In-depth Malware Analysis

Dawn Song dawnsong@cs.berkeley.edu

Other Issues & Attacks against GhostBuster?

- Malware only hides from certain processes
 Solution?
 - » Run GhostBuster in every process
 - Issues?
 - On the other hand, such a malware is not very stealthy
- How well does GhostBuster approach deal with VMBR?
- Why do we need GhostBuster if we have ways to get real truth?
 - A way to pinpoint stealth behavior which is anomalous
 Corollary: always be honest :-)

Does Getting Real Truth Solve the Problem?

- How would you design a truly stealthy malware hiding the fact that the machine has been compromised?
- Getting real truth is really just the first step – Finding needle in the hay stack

Turning Things Around

- What would you do if you are a AV geek, and doesn't want your AV program to be killed by malware?
- Good guys have a lot to learn from bad guys - Let the fun begin :-)

Open Mic

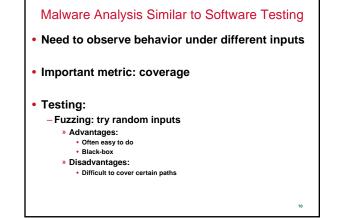
- Anything else you thought that's really clever in the papers?
- Anything else you didn't like about the papers?
- Any other unclear points about the papers?
- Other comments/remarks to share?

In-depth Malware Analysis

- What do we want to find out about malware?
 - -What inputs malware read
 - » Keystrokes
 - » Check registry key
 - » Gettimeofday
 » Network recv
 - " INCLWOIK FEC
 - What outputs malware produce
 - » Write file/registry
 - » Network send
 - Relationship btw different behaviors
 - Special inputs triggering certain behaviors
 - Semantic information: DDoS? SPAM?

Traditional Analysis Methods (I): Manual Analysis

- Runs in debugger, single-step
- Disadvantages
 - Labor intensive
 - Can't keep up with volume of new malware samples


Traditional Analysis Methods (II): Static Analysis

Challenges

- Code packing, encryption, obfuscation
- What examples of obfuscation techniques can you think of?

Traditional Analysis Methods (III): Dynamic Testing

- Executing in virtual machine environment
- Record system calls & their args
- Limitations
 - Incomplete view
 - Miss behaviors triggered by different environments
 » Certain registry key set
 - » Certain file exists
 - » Mutex
 - » Network connection
 - » Time bomb
 - » Commands in bot programs

Symbolic Execution to Automatically Explore Multiple Paths

• Idea:

- Make inputs symbolic
- Symbolically execute program
- Build path constraints
- Solve path constraints to take different branches

Example

Struct {int type; char arg[512];} cmd;
// code to set up server.
While (1) {
 read (net_sock, & cmd, sizeof(cmd));
 if (cmd.type == 0x1){
 DDoS (cmd.arg);
 } else if (cmd.type == 0x2) {
 Spam (cmd.arg);
 } else if (cmd.type - 0x3) {
 Execute (cmd.arg);
 } else {
 die();
 }
}

12

Things to Take Care of

- Why path constraints?
- Efficiency to represent symbolic expressions
- What about symbolic memory addresses?
- Doing it on binary
 DART/EXE on source code

Challenges

Solving constraints

- Attacker making constraints really hard to solve
 Examples?
- Path exploration
 - What strategies one may use to prioritize different paths?

Open Mic

- Still lots of cool things to be done
- Other comments/remarks?

13

Break Time

Class Project (I)

Binary analysis

- -bitblaze.cs.berkeley.edu
- Infrastructure to build cool stuff on top
 - Well-documented
 Don't necessarily need prior experience

The BitBlaze Project

17

- Two research focii
- 1. Design and develop the underlying BitBlaze Binary Analysis Platform
- 2. Apply the BitBlaze Binary Analysis Platform to real security problems
 - COTS vulnerability analysis & defense
 - Malicious code analysis & defense

BitBlaze Binary Analysis Platform

Currently 3 components:

- 1. Vine: Static analysis component
 - Raise assembly to Intermediate Language (IL) Provides program analysis and verification routines on IL

2. TEMU: Dynamic analysis component - Whole system emulation (OS aware)

- Dynamic analysis techniques (such as taint analysis)
- 3. Rudder: Mixed execution component
 - Mixed concrete and symbolic execution Can explore code paths automatically
- Research directions:
 - How to design & combine static & dynamic analysis & other techniques (e.g., machine learning) for effective binary analysis?
 - BitBlaze in Action (I) **COTS Vulnerability Analysis & Protection**

• Exploit & worm defense:

- Worm characteristics:
 - » Exploit vulnerabilities: memory safety vulnerability
 - » Fast self-propagation, large scale
 - Slammer infected 90% of vulnerable hosts in 10 minutes, compromised hundreds of thousands of machines
 - Detect new exploits & identify root causes
 - Create signatures for vulnerabilities (IEEE S&P 2006, CSF 2007)
 - Create dynamic patches
 - Project: how to automatically create effective defense?
- Detect deviations in protocol implementation
- (USENIX Security 2007, Best Paper Award)
- Create formulas representing different implementations
- Diff formulas create candidate deviations
- Project: scalable effective deviation detection

BitBlaze in Action (II) Malicious Code Analysis & Defense

Central questions:

Given a piece of (potentially malicious) code, how to determine its security-related behavior?

• Project:

- BitScope, THE malicious code analysis platform
- Example components
 - Detect privacy-breaching malware (ACM CCS 2007)
 - Detect hidden behavior in malware » Time bombs, botnets, etc.

Class Project (II)

- Quantitative information flow
 - Recent first step towards quantitative information flow on binary
 Lots of cool applications
- Explore building trusted path – More discussion in class later
- Explore building privacy into OS
- Binary instrumentation for OS for better understanding of OS & robustness
- Explore better attribution techniques in OS
 More discussion in class later

Class Project (III)

- Explore how to use multi-core for better security monitoring & forensic analysis
 - More discussion in class later
- Privacy-preserving distributed information sharing

 How to make it practical
 - Leveraging trusted computing & secure hardware
- Authenticated data-publishing
 - Build data authentication into mash-ups

Summary

23

- In-depth malware analysis
- Slides are on website – Need to be in berkeley domain to access it
- Next class: guest lecture on Symantec's approaches for malware analysis & defense
 Think what questions you may want to ask speaker