i.e. which key is used to compute the MAC
for the packets in the given time interval for the given in-
stance. Using this technique, the sender will only need to
disclose one key chain no matter how many instances are
used concurrently. If each disclosed key is < 9 bytes long,
then for a stream with � concurrent instances, this tech-
nique will save < 9 � E <�$ bytes per packet, which is a
drastic saving in particular for small packets.

3.3 Time Synchronization Issues

Loose time synchronization is an important component
in TESLA. Although sophisticated time synchronization
protocols exist, they usually require considerable manage-
ment overhead. Furthermore, they generally have a high
complexity and achieve properties that TESLA does not

1Note that this key schedule is different from the previous schedule
described in section 2.1, where key

7 8
was used to compute the MAC

in interval
 8 and was disclosed in interval
 8 = ? .

require. An example is the network time protocol (NTP)
by Mills [21]. Bishop performs a detailed security anal-
ysis of NTP [7]. For these reasons, we outline a simple
and secure time synchronization protocol that suffices the
humble requirements of TESLA.

The time synchronization requirement that secures
TESLA against an active attacker is that the receiver
knows an upper bound of the difference between the
sender’s local time and the receiver’s local time,

�
. For

simplicity, we assume the clock drift of both sender and
receiver are negligible, otherwise they will simply resyn-
chronize periodically. We denote the real difference be-
tween the sender and the receiver’s time with � . Hence for
loose synchronization, the receiver does not need know �
but only some

�
that is guaranteed to be greater or equal

to � . To compute
�

, we can use either a direct or an in-
direct time synchronization method. In the following, we
first discuss a simple protocol for direct time synchroniza-
tion, and next we discuss how to do indirect time synchro-
nization.

Direct Time Synchronization

In direct time synchronization, the receiver performs an
explicit time synchronization with the sender. This ap-
proach has the advantage that no extra infrastructure is
needed to perform the time synchronization. We design
a simple two-phase protocol that satisfies the TESLA re-
quirements.

In the protocol, the receiver first records its local send-
ing time ��� and sends a time synchronization request con-
taining a nonce to the sender. Upon receiving the time
synchronization request, the sender records its local re-
ceiving time ��� and sends the receiver a signed response
packet containing ��� and the nonce.

�������������! #"
�$���%� �'& "(�')*",+�-/.102" � � 8 �����! #" �'354�67

Figure 4 shows a sample time synchronization between
the receiver and the sender. Upon receiving the signed
response, the receiver checks the validity of the signature
and the matching of the nonce and computes

� � � � E �8� .
It is easy to see that the

�
computed this way satisfies

the requirement that
�:9 � . Because

� � ����E � � �
 ����E � � $ � � � E � � $, ���FE � � � � , and � � E � � is the
network delay for sending the request from the receiver to
the sender which is greater or equal to 9 , hence

�:9 � .
An interesting point is that the network delay of the re-
sponse packet and the delay caused by the computation
of the digital signature do not influence

�
at all. Since

only the initial timestamp matters, it is important that the
sender immediately stores the arrival time � � of the time

time

MAC key instance 2

MAC key instance 1

Disclosed keys

PSfrag replacements

MAC

������� ��� ������� �������

1 ����� 1 � 1 ����� 1 �����

MAC

MAC

1 ����� 1 �����

� ������ � ������ � ������ � ������ � ������ � ������

� ����� � �����

� ������ � ������ � ������ � ������ � ������ � ������

Figure 3: Multiple TESLA instances key chain optimization.

synchronization request packet. The subsequent process-
ing and propagation delay does not matter.

Because the digital signature operation is computation-
ally expensive, we need to be careful about denial-of-
service attacks where an attacker floods the sender with
time synchronization requests. Section 4.1 addresses this
issue.

RTT

Receiver time Sender time

PSfrag replacements

MAC

MAC

MAC

� #

� �

� � ���

�8�

Figure 4: The receiver synchronizes its time
with the sender.

Indirect Time Synchronization

In indirect time synchronization, both the sender and the
receivers synchronize their time with a time reference and
hence the sender and the receiver can reach implicit time
synchronization. This approach is favorable especially in
cases where the application needs time synchronization
with a time reference anyhow. Let

� �
	�� � � �
	 � denote
the measured upper bound of the difference of the sender’s
time and the time reference’s time with

� � �
	 � as the max-
imum error, and let

�
	 � � � �

	 � � denote the measured
upper bound of the difference of the time reference’s time
and the receiver’s time with

� �
	 � � as the maximum error.

Thus the receiver could reach an implicit time synchro-
nization with the sender as

� � � �
	 � �
	 �F� � � �
	 � �

� �
	 � � with

� � � � �
	 � � � � 	 � � as the maximum error.
In settings where the receiver is already time synchro-

nized with the time reference, the receiver does not need to
send any information to the sender. The sender just needs
to periodically broadcast digitally signed packets that con-
tain its time synchronization with the time reference, the
time interval and key chain information outlined in sec-
tion 2.2, along with the sender’s maximum synchroniza-
tion error

� �
	 . A new receiver can start authenticating the
data stream right after it receives one of the signed adver-
tisements. This is particularly useful in the case of satellite
broadcast.

Delayed Time Synchronization

Another interesting relaxation of the time synchronization
requirement is that, if we assume that the receiver’s clock
drift is negligible during a period of time, then the receiver
can receive the data stream from the sender before doing a
time synchronization and authenticate the data later after
a time synchronization. The receiver only needs to store
the arrival time of each packet, so that it can evaluate the
security condition after it performed the time synchroniza-
tion. This is highly useful for many applications, for ex-
ample a router can use TESLA to authenticate itrace mes-
sages [3], and the victim can authenticate the routers’ IP
markings afterwards when it wants to trace an attacker by
performing an approximate time synchronization with the
router [31].

3.4 Determining the Key Disclosure Delay

An important parameter to determine for TESLA is the
key disclosure delay @ . A short disclosure delay will cause
packets to violate the security condition and cause packet
drop, while a long disclosure delay causes a long authen-
tication delay. Note that although the choice of the dis-
closure delay does not affect the security of the system,
it is an important performance factor. We describe a new

method on how to choose a good disclosure delay @ . In
particular, we show as follows that if RTT is a reasonable
upper bound on the round trip time between the receiver
and the sender, then in case of using direct time synchro-
nization, we can choose @ ��� � � �
 � ��
���� � < , where � ��
��
is the interval duration. In case of indirect time synchro-
nization, we can choose @ ��� M � � � � $
 � ��
���� � < , where�

is the sum of both the sender and receiver time synchro-
nization error, and M � � is a reasonable upper bound on
the network delay of a packet traveling from the sender to
the receiver.

Consider a packet 	
� that is constructed using the MAC
key � 0* in time interval � * which will be disclosed @ time
intervals later. The packet 	
� arrives at the receiver at its
local time � �� . Hence the security condition is that

� �
�� � � E � �

� ��
�� � ED� * A,@ 8 (1)

where � � is the beginning time of the 9 th time interval and
�?��
 � is the time interval duration. Assume packet 	 � was
sent at the sender’s local time � �� . Hence � �� A � * � �?��
�� �� *�� �?��
�� � � � � �?��
 � . We denote the average network
delay time from the sender to the receiver with M � � and
the average network delay time from the receiver to the
sender is M � � , and hence

� � � � M � � � M � � �
In case of a direct time synchronization, using the same

notation as in section 3.3,
� � ��� � � E � � $ �� ���

M � � 8 � �� � � E � �� �� M � � , and hence we can derive at
the end that a tight bound for @ to satisfy the equation 1
is @ ��� � � �
 � ��
���� � < , which allows most of pack-
ets to satisfy the security condition and still the receiver
would not need to wait much extra longer than necessary
to authenticate the packets. Similarly in case of an indi-
rect time synchronization, we can derive that a good @ is
@ ��� M � ��� � $
 �?��
 � � � <(�
4 Security Discussion and Robustness to

DoS

Our original paper did not address denial-of-service
(DoS) attacks on TESLA. In an IP multicast environment,
however, DoS is a considerable threat and requires careful
consideration. We discuss potential security problems in
this section and show how to strengthen TESLA to thwart
them. In particular, we show that there is no DoS attack on
the sender if the receivers perform indirect time synchro-
nization. In case of direct time synchronization, we show
how to mitigate DoS attacks on the sender. Although there
are some potential DoS attacks on the receiver side, we
show that TESLA does not add any additional vulnerabil-
ity to DoS attacks if the receiver has a reasonable amount
of buffer space, otherwise we describe schemes that alle-
viate the exposure to DoS.

4.1 DoS Attack on the Sender

A DoS attack on the sender is not possible if TESLA
is used with indirect time synchronization, because the
sender does not keep per-receiver state or perform per-
receiver operations. In the case of direct time synchro-
nization, a DoS attack is possible, since the sender is re-
quired to digitally sign each nonce included in a time syn-
chronization request. An attacker can perform a DoS by
flooding the sender with requests.

This response packet needs to be authenticated with a
digital signature scheme, such as RSA [28], or DSA [32].
Since public-key signature algorithms are computation-
ally expensive, the signing of the response packet can be-
come a performance bottleneck for the sender. A simple
trick can alleviate this situation. The sender can aggre-
gate multiple requests, compute and sign a Merkle hash
tree that is generated from all the requester’s nonces [20].
Figure 5 shows how such a hash tree is constructed. If�
	

is the root of the hash tree,
��	

would be included in
the signed part of the response packet instead of the re-
ceiver’s nonce

���
. To verify the digital signature of the

response packet, each receiver would reconstruct the hash
tree. Since it does not know the other receiver’s nonces
that are part of the hash tree, the sender would include the
nodes of the tree necessary to reconstruct the root node.
For the example in figure 5, the packet returned to receiver
A would include

�

and

3 	 � . Receiver A can reconstruct
the root node

3�� � from these values and its own nonce
���

as follows:
3�� � � 3 3 ��� 8 �
 $ 8 3 	 � $. Note that the

number of nodes returned in the response packet is loga-
rithmic in the number of receivers whose request arrived
in the same time interval. Assuming a 50 ms interval time
(the sender would need to compute at most 20 signatures
per second) and assuming that 1,000,000 receivers wanted
to synchronize their time in that interval, the return packet
would only need to contain 20 hash nodes or 200 bytes,
assuming an 80 bit hash function. Any cryptographically
secure hash function can be used for

3 73�8�� $, for example
MD5 [27], SHA-1 [17], or RIPEMD-160.

PSfrag replacements

MAC

MAC

MAC

9��'?

9���� 9��%?

� � ��� � � � ?

Figure 5: Hash tree over receiver nonces. Node
3��
 �3 ��� 8 �
 $. 3�� � � 3 3��
 8 3 	 � $.

4.2 DoS Attack on the Receiver

In this section, we discuss two DoS attacks on the client.
Since we assume the attacker could have full control of the
network, some DoS attacks such as delay or drop packets
are always possible. Delay packets could cause packets to
violate the security condition and hence not to be authen-
ticated. On the other hand, speeding up packets does not
do anything at all. The receiver even benefits from this
since she might be able to use a chain with a short disclo-
sure delay that she could not use otherwise. We can show
that replay packets cannot do much harm either. First, a
duplicated packet is only accepted by the receiver within a
short time period, since the security condition drops pack-
ets if they are replayed with a long delay. Second we can
prevent the replay attack by adding a sequence number to
each packet and by including the sequence number in the
MAC. The TESLA protocol in the network layer or in the
application layer will filter out duplicate packets.

In the rest of the subsection, we discuss some more
complicated DoS attacks and show how to mitigate or pre-
vent the attacks. First we discuss a flooding attack which
fills up the receiver buffers. Second we discuss an attack
that tries to waste the receiver’s computation resources by
unnecessarily re-computing the key chain.

DoS on the Packet Buffer

An powerful attack is to flood the multicast group with
bogus traffic. This attack is serious because current multi-
cast protocols do not enforce sending access control.2 The
solution we propose involves a weak but efficient and im-
mediate authentication method that offers some protection
against a flooding attack.

First if the receiver has a certain size buffer, we show
that flooding cannot do much harm. Because the scheme
only requires the receiver to buffer packets for the dura-
tion of one disclosure delay until the authenticity of the
packets can be verified, hence the buffer size only needs
to be the multiplication of the network bandwidth and the
disclosure delay time. Assuming that the receiver has
a < 9 Mbps network connection and a � 9+9 ms disclosure
delay, the required buffer size is around ��� 9 kB, which
should in general not be a major concern with today’s
workstations. Assuming � <�� byte network packets, the
computation overhead to authenticate the packets is on the
order of <����+9 HMAC computations per second. Since the
openssl HMAC-MD5 implementation processes on the or-
der of <�� 9 8:9 9+9 � <�� -byte blocks per second on a � 9+9 MHz
Pentium III Linux workstation, the estimated processor

2Source-Specific Multicast (SSM) is a new multicast protocol, and a
new IETF working group was formed in August 2000 [22]. SSM tends
to address this problem by enforcing that only one legitimate sender can
send to the multicast group.

overhead for TESLA authentication is on the order of 1%
of the CPU time.

Second if the receiver’s buffer size is not large enough
as computed above, flooding could result in a DoS attack
because the receiver would drop packets due to a lack of
buffer space.3

An obvious solution is to distribute a shared secret key
to all receivers and to add a MAC to each packet with the
shared secret key. This enables a receiver to quickly verify
the packet, but it allows an attacker who knows the key to
flood the clients anyhow.

Another approach is to use the key chain as a weak au-
thentication method. Briscoe presents a related method
for immediate authentication [8]. The receiver pre-
authenticates the packet by verifying that the disclosed
key really is part of the key chain. Based on the disclosed
key, the receiver can also immediately derive the time in-
terval of the packet and also immediately verify the secu-
rity condition. Both checks are efficient and do not require
any additional space overhead in the packet. An attacker
would need to receive a packet from the sender, extract the
disclosed key, and use that key to flood the receivers. For-
tunately, the flooding time period of each key is limited to
one interval duration.

Yet another solution is to use the immediate authentica-
tion we propose in section 3.1. In this case, the message
does not need to be added to a queue if it is immediately
authenticated.

In practice, the receiver allocates a queue for each time
interval to buffer incoming packets until they can be au-
thenticated. If the receiver has too little memory to buffer
all incoming traffic during the disclosure delay, it needs
to decide on a drop or replacement policy in case of a
full buffer. Dropping all packets of a particular interval
once the buffer is full is a poor policy, because an attacker
might insert the spoofed traffic only early in each time
interval, causing the receivers to buffer mostly spoofed
packets. Ideally, the receiver uses a random replacement
policy once the buffer is full. For each incoming packet,
the receiver picks a packet within the buffer to replace.

DoS on the Key Chain

Another DoS attack is specific to how the TESLA receiver
reconstructs the key chain. If an attacker could fool a re-
ceiver to believe that a packet was sent out far in the fu-
ture, and the receiver would try to verify the key disclosed
in the packet by applying the pseudo-random function un-
til the last committed key chain value. This attack can
be easily prevented by checking that the packet interval is

3We do not consider the flooding attack from a network perspective
(where flooding can cause link congestion and results in dropping legit-
imate traffic) because any network protocol is susceptible to this attack.

less or equal the latest interval that the sender can possi-
bly be in. For an incoming packet sent in interval � * , the
receiver can verify if the interval � * is not in the future,
i.e. if the sender can already be in that interval. The ver-
ification condition is that � * A � � � E,��� $

 � ��
�� � , where
� � is an upper bound on the sender’s time that the receiver
computes at the arrival of the packet.

5 Related Work

Researchers have proposed signing data packets to
achieve source authentication. Since a digital signature
achieves non-repudiation, a signature is much stronger
than just authentication. As we mentioned in the intro-
duction, the communication and computation overhead of
current signature schemes is more expensive than schemes
that are based on symmetric cryptography. We will re-
view only the schemes that provide source authentica-
tion and not the schemes providing non-repudiation, i.e.
[14, 29, 33, 25].

The earliest related work is by Cheung [11]. He pro-
poses a scheme akin to the basic TESLA protocol to au-
thenticate link-state routing updates between routers. He
assumes that all the routers in a network are time synchro-
nized up to � � , and does not consider the case of hetero-
geneous receivers.

Anderson et al. [1] present the Guy Fawkes protocol
which provides message authentication between two par-
ties. Their protocol has the drawback that it cannot toler-
ate packet loss. They propose two methods to guarantee
that the keys are not revealed too soon. The first method
is that the sender and receiver are in lockstep, i.e. the re-
ceiver acknowledges every packet before the sender can
send the next packet. This severely limits the sending rate
and does not scale to a large number of receivers. The sec-
ond method to secure their scheme is to time-stamp each
packet at a time-stamping service, which introduces addi-
tional complexity and overhead.

Canetti et al. propose to use � different keys to authen-
ticate every message with � different MAC’s for sender
authentication [9]. Every receiver knows � keys and can
hence verify � MAC’s. The keys are distributed in such
a way that no coalition of � receivers can forge a packet
for a specific receiver. The communication overhead for
this scheme is considerable, since every message carries

� MAC’s. The server must also compute � MACs before
a packet is sent, which makes it more expensive than the
scheme we present in this paper. Furthermore, the security
of their scheme depends on the assumption that at most a
bounded number (which is on the order of �) of receivers
collude.

Briscoe proposes the FLAMeS protocol that is similar
to the Cheung [11] and part of the basic TESLA protocol.
Bergadano, Cavalino, and Crispo present an authentica-

tion protocol for multicast [5]. Their protocol is similar to
Cheung [11] and to parts of the basic TESLA protocol.

Bergadano, Cavagnino, and Crispo, propose a proto-
col similar to the Guy Fawkes protocol to individually
authenticate data streams sent within a group [4]. Their
scheme requires that the sender receives an acknowledg-
ment packet from each receiver before it can send the next
packet. This prevents scalability to a large group. The
advantage is that their protocol does not rely on time syn-
chronization.

Unfortunately, their protocol is vulnerable to a man-in-
the-middle attack. To illustrate the attack, we briefly re-
view the protocol for one sender and one receiver (adapted
to use the same notation as we established in this paper):

�������AB��
	 D�� � D�
 B��
	 D�� ����� 4�6������������ D 4��
��:�B���� D ��� @ D B��
	 D�� � D�
 B��
	 D�� ����� 4�6��������AB�� �
����������I D 4��
��:�B���I D � I @ D B����

In their scheme, both A (the sender) and B (the receiver)
pre-compute a key chain, � �;� and � !;� , respectively. In
the following attack, B intends to authenticate data from
A, but we will show that the attacker � can forge all data.
The attacker � captures all messages from B and it can
pretend to B that all the messages come from A. To A, the
attacker � just pretends to be itself.

�"��# :$� @ �AB��
	 D�� � D%
 B��
	 D�� ����� 4�6�#&�����AB'# 	 D�� � D�
 B'# 	 D�� ����� 4�6(���)#*��� � D 4+�,��:�B�� � D � � @ D B�� 	 D�� � D�
 B�� 	 D�� ����� 4�6�#&�����AB'#-�
���)#*��� I D 4+�,��:�B�� I D � I @ D B�� �

# :$� @ �.����� C � D 4+�,��:�B�� � D � C � @ D B�� 	 D�� � D�
 B�� 	 D�� ����� 4�6�

Note that the attacker � can forge the content of the mes-
sage �6# sent to B, because it knows the key �1� � . The at-
tacker � can forge the entire subsequent message stream,
without B noticing.

Another attack is that an eavesdropper that records a
message exchange between A (sender) and B (receiver)
can impersonate either A or B as a receiver to another
sender C. This attack can be serious if the sender performs
access control based on the initial signature packet and the
revealed key chain. The attack is simple, the eavesdrop-
per only needs to replay the initial signatures and all the
disclosed keys collected.

6 Conclusions

In this paper, we have presented an extension to our
TESLA scheme which provides a solution to the source
authentication problem under the assumption that the
sender and receiver are loosely time synchronized. The
basic TESLA protocol has the following salient proper-
ties:
> Low computation overhead. On the order of one

MAC function computation per packet for both
sender and receiver.

> Low communication overhead. Required is as lit-
tle as one MAC value per packet. Periodically, the
sender also needs to send out the secret keys.

> Perfect loss robustness. If a packet arrives in time,
the receiver can verify its authenticity eventually (as
long as it receives later packets).

The extensions we propose in this paper feature:
> The basic TESLA scheme provides delayed authen-

tication. With additional information in a packet, we
show in this paper how we can provide immediate
authentication.

> We reduce the communication overhead when mul-
tiple TESLA instances with different authentication
delays are used concurrently.

> We derive a tight lower bound on the disclosure de-
lay.

> Harden the sender and the receiver against denial-of-
service attacks.

7 Acknowledgments

We would like to thank Radia Perlman for the discus-
sions on DoS attacks. We are also grateful to Bob Briscoe
for helpful discussions and feedback.

References
[1] R. J. Anderson, F. Bergadano, B. Crispo, J.-H. Lee,

C. Manifavas, and R. M. Needham. A new family
of authentication protocols. Operating Systems Review,
32(4):9–20, October 1998.

[2] M. Bellare, R. Canetti, and H. Krawczyk. HMAC: Keyed-
hashing for message authentication. Internet Request for
Comment RFC 2104, Internet Engineering Task Force,
Feb. 1997.

[3] S. Bellovin. The icmp traceback message. http://
www.research.att.com/˜smb, 2000.

[4] F. Bergadano, D. Cavagnino, and B. Crispo. Chained
stream authentication. In Selected Areas in Cryptography
2000, Waterloo, Canada, August 2000. A talk describing
this scheme was given at IBM Watson in August 1998.

[5] F. Bergadano, D. Cavalino, and B. Crispo. Individual sin-
gle source authentication on the mbone. In ICME 2000,
Aug 2000. A talk containing this work was given at IBM
Watson, August 1998.

[6] N. Bhaskar and I. Kouvelas. Source-specific protocol in-
dependent multicast. Internet Draft, Internet Engineering
Task Force, Mar. 2000. Work in progress.

[7] M. Bishop. A Security Analysis of the NTP Protocol Ver-
sion 2. In Sixth Annual Computer Security Applications
Conference, November 1990.

[8] B. Briscoe. FLAMeS: Fast, Loss-Tolerant Authen-
tication of Multicast Streams. Technical report,
BT Research, 2000. http://www.labs.bt.com/
people/briscorj/papers.html.

[9] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast security: A taxonomy and some effi-
cient constructions. In Infocom ’99, 1999.

[10] R. Canetti, P. Rohatgi, and P.-C. Cheng. Multicast data se-
curity transformations: Requirements, considerations, and
prominent choices. Internet draft, Internet Engineering
Task Force, 2000. draft-data-transforms.txt.

[11] S. Cheung. An efficient message authentication scheme
for link state routing. In 13th Annual Computer Security
Applications Conference, 1997.

[12] S. E. Deering. Host extensions for IP multicasting. Re-
quest for Comments (Standard) 1112, Internet Engineer-
ing Task Force, Aug. 1989.

[13] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering,
M. Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei.
Protocol independent multicast-sparse mode (PIM-SM):
protocol specification. Request for Comments (Experi-
mental) 2362, Internet Engineering Task Force, June 1998.

[14] R. Gennaro and P. Rohatgi. How to Sign Digital Streams.
Technical report, IBM T.J.Watson Research Center, 1997.

[15] N. Haller. The S/KEY one-time password system. Request
for Comments (Informational) 1760, Internet Engineering
Task Force, Feb. 1995.

[16] M. Handley, H. Holbrook, and I. Kouvelas. Protocol inde-
pendent multicast - sparse mode (pim-sm): Protocol spec-
ification (revised). Internet Draft, Internet Engineering
Task Force, July 2000. Work in progress.

[17] U. S. Laboratory). Secure hash standard. Federal Informa-
tion Processing Standards Publication FIPS PUB 180-1.
http://csrc.nist.gov/fips/fip180-1.txt
(ascii), http://csrc.nist.gov/fips/
fip180-1.ps (postscript), Apr. 1995.

[18] L. Lamport. Password authentication with insecure com-
munication. Commun. ACM, 24(11), Nov. 1981.

[19] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, J. Crowcroft,
and B. Lueckenhoff. Asynchronous layered coding. a mas-
sively scalable reliable multicast protocol. Internet draft,
Internet Engineering Task Force, July 2000. draft-ietf-rmt-
pi-alc-01.txt.

[20] R. Merkle. Protocols for public key cryptosystems. In
1980 IEEE Symposium on Security and Privacy, 1980.

[21] D. L. Mills. Network Time Protocol (Version 3) Specifi-
cation, Implementation and Analysis. Internet Request for
Comments, March 1992. RFC 1305.

[22] S.-S. Multicast. http://www.ietf.org/html.
charters/ssm-charter.html.

[23] R. Perlman, C. Lee, T. Ballardie, J. Crowcroft, Z. Wang,
T. Maufer, C. Diot, J. Thoo, and M. Green. Simple multi-
cast: A design for simple, low-overhead multicast. Internet
Draft, Internet Engineering Task Force, Mar. 1999. Work
in progress.

[24] A. Perrig, R. Canetti, B. Briscoe, J. Tygar, and D. X. Song.
TESLA: Multicast Source Authentication Transform. In-
ternet Draft, Internet Engineering Task Force, July 2000.
Work in progress.

[25] A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient
authentication and signing of multicast streams over lossy
channels. In IEEE Symposium on Security and Privacy,
May 2000.

[26] Reliable Multicast Transport (RMT). http://www.
ietf.org/html.charters/rmt-charter.
html.

[27] R. L. Rivest. The MD5 message-digest algorithm. Internet
Request for Comments, Apr. 1992. RFC 1321.

[28] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120–126, 1978.

[29] P. Rohatgi. A compact and fast hybrid signature scheme
for multicast packet authentication. In 6th ACM Confer-
ence on Computer and Communications Security, Novem-
ber 1999.

[30] Secure Multicast Group (SMuG). http://www.
ipmulticast.com/community/smug/.

[31] D. X. Song and A. Perrig. Advanced and authenticatd
marking schemes for ip traceback. Technical Report
UCB/CSD-00-1107., UC Berkeley, July 2000.

[32] U. S. National Institute of Standards and Technology
(NIST). Digital Signature Standard (DSS), Federal Regis-
ter 56. FIPS PUB 186, Aug. 1991.

[33] C. K. Wong and S. S. Lam. Digital signatures for flows
and multicasts. In Proc. IEEE ICNP ‘98, 1998.

