
1

Automatic Worm Defense (I)

Dawn Song
dawnsong@cs.berkeley.edu

2

Primer on Internet Worms (I)
• First Instance:

– Morris worm (1988)
– Infected 6000 machines (10% of Internet)
– $10M for downtime & cleanup

• What’s a worm?
– Self-propagating software
– In contrast to viruses, etc., which requires human

intervention for propagation

3

What does it Take to Make a Worm?
• Cause a piece of code to automatically run on a

host
– Exploit a vulnerability (e.g., memory safety) our focus
– Can you design worms not exploiting memory safety

vulnerabilities?
» Morris worm: Rhosts + password guessing
» Javascript worms. later in class

• Propagate
– How to find targets to propagate to?

» Scan IP addresses
» Topological worms

4

Buffer Overflow

1. int check_http(char *input) {
2. char buf[8];
3. if (strncmp(input, “get”,3) != 0 &&
4. strncmp(input, “put”,3) != 0)
5. return -1;
6. if (input[3] != ‘/‘) return -1;
7. strncpy(buf, input, 4);
8. int i = 4;
9. while (input[i] != ‘\n‘)
10. { buf[i] = input[i];
11. i++; }
12. return i;
13. }

char *input

return address

stack frames

input

buf

Vulnerability
condition: i ≥ 8

5

Sample Historical Worms

6

Witty Worm (I)
• March 19, 2004, exploiting buffer overflow in

firewall (ISS) products
• Infected 12,000 machines in 45 mins

7

Witty Worm (II)
• First widely propagated worm w. destructive

payload
– Corrupted hard disk

• Seeded with more ground-zero hosts
– 110 infected machines in first 10 seconds

• Shortest interval btw vulnerability disclosure &
worm release

– 1 day
• Demonstrate worms effective for niche too
• Security devices can open doors to attacks

– Other examples: Anti-virus software, IDS

8

Challenges for Worm Defense
• Short interval btw vulnerability disclosure &

worm release
– Witty worm: 1 day
– Zero-day exploits

• Fast
– Slammer: 10 mins infected 90% vulnerable hosts
– How fast can it be?

» Flashworm: seconds [Staniford et. al., WORM04]

• Large scale
– Slammer: 75,000 machines
– CodeRed: 500,000 machines

9

Automatic Worm Defense
• Filter/rate-limit based on IP & Port

– Newly infected IP
– Huge list
– IP changes: dynamic IP, etc.
– NAT
– Strategy: filter based on who

• Filter based on content (a.k.a. input-based filtering)
– Signatures
– Can be host-based or network-based
– Strategy: filter based on what

• Why not just patch?
– Users don’t apply patch
– Patching production systems requires testing
– Modifying critical systems require re-certification
– Legacy systems can no longer be patched
– What to do for zero-day?
– Dynamic patch later in class

10

Input-based
Filtering

Automatic Signature Generation for
Input-based Filtering

Exploit
dropped

• Input-based filtering
– Signature f: given input x, f(x) = exploit or benign
– Effective, widely-deployed defense

• Question:
How to generate signatures, esp. for new attacks?

Vulnerable Program

Benign
Traffic

Benign
Traffic

Exploit

11

Desired Properties for Automatic
Signature Generation

• Fast generation
– Worm propagates in minutes or seconds

• Fast matching
– Low runtime overhead

• Accurate
– Low/no false positives
– Low/no false negatives
– Able to measure/guarantee signature quality

• Effective against polymorphic worms

12

Polymorphic Worms
• Loose terminology:

– Including polymorphic, metamorphic, etc., techniques
• How can you make a worm/exploit polymorphic?

• Are there invariants in polymorphic worms?

• Key: effective signatures need to identify
invariants

13

How to Automatically Generate Signatures?

• Approach I: pattern-extraction based
– Extract common patterns in worm samples, not in

benign samples

Learner

Suspicious
Samples

Innocuous
Samples

Signatures

Signature

14

Pattern-extraction based Signature Generation

• Honeycomb[Kreibich-Hotnets03]
– Longest common substring

• Earlybird[Singh-OSDI03]
– Common substring using Rabin fingerprinting

• Autograph[Kim-USENIX05]
– Common substring using content-based payload

partitioning
• Polygraph[Newsome-IEEE S&P05]

– Combination of common substrings, e.g.,
conjunctions, subsequences, Bayes,

– Clustering techniques

15

Disadvantages of Patter-extraction
based Signature Generation

• Insufficient for polymorphic worms & unseen variants
• What kinds of invariants can it discover?

– Depending on the classes of functions learned
– What other functions may be of interest to learn?

• No guarantee of signature quality
– How to evaluate signature quality?

• Susceptible to adversarial learning [Newsome-RAID06]
– Attackers crafting malicious samples
– How?

• Purely bit-pattern syntactic approach, so no semantic
understanding of vulnerability

– Only generating exploit-signatures

16

Approach II: Vulnerability Signature Generation

• Instead of bit patterns, use root cause
– Generating signatures based on vulnerability

• As exploits morph, they need to trigger vulnerability

• So, vulnerability puts constraints on exploits

• Problem reduction:
– Signature generation =

constraints on inputs that trigger vulnerability

• Symbolic execution

• Soundness guaranteed (no false positives)

17

Different Classes of Signatures

Turing Machine Signature

Symbolic Constraint Signature

Regular Expression Signature

Approximation

Approximation

18

MEP Symbolic Constraint Signatures
• Monomorphic Execution Path (MEP)

• Any input which
a) executes same path as exploit &
b) satisfies vulnerability condition

is exploit

• Represent inputs as symbolic variables

• Symbolically execute same path as exploit
– Construct symbolic expressions for registers & memory

• Signatures = constraint on symbolic input variables
– Conjunctions of branch conditions & vulnerability condition

19

return -1

int check_http(char *input) {
char buf[8];
if (strncmp(input, “get”,3) != 0 &&

strncmp(input, “put”,3) != 0)
return -1;

if (input[3] != ‘/‘) return -1;
strncpy(buf, input, 4);
int i = 4;
while (input[i] != ‘\n‘)

{ buf[i] = input[i];
i++; }

return i;
}

input[0:2]==“get”

input[0:2]==“put”

input[3]== ‘/’

input[i] == ‘\n’

buf[0:3] = input[0:3];
i=4;

Exit

F

F

F

F

buf[i] = input[i];
i++;

return(i);

Step 1: Generate Control Flow Graph

Vulnerability
condition: i ≥ 8

20

input[0:2]==“get”

input[0:2]==“put”

input[3]== ‘/’

input[i] == ‘\n’

buf[0:3] = input[0:3];
i=4;

Exit

return -1

F

F

F

F

buf[i] = input[i];
i++;

return(i);

Step 2: Locate Vulnerability Point

Vulnerability
condition: i ≥ 8

21

input[0:2]==“get”

input[0:2]==“put”

input[3]== ‘/’

input[i] == ‘\n’

buf[0:3] = input[0:3];
i=4;

Exploit

return -1

F

F

F

F

return(i);

Step 3: Add Vulnerability Condition

i ≥ 8
F

OK

OK

buf[i] = input[i];
i++;

22

input[0:2]==“get”

input[0:2]==“put”

input[3]== ‘/’

input[i] == ‘\n’

buf[0:3] = input[0:3];
i=4;

Exploit

return -1

F

F

F

F

Symbolic Execution: get/1234\n

i ≥ 8
F

OK

OK

buf[i] = input[i];
i++;

return i

Resulting
Constraint:

input[0:2]== ‘get’
& input[3] == ‘/’
& input[4:7] != ‘\n’
& i ≥ 8

23

MEP Symbolic Constraint Signature

• Resulting constraint forms
MEP Symbolic Constraint Signature

given x = get/1234\n

• Signature Accuracy
– Sound:

Any input that satisfies the constraint is an exploit

– Complete with respect to path:
Matches any polymorphic variants along the same path

input[0:2]= “get” & input[3] = ‘/’ & input[4:7] != ‘\n’

24

MEP Regular Expression Signature
• 2nd type of Monomorphic Execution Path Signature

• Two subtypes of Regular Expression Signatures:

1) Under approximation
– Use a solver (e.g., STP) to solve Boolean formula

» Automatically generate exploit!
– Combine solutions of satisfying assignments by logical OR

Soundness guaranteed

2) Over approximation
– Use a solver to identify range of values of input variables

Provides a fast first pass:
» Only check against symbolic constraint signature if matched

25

MEP Regular Expression Signature

MEP Regular Expression Signature
get/[^\n][^\n][^\n][^\n]

MEP Symbolic Constraint Signature
input[0:2]= “get” & input[3] = ‘/’ & input[4:7] != ‘\n’

26

Limitation for MEP Signatures
• Only covering a single path

– Different keywords
– Variable length inputs
– Different protocol steps

27

How to Address MEP Limitations?
• Polymorphic Execution Path (PEP) Symbolic

Constraint Signature
• Intuition

– Explore different paths to generate additional signatures
• Approach I: generating MEP signatures for

different paths and combine them

28

input[0:2]==“get”

input[0:2]==“put”

input[3]== ‘/’

input[i] == ‘\n’

buf[0:3] = input[0:3];
i=4;

Exploit

return -1

F

F

F

F

Different Path

i ≥ 8
F

OK

OK

buf[i] = input[i];
i++;

return i

• Resulting
Constraint:

input[0:2]== ‘put’
& input[3] == ‘/’
& input[4:7] != ‘\n’
& i >=8

29

PEP Regular Expression Signature

PEP Regular Expression Signature
[get|put]/[^\n][^\n][^\n][^\n]

PEP Symbolic Constraint Signature
input[0:2]= “get” & input[3] = ‘/’ & input[4:7] != ‘\n’

∨
input[0:2]= “put” & input[3] = ‘/’ & input[4:7] != ‘\n’

30

Challenges
• How to pick different paths?

• Limitations
– Exponential blow-up in # of paths
– Infinite # of paths due to loops

31

What Changes Can You Make to the Program
to Demonstrate the Limitations?

1. int check_http(char *input) {
2. char buf[8];
3. if (strncmp(input, “get”,3) != 0 &&
4. strncmp(input, “put”,3) != 0)
5. return -1;
6. if (input[3] != ‘/‘) return -1;
7. strncpy(buf, input, 4);
8. int i = 4;
9. while (input[i] != ‘\n‘)
10. { buf[i] = input[i];
11. i++; }
12. return i;
13. }

Vulnerability
condition: i ≥ 8

32

Addressing PEP Limitation I
• Approach II: computing Weakest Precondition

[Brumley-CSF07]
– Use vulnerability condition as post condition
– Statically compute weakest precondition over program

» With loops unrolled
– Formula size is polynomial in size of program

(unrolled)
– Challenge: formula size may still be too big

» Loops unrolled, functions inlined

33

Addressing PEP Limitation II

• Turing Machine signatures
– Objective: Generate program to pick path at run time
– Compute chop between input point and vulnerability

point
– Inline vulnerability condition check at vulnerability point
– Challenge: difficult to compute precise chop

• Why Turing Machine (TM) signatures?
– Vulnerability language class may require TM signatures

for perfect accuracy
– When may TM signatures be needed in practice?

» E.g., need to parse the protocol

34

Under the Hood
• Implementation works on x86 binary
• Signature generation

– Convert x86 to Intermediate Language (IL)
– Symbolic execution + analysis on IL
– Signature output as C program (or x86 directly)

• Challenges in handling x86 binary
– Complex instruction set

» Implicit arguments (5 operands)
» Single instruction jumps

– Scale
» SQL server: more than 3 million LOC in binary; source code orders of

magnitude smaller

• Part of BitBlaze project
– http://bitblaze.cs.berkeley.edu

35

Impact in Real-world

• Currently applying techniques in Symantec

• Joint venture with Reservoir Labs

• Potential prototype integration with FireEye IPS

• Lots more work to be done

36

Open Questions
• Can you apply this approach to generate

signatures for viruses?

• Are there advantages combining pattern-
extraction based/machine learning approaches
with PL-based vulnerability singature generation?

37

Open Mic
• Questions?

• Thoughts you’d like to share

38

Summary
• Automatic signature generation for worm/exploit

defense
– Pattern-extraction based techniques
– Vulnerability signature generation

• Supplemental reading
– Vigilante
– Shield

• Next class:
– How to make vulnerability signature generation

practical?
– Other worm/exploit defense mechanisms (if time allows)

» E.g., Dynamic patches

