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The Shortcomings of Symmetric Cryptography  
 
There is a very big disadvantage to using only symmetric encryption. For symmetric encryption to work 
in a distributed setting, lots of shared secrets need to be established ahead of time. More specifically, 
for   people,  (  ) keys are needed because each person needs to store     keys (one for every 
other person). This is not scalable and is extremely hard to manage. So we need something better. 
 
Ideally, we would like for Bob to have a public key and everyone who wants to send a message to Bob 
can look up his public key and encrypt a message such that only Bob can decrypt the message with his 
secret private key. This scheme requires that there be only   keys total (one for each person). Then, 
Alice will only need to store her private key locally and she can just look up the public key for Bob when 
she wishes to send a message to Bob.  

Asymmetric Cryptography 
Here is how a public-private key asymmetric algorithm works. Alice has a public key    that she shares 
with everyone in the world (others can look up this public key somewhere or ask her for it). She also has 
a private key    that she keeps secret from everyone. 
 
Alice uses an asymmetric encryption function   to encrypt a message   with her public key    to 
produce a ciphertext   as follows 

   (    ) 
Then, Alice can send   to Bob over an untrusted communication channel. When Bob receives  , he can 
use the corresponding asymmetric decryption function   to decrypt the ciphertext   with the private 
key    and recover the original message   

   (    ) 
 
Note that in order for this to be secure against passive attackers, the encryption should be probabilistic 
so that every time   is encrypted, a different ciphertext is generated. A non-probabilistic encryption 
function can be converted to a probabilistic one by applying random padding to the message while 
encrypting it. This prevents an active attacker from correlating identical messages. Furthermore, to be 
safe against active attackers, the message also needs to be authenticated. An active attacker can also 
reorder, remove, or duplicate messages, so for many applications, the messages must also include a 
counter that gets authenticated along with the message. The receiving party should then verify that the 
counter of the messages increases by one for each additional message.  
 

Trapdoor Functions 
 
The symmetric crypto concepts in the previous lecture (PRP and PRF) are insufficient to implement this 
kind of a public key system because PRPs and PRFs don't have the concept of public and private keys. 
Therefore, we need a new kind of primitive, trapdoor functions. A trapdoor permutation consists of the 
following constructs: 
 



 A randomized key generation algorithm 
  (     ) 

 An encryption function 
 (    )    

 
 A decryption function that is secure if  (    ) is "one way" without knowledge of   . This 

means that computing    (    )  is computationally infeasible without knowing   . For 
example, if it takes      operations to recover a key, then this is considered computationally 
infeasible. 

 

   (    )    

The RSA Trapdoor Permutation 
Suppose that 

          
The integers from   to    that are relatively prime to    are denoted as    

  and their values are 
   

  {                   } 
 

What is           for different values of  ? Notice that all powers of          fall into    
 . 

 
The size of   

  is called Euler's totient function and is denoted as 
 ( )  |  

 | 
For     , we have 

 (  )  |   
 |    

 
If       (  and   prime), then  ( )   (   )(   ). 

Notice that   ( )       is always  . 
  
Factoring   is a cryptographically hard problem. No one knows how to do if efficiently if   and   are 
large (e.g., 512 bits each). Also, if you know  , you still can’t compute  ( ) efficiently. 
 
Now we generate two numbers     such that            ( ) 

   and   are public  
   is private 

 
We encrypt by computing              

   is the plaintext message.  
   is the ciphertext output. 

 
Notice that 

    (  )                      (      ) 
 
This means that we can decrypt a ciphertext   by just computing   . Since   is private, only the owner 
of the private key can do this.  
 
If you know   and  , then you can find a pair (   ) . If you don’t know   and  , but only know  , then it 
is not feasible to find   given  . Proof by contradiction: If Alice could get both   and  , then that would 
help Alice factor   to find   and  , but it is known that factoring is hard. 
 



Secure Asymmetric Encryption 
 
Alice wishes to send a message   to Bob and encrypt it with Bob's public key. Then Bob should be able 
to decrypt it with his private key. How can we do this? 
 
We can perform a pure RSA encryption 

            
but this is not secure because: 

 What if the message consists of zeroes? Then you always get zeroes and the adversary knows 
that.  

 This is not probabilistic (randomized) encryption, meaning that the same message always 
encrypts to the same ciphertext. Therefore, an attacker can find out when the same message is 
sent even without knowing the message. 

 If the attacker has external information (e.g., knows what one message is), then it might allow 
the attacker to determine when that same message gets sent again and the attacker can figure 
out some of the future messages. 

 This is a malleable function. Specifically, if an attacker knows   , the attacker can construct 
(   )  for any k he chooses without knowing  . For example, the attacker can compute 
 (   ) without knowing  . 

 This is susceptible to chosen plaintext attacks: Alice can pre-compute the ciphertexts for 
some set of possible messages and then match the ciphertexts to infer the messages. 

 
In conclusion, RSA by itself is insecure. RSA padding techniques are needed to make it secure. Here is 
one way that we can build a secure public-key encryption/decryption algorithm from a trapdoor 
permutation like RSA. 
 
Notation: 

   (   ): Symmetric encryption of message   with key  . 
   (   ): Symmetric decryption of ciphertext   with key  . 
  ( ): Cryptographic hash of  . 
  (    ): The trapdoor permutation encryption of x with public key   . 

 For example, pure RSA encryption 
            

    (    ): The trapdoor permutation decryption of y with private key   . 
 For example, pure RSA decryption 

            
 
To build a secure encryption  (    ), do: 

     
   (    ) 
     ( ) 
     (   ) 
Output (   ) 

 

To build a secure decryption  (   (   )), do: 

       (    ) 
     ( ) 
      (   ) 
Output   

 

 


