
CS161 Notes
Topic: Asymmetric Cryptography
Lecturer: Dawn Song

The Shortcomings of Symmetric Cryptography

There is a very big disadvantage to using only symmetric encryption. For symmetric encryption to work
in a distributed setting, lots of shared secrets need to be established ahead of time. More specifically,
for people, () keys are needed because each person needs to store keys (one for every
other person). This is not scalable and is extremely hard to manage. So we need something better.

Ideally, we would like for Bob to have a public key and everyone who wants to send a message to Bob
can look up his public key and encrypt a message such that only Bob can decrypt the message with his
secret private key. This scheme requires that there be only keys total (one for each person). Then,
Alice will only need to store her private key locally and she can just look up the public key for Bob when
she wishes to send a message to Bob.

Asymmetric Cryptography
Here is how a public-private key asymmetric algorithm works. Alice has a public key that she shares
with everyone in the world (others can look up this public key somewhere or ask her for it). She also has
a private key that she keeps secret from everyone.

Alice uses an asymmetric encryption function to encrypt a message with her public key to
produce a ciphertext as follows

 ()
Then, Alice can send to Bob over an untrusted communication channel. When Bob receives , he can
use the corresponding asymmetric decryption function to decrypt the ciphertext with the private
key and recover the original message

 ()

Note that in order for this to be secure against passive attackers, the encryption should be probabilistic
so that every time is encrypted, a different ciphertext is generated. A non-probabilistic encryption
function can be converted to a probabilistic one by applying random padding to the message while
encrypting it. This prevents an active attacker from correlating identical messages. Furthermore, to be
safe against active attackers, the message also needs to be authenticated. An active attacker can also
reorder, remove, or duplicate messages, so for many applications, the messages must also include a
counter that gets authenticated along with the message. The receiving party should then verify that the
counter of the messages increases by one for each additional message.

Trapdoor Functions

The symmetric crypto concepts in the previous lecture (PRP and PRF) are insufficient to implement this
kind of a public key system because PRPs and PRFs don't have the concept of public and private keys.
Therefore, we need a new kind of primitive, trapdoor functions. A trapdoor permutation consists of the
following constructs:

 A randomized key generation algorithm
 ()

 An encryption function
 ()

 A decryption function that is secure if () is "one way" without knowledge of . This

means that computing () is computationally infeasible without knowing . For
example, if it takes operations to recover a key, then this is considered computationally
infeasible.

 ()

The RSA Trapdoor Permutation
Suppose that

The integers from to that are relatively prime to are denoted as

 and their values are

 { }

What is for different values of ? Notice that all powers of fall into
 .

The size of

 is called Euler's totient function and is denoted as
 () |

 |
For , we have

 () |
 |

If (and prime), then () ()().

Notice that () is always .

Factoring is a cryptographically hard problem. No one knows how to do if efficiently if and are
large (e.g., 512 bits each). Also, if you know , you still can’t compute () efficiently.

Now we generate two numbers such that ()

 and are public
 is private

We encrypt by computing

 is the plaintext message.
 is the ciphertext output.

Notice that

 () ()

This means that we can decrypt a ciphertext by just computing . Since is private, only the owner
of the private key can do this.

If you know and , then you can find a pair () . If you don’t know and , but only know , then it
is not feasible to find given . Proof by contradiction: If Alice could get both and , then that would
help Alice factor to find and , but it is known that factoring is hard.

Secure Asymmetric Encryption

Alice wishes to send a message to Bob and encrypt it with Bob's public key. Then Bob should be able
to decrypt it with his private key. How can we do this?

We can perform a pure RSA encryption

but this is not secure because:

 What if the message consists of zeroes? Then you always get zeroes and the adversary knows
that.

 This is not probabilistic (randomized) encryption, meaning that the same message always
encrypts to the same ciphertext. Therefore, an attacker can find out when the same message is
sent even without knowing the message.

 If the attacker has external information (e.g., knows what one message is), then it might allow
the attacker to determine when that same message gets sent again and the attacker can figure
out some of the future messages.

 This is a malleable function. Specifically, if an attacker knows , the attacker can construct
() for any k he chooses without knowing . For example, the attacker can compute
 () without knowing .

 This is susceptible to chosen plaintext attacks: Alice can pre-compute the ciphertexts for
some set of possible messages and then match the ciphertexts to infer the messages.

In conclusion, RSA by itself is insecure. RSA padding techniques are needed to make it secure. Here is
one way that we can build a secure public-key encryption/decryption algorithm from a trapdoor
permutation like RSA.

Notation:

 (): Symmetric encryption of message with key .
 (): Symmetric decryption of ciphertext with key .
 (): Cryptographic hash of .
 (): The trapdoor permutation encryption of x with public key .

 For example, pure RSA encryption

 (): The trapdoor permutation decryption of y with private key .
 For example, pure RSA decryption

To build a secure encryption (), do:

 ()
 ()
 ()
Output ()

To build a secure decryption (()), do:

 ()
 ()
 ()
Output

