
1

In-depth Malware Analysis

Dawn Song
dawnsong@cs.berkeley.edu

2

Other Issues & Attacks against GhostBuster?

• Malware only hides from certain processes
– Solution?

» Run GhostBuster in every process
– Issues?
– On the other hand, such a malware is not very stealthy

• How well does GhostBuster approach deal with VMBR?

• Why do we need GhostBuster if we have ways to get real
truth?

– A way to pinpoint stealth behavior which is anomalous
– Corollary: always be honest :-)

3

Does Getting Real Truth Solve the Problem?

• How would you design a truly stealthy malware
hiding the fact that the machine has been
compromised?

• Getting real truth is really just the first step
– Finding needle in the hay stack

4

Turning Things Around
• What would you do if you are a AV geek, and

doesn’t want your AV program to be killed by
malware?

• Good guys have a lot to learn from bad guys
– Let the fun begin :-)

5

Open Mic
• Anything else you thought that’s really clever in

the papers?

• Anything else you didn’t like about the papers?

• Any other unclear points about the papers?

• Other comments/remarks to share?

6

In-depth Malware Analysis
• What do we want to find out about malware?

– What inputs malware read
» Keystrokes
» Check registry key
» Gettimeofday
» Network recv

– What outputs malware produce
» Write file/registry
» Network send

– Relationship btw different behaviors
– Special inputs triggering certain behaviors
– Semantic information: DDoS? SPAM?

7

Traditional Analysis Methods (I): Manual Analysis

• Runs in debugger, single-step

• Disadvantages
– Labor intensive
– Can’t keep up with volume of new malware samples

8

Traditional Analysis Methods (II): Static Analysis

• Challenges
– Code packing, encryption, obfuscation

– What examples of obfuscation techniques can you
think of?

9

Traditional Analysis Methods (III): Dynamic Testing

• Executing in virtual machine environment
• Record system calls & their args
• Limitations

– Incomplete view
– Miss behaviors triggered by different environments

» Certain registry key set
» Certain file exists
» Mutex
» Network connection
» Time bomb
» Commands in bot programs

10

Malware Analysis Similar to Software Testing

• Need to observe behavior under different inputs

• Important metric: coverage

• Testing:
– Fuzzing: try random inputs

» Advantages:
• Often easy to do
• Black-box

» Disadvantages:
• Difficult to cover certain paths

11

Symbolic Execution to Automatically Explore
Multiple Paths

• Idea:
– Make inputs symbolic
– Symbolically execute program
– Build path constraints
– Solve path constraints to take different branches

12

Example
Struct {int type; char arg[512];} cmd;
// code to set up server.
While (1) {

read (net_sock, & cmd, sizeof(cmd));
if (cmd.type == 0x1){

DDoS (cmd.arg);
} else if (cmd.type == 0x2) {

Spam (cmd.arg);
} else if (cmd.type – 0x3) {

Execute (cmd.arg);
} else {

die();
}

}

13

Things to Take Care of
• Why path constraints?

• Efficiency to represent symbolic expressions

• What about symbolic memory addresses?

• Doing it on binary
– DART/EXE on source code

14

Challenges
• Solving constraints

– Attacker making constraints really hard to solve
– Examples?

• Path exploration
– What strategies one may use to prioritize different

paths?

15

Open Mic
• Still lots of cool things to be done

• Other comments/remarks?

16

Break Time

17

Class Project (I)
• Binary analysis

– bitblaze.cs.berkeley.edu
– Infrastructure to build cool stuff on top

» Well-documented
» Don’t necessarily need prior experience

18

The BitBlaze Project
• Two research focii
1. Design and develop the underlying BitBlaze

Binary Analysis Platform

2. Apply the BitBlaze Binary Analysis Platform to
real security problems
• COTS vulnerability analysis & defense
• Malicious code analysis & defense

19

BitBlaze Binary Analysis Platform
Currently 3 components:

1. Vine: Static analysis component
– Raise assembly to Intermediate Language (IL)
– Provides program analysis and verification routines on IL

2. TEMU: Dynamic analysis component
– Whole system emulation (OS aware)
– Dynamic analysis techniques (such as taint analysis)

3. Rudder: Mixed execution component
– Mixed concrete and symbolic execution
– Can explore code paths automatically

Research directions:
– How to design & combine static & dynamic analysis & other

techniques (e.g., machine learning) for effective binary analysis?

20

BitBlaze in Action (I)
COTS Vulnerability Analysis & Protection

• Exploit & worm defense:
– Worm characteristics:

» Exploit vulnerabilities: memory safety vulnerability
» Fast self-propagation, large scale

• Slammer infected 90% of vulnerable hosts in 10 minutes, compromised hundreds
of thousands of machines

– Detect new exploits & identify root causes
– Create signatures for vulnerabilities

(IEEE S&P 2006, CSF 2007)
– Create dynamic patches
– Project: how to automatically create effective defense?

• Detect deviations in protocol implementation
(USENIX Security 2007, Best Paper Award)

– Create formulas representing different implementations
– Diff formulas create candidate deviations
– Project: scalable effective deviation detection

21

BitBlaze in Action (II)
Malicious Code Analysis & Defense

• Central questions:
– Given a piece of (potentially malicious) code, how to determine

its security-related behavior?

• Project:
– BitScope, THE malicious code analysis platform

• Example components
– Detect privacy-breaching malware

(ACM CCS 2007)

– Detect hidden behavior in malware
» Time bombs, botnets, etc.

22

Class Project (II)
• Quantitative information flow

– Recent first step towards quantitative information flow on binary
– Lots of cool applications

• Explore building trusted path
– More discussion in class later

• Explore building privacy into OS

• Binary instrumentation for OS for better understanding of
OS & robustness

• Explore better attribution techniques in OS
– More discussion in class later

23

Class Project (III)
• Explore how to use multi-core for better security

monitoring & forensic analysis
– More discussion in class later

• Privacy-preserving distributed information sharing
– How to make it practical
– Leveraging trusted computing & secure hardware

• Authenticated data-publishing
– Build data authentication into mash-ups

24

Summary
• In-depth malware analysis

• Slides are on website
– Need to be in berkeley domain to access it

• Next class: guest lecture on Symantec’s
approaches for malware analysis & defense

– Think what questions you may want to ask speaker

