
1

Automatic Worm Defense (II) --
More on Automatic Signature Generation

Dawn Song
dawnsong@cs.berkeley.edu

2

Bouncer: Securing Software by Blocking Bad Input

3

Main Idea
How to generalize from original exploit?

• i.e., how to generalize from MEP Signature?

– Remove unnecessary constraints on one path
» Precondition slicing
» Function summaries

– Create different exploits to increase path coverage

4

Background: Program Slicing (I)
• A program slice:

– The set of all statements/instructions that might affect
the value of a variable occurrence

• Goal:
– A slice should evaluate the variable occurrence

identically to the original program for all inputs
• Compute slicing

– Data dependency
– Control dependency

• Property:
– Independent of input values

• Applications:
– Program verification, testing, etc.

5

Background: Program Slicing (II)

• What’s in slice for Vulnerability?
• Issues with static slicing

– Conservative, too large (close to original program)

int x=0, y=0;
int *z = &y;
if (msg[0] == ‘a’)

x = 1;
if (msg[1] == ‘b’)

z = &x;
*z = 0;
if (x)
Vulnerability = TRUE;

6

Background: Dynamic Slicing (I)
• A narrower notion of “slice”

– Consisting only statements that influence the value of
a variable occurrence for specific program inputs

• Applications
– Debugging

7

Background: Dynamic Slicing (II)

• What’s in slice for Vulnerability for msg=“ad”?
• Issues with dynamic slicing for signature

generation
– Miss certain constraints

int x=0, y=0;
int *z = &y;
if (msg[0] == ‘a’)

x = 1;
if (msg[1] == ‘b’)

z = &x;
*z = 0;
if (x)

Vulnerability = TRUE;

8

Precondition Slicing (I)
• Goal

– Remove unnecessary conditions without false positives
• Path slice for a vulnerability point

– A subset of instructions in a trace whose execution is
sufficient to ensure vulnerability to be exploited

– Data dependency
» Easy

– Control dependency
» Look at all relavant paths

9

Precondition Slicing (II)
• Aliasing

– MayAlias (x, y) iff x and y may refer to overlapping
storage locations

– MustAlias (x,y) iff x and y always refer to the same
storage locations for all executions

– Conservative approximations
• Liveness

– Latest defs for operands used

10

Precondition Slicing (III)
• Iterative backwards processing
• When will a branch condition not be included in

slice?
– Postdominance relation
– No path originating at the branch affects values in live
– What common cases will this help?

» Table lookup
» Case conversion

• When will a function not be included in slice?
– Execution of the function does not affect values in live

• Using dynamic information to improve precision
– More precise dependency info on given path

11

Precondition Slicing (IV)

• What’s in slice for Vulnerability for msg=“ad”?
• Issues with preconditioning slicing for signature

generation
– Variable length fields, etc.

int x=0, y=0;
int *z = &y;
if (msg[0] == ‘a’)

x = 1;
if (msg[1] == ‘b’)

z = &x;
*z = 0;
if (x)

Vulnerability = TRUE;

12

Advantages
• With soundness guarantee

– No false positives

• Remove certain unnecessary conditions
– Conditions imposed by value-dependent

processing which are irrelevant to vulnerability

13

Limitations
• Creating new exploits likely not work

– Without data analyzer
– Path exploration with mixed concrete/symbolic execution

» DART/EXE type of approach
» Later in class

• Function summaries

• Still can’t handle loops, variable length fields, etc.

• May still need TM signature
– Limited expressiveness

14

Compare Different Approaches for
Signature Generation

• Pattern-extraction based approach
– W. or w/o exploit detector oracle
– W. or w/o data analyzer

• Program-analysis based approach
– MEP signature: fairly well understood
– PEP signature: How to explore different paths?

» Precondition slicing, etc.
– TM signature

• What’s the right approach? Why?

• How can we do better?
– Potential project ideas

» Come talk to me if interested

15

Open Mic
• Other thoughts/comments?

16

Summary
• Now you are an expert in automatic signature

generation for worm/exploit defense :-)

• Next: Botnet Analysis

