
1

Safe Extension

Dawn Song
dawnsong@cs.berkeley.edu

2

Part II OS & Web Security
• OS Security

• Web Security

• More esoteric topics
– Click fraud, etc.
– Reputation systems & trust metrics
– Few papers, but local experts

» Guest lectures from Google, etc.

3

In the World of Extensions
• Today’s systems are designed to be extensible

– OS kernel module/drivers
– Browser plug-ins

• Extension accounts for over x% of Linux kernel 
code

– x=70 [Chou et. al.]
• Windows XP desktops

– Over 35,000 drivers with over 120,000 versions [Swift 
et. al.]

• Drivers cause 85% of reported failures in 
Windows XP [Swift et. al.]



4

Desired Properties of Extensible Architecture

• Efficiency
• Protection

– Extension should not read and/or write to certain 
regions in host Isolation, sandbox

» Do no harm to others
» Why do we care about Read?

– Extension should satisfy certain memory safety 
properties

» Doesn’t shoot itself in the foot
– Other more sophisticated security policies

• Security model
– Malicious 
– Buggy

5

Enforcing Isolation (I)
• Hardware protection: process

• Disadvantages
– Coarse grained
– Performance hit on cross-domain calls

» Context switches

6

Enforcing Isolation (II)
• Safe languages
• Advantages

– Fine-grained protection
– Ok performance overhead?

• Disadvantages
– Legacy code



7

Enforcing Isolation (III)
• Interpreter/emulator

– Inspect every instruction to be executed
• Advantages

– Fine-grained protection
– Works for legacy code

• Disadvantages
– Prohibitively expensive

» Although optimizations & code caching help a lot

• Examples
– Program shepherding
– Dynamic taint analysis

8

Enforcing Isolation (IV)
• In-line reference monitors/dynamic checks

– IRMs enforce security policies by inserting into subject 
programs the code for validity checks and also any 
additional state that is needed for enforcement

• Idea
– Add dynamic checks to enforce properties at run time
– Combine with static analysis to reduce dynamic checks
– Ensure dynamic checks are not by-passed

» Control & data property enforcements are intertwined
– Verifier:

» Ensure dynamic checks are properly inlined

9

A Whole Spectrum
• Tradeoff

– Complexity of properties enforced
– Runtime overhead
– Assumptions required
– Complexity of priori analysis needed

• Properties enforced entail
– What dynamic checks to add
– How to add these dynamic checks

• The spectrum
– SFI, CFI, DFI, XFI, …
– Interpreter/emulator is one end of the spectrum



10

SFI
• SFI [Wahbe et. al. 93]

– Software fault isolation
– Extension code only writes and jumps to dedicated 

data and code region
– What’s the simplest checks can you insert?
– How do you ensure checks are not by-passed?

» Dedicated registers (5)

• SFI for CISC architectures [McCamant et al. 06]
– Pad code blocks to be well aligned
– Ensure jumps always to beginning of blocks

11

CFI
• Control-flow integrity [Abadi et al. 05]
• Enforce execution must follow a path of a 

CFG determined ahead of time
– Obtain CFG via static analysis, execution 

profiling, or explicit security policies
• What checks to insert? How to ensure 

checks are not by-passed?
– Assign unique IDs to equivalence classes of 

destination instructions
– Source instruction includes IDs 
– Indirect jumps require ID-checks

12

DFI
• Data-flow integrity [Costa et al. 06]
• Enforce certain def-use relationship

– Statically identify def-use relationships
– For each use, enforce its def set



13

XFI
• Extensive property enforcement

– Memory-access constraints
» Only to certain regions

– Interface restrictions
» Control can only flow out of module via calls to stubs & 

returns to external call-sites
– Scoped-stack integrity
– Certain instructions disallowed
– Certain registers cannot be modified
– Control-flow integrity
– Data integrity

» Certain globals & locals can only be accessed via static 
references from proper instructions

• Why this set of properties?

14

Mechanisms to Insert Checks
• Source to source transformation

– CIL

• Compiler-based approach
– Gcc extensions

• Assembly -> binary code (statically)
– Python :)

• Dynamic binary instrumentation
– RIO, Valgrind, QEMU, Bocs, Plex86

• Static binary rewriting
– Usually with debugging info/PDBs
– Vulcan

15

Discussions
• Why do we need the verifier?

– Smaller TCB

• How does XFI performance compare with SFI?

• What classes of properties can XFI/IRM enforce?
What classes of properties XFI/IRM cannot enforce?

– Can: safety properties
– Cannot: Liveness properties, non-interference properties

• Does XFI prevent extensions from exploiting kernel vulnerabilities?

• How may attacker get around?

• How would you apply this approach to browser plug-ins? 
– What issues to consider?


