
Dawn Song
Fall 2012

CS 161
Computer Security

Optional Notes

Memory safety — Attacks and Defenses

In the next few lectures we will be looking at software security—problems associated with
the software implementation. You may have a perfect design, a perfect specification, perfect
algorithms, but still have implementation vulnerabilities. In fact, after configuration errors,
implementation errors are probably the largest single class of security errors exploited in
practice.

We will start by looking at a particularly prevalent class of software flaws, those that
concern memory safety. Memory safety refers to ensuring the integrity of a program’s data
structures: preventing attackers from reading or writing to memory locations other than
those intended by the programmer.

Because many security-critical applications have been written in C, and because C has
peculiar pitfalls of its own, many of these examples will be C-specific. Implementation flaws
can in fact occur at all levels: in improper use of the programming language, the libraries,
the operating system, or in the application logic. We will look at some of these others later
in the course.

1 Buffer overflow vulnerabilities

We’ll start with one of the most common types of error—buffer overflow (also called buffer

overrun) vulnerabilities. Buffer overflow vulnerabilities are a particular risk in C. Since it is
an especially widely used systems programming language, you might not be surprised to hear
that buffer overflows are one of the most pervasive kind of implementation flaws around.

As a low-level language, we can think of C as a portable assembly language. The program-
mer is exposed to the bare machine (which is one reason that C is such a popular systems
language). A particular weakness that we will discuss is the absence of automatic bounds-
checking for array or pointer access. A buffer overflow bug is one where the programmer fails
to perform adequate bounds checks, triggering an out-of-bounds memory access that writes
beyond the bounds of some memory region. Attackers can use these out-of-bounds memory
accesses to corrupt the program’s intended behavior.

Let us start with a simple example.

char buf[80];

void vulnerable() {

gets(buf);

}

In this example, gets() reads as many bytes of input as are available on standard input,
and stores them into buf[]. If the input contains more than 80 bytes of data, then gets()

Material courtesy Prof. David Wagner

will write past the end of buf, overwriting some other part of memory. This is a bug. This
bug typically causes a crash and a core-dump. What might be less obvious is that the
consequences can be far worse than that.

To illustrate some of the dangers, we modify the example slightly.

char buf[80];

int authenticated = 0;

void vulnerable() {

gets(buf);

}

Imagine that elsewhere in the code, there is a login routine that sets the authenticated

flag only if the user proves knowledge of the password. Unfortunately, the authenticated

flag is stored in memory right after buf. If the attacker can write 81 bytes of data to buf

(with the 81st byte set to a non-zero value), then this will set the authenticated flag to
true, and the attacker will gain access. The program above allows that to happen, because
the gets function does no bounds-checking: it will write as much data to buf as is supplied
to it. In other words, the code above is vulnerable: an attacker who can control the input
to the program can bypass the password checks.

Now consider another variation:

char buf[80];

int (*fnptr)();

void vulnerable() {

gets(buf);

}

The function pointer fnptr is invoked elsewhere in the program (not shown). This enables
a more serious attack: the attacker can overwrite fnptr with any address of their choosing,
redirecting program execution to some other memory location. A crafty attacker could
supply an input that consists of malicious machine instructions, followed by a few bytes that
overwrite fnptr with some address A. when fnptr is next invoked, the flow of control is
re-directed to address A. Notice that in this attack, the attacker can choose the address
A however they like—so, for instance, they can choose to overwrite fnptr with an address
where the malicious machine instructions will be stored (e.g., the address &buf[0]). This
is a malicious code injection attack. Of course, many variations on this attack are possible:
for instance, the attacker could arrange to store the malicious code anywhere else (e.g., in
some other input buffer), rather than in buf, and re-direct execution to that other location.

Malicious code injection attacks allow an attacker to seize control of the program. At the
conclusion of the attack, the program is still running, but now it is executing code chosen
by the attacker, rather than the original software. For instance, consider a web server that
receives requests from clients across the network and processes them. If the web server
contains a buffer overrun in the code that processes such requests, a malicious client would
be able to seize control of the web server process. If the web server is running as root, once
the attacker seizes control, the attacker can do anything that root can do; for instance, the
attacker can leave a backdoor that allows them to log in as root later. At that point, the
system has been “owned.”

Page 2

Buffer overflow vulnerabilities and malicious code injection are a favorite method used
by worm writers and attackers. A pure example such as we showed above is relatively rare.
However, it does occur: for instance, it formed the vectors used by the first major Internet
worm (the Morris worm). Morris took advantage of a buffer overflow in in.fingerd (the
network “finger” daemon) to overwrite the filename of a command executed by in.fingerd,
similar to the example above involving an overwrite of an “authenticated” flag. But pure
attacks, as illustrated above, are only possible when the code satisfies certain special condi-
tions: the buffer that can be overflowed must be followed in memory by some security-critical
data (e.g., a function pointer, a flag that has a critical influence on the subsequent flow of
execution of the program). Because these conditions occur only rarely in practice, attackers
have developed more effective methods of malicious code injection.

2 Stack smashing

One powerful method for exploiting buffer overrun vulnerabilities takes advantage of the way
local variables are laid out on the stack.

We need to review some background material first. Let’s recall C’s memory layout:

text region heap stack

0x00..0 0xFF..F

The text region contains the executable code of the program. The heap stores dynamically
allocated data (and grows and shrinks as objects are allocated and freed). Local variables
and other information associated with each function call are stored on the stack (which
grows and shrinks with function calls and returns). In the picture above, the text region
starts at smaller-numbered memory addresses (e.g., 0x00..0), and the stack region ends at
larger-numbered memory addresses (0xFF..F).

Function calls push new stack frames onto the stack. A stack frame includes space for all
the local variables used by that function, and other book-keeping information used by the
compiler for this function invocation. On Intel (x86) machines, the stack grows down. This
means that the stack grows towards smaller memory addresses. There is a special register,
called the stack pointer (SP), that points to the beginning of the current stack frame. Thus,
the stack extends from the address given in the SP until the end of memory, and pushing a
new frame on the stack involves subtracting the length of that frame from SP.

Intel (x86) machines have another special register, called the instruction pointer (IP),
that points to the next machine instruction to execute. For most machine instructions,
the machine reads the instruction pointed to by IP, executes that instruction, and then
increments the IP. Function calls cause the IP to be updated differently: the current value
of IP is pushed onto the stack (this will be called the return address), and the program
then jumps to the beginning of the function to be called. The compiler inserts a function
prologue—some automatically generated code that performs the above operations—into each
function, so it is the first thing to be executed when the function is called. The prologue
pushes the current value of SP onto the stack and allocates stack space for local variables
by decrementing the SP by some appropriate amount.

Page 3

When the function returns, the old SP and return address are retrieved from the stack,
and the stack frame is popped from the stack (by restoring the old SP value). Execution
continues from the return address.

After all that background, we’re now ready to see how a stack smashing attack works.
Suppose the code looks like this:

void vulnerable() {

char buf[80];

gets(buf);

}

When vulnerable() is called, a stack frame is pushed onto the stack. The stack will look
something like this:

buf saved SP ret addr caller’s stack frame · · ·

If the input is too long, the code will write past the end of buf and the saved SP and return
address will be overwritten. This is a stack smashing attack.

Stack smashing can be used for malicious code injection. First, the attacker arranges to
infiltrate a malicious code sequence somewhere in the program’s address space, at a known
address (perhaps using techniques previously mentioned). Next, the attacker provides a
carefully-chosen 88-byte input, where the last four bytes hold the address of the malicious
code.1 The gets() call will overwrite the return address on the stack with the last 4 bytes
of the input—in other words, with the address of the malicious code. When vulnerable()

returns, the CPU will retrieve the return address stored on the stack and transfer control to
that address, handing control over to the attacker’s malicious code.

The discussion above has barely scratched the surface of techniques for exploiting buffer
overrun bugs. Stack smashing was first introduced in 1996 (see “Smashing the Stack for
Fun and Profit” by Aleph One). Modern methods are considerably more sophisticated and
powerful. These attacks may seem esoteric, but attackers have become highly skilled at
exploiting them. Indeed, you can find tutorials on the web explaining how to deal with
complications such as:

• The malicious code is stored at an unknown location.

• The buffer is stored on the heap instead of on the stack.

• The attack can only overflow the buffer by a single byte.2

1In this example, I am assuming a 32-bit architecture, so that SP and the return address are 4 bytes long.
On a 64-bit architecture, SP and the return address would be 8 bytes long, and the attacker would need
to provide a 96-byte input whose last 8 bytes were chosen carefully to contain the address of the malicious
code.

2In one of the most impressive instances of this, the Apache webserver at one point had an off-by-one
bug that allowed an attacker to zero out the next byte immediately after the end of the buffer. The Apache
developers downplayed the impact of this bug and assumed it was harmless—until someone came up with
a clever and sneaky way to mount a malicious code injection attack, using only the ability to write a single
zero byte one past the end of the buffer.

Page 4

• The characters that can be written to the buffer are limited (e.g., to only lowercase
letters).3

• There is no way to introduce any malicious code into the program’s address space.

Buffer overrun attacks may appear mysterious or complex or hard to exploit, but in
reality, they are none of the above. Attackers exploit these bugs all the time. For example,
the Code Red worm compromised 369K machines by exploiting a buffer overflow bug in the
IIS web server. In the past, many security researchers have underestimated the opportunities
for obscure and sophisticated attacks, only to later discover that the ability of attackers to
find clever ways to exploit these bugs exceeded their imaginations. Attacks once thought
to be esoteric to worry about are now considered easy and routinely mounted by attackers.
The bottom line is this: If your program has a buffer overflow bug, you should assume that

the bug is exploitable and an attacker can take control of your program.

How do you avoid buffer overflows in your code? One way is to check that there is
sufficient space for what you will write before performing the write.

3 Format string vulnerabilities

Let’s look next at another type of vulnerability:

void vulnerable() {

char buf[80];

if (fgets(buf, sizeof buf, stdin) == NULL)

return;

printf(buf);

}

Do you see the bug? The last line should be printf("%s", buf). If buf contains any %

characters, printf() will look for non-existent arguments, and may crash or core-dump the
program trying to chase missing pointers. But things can get much worse than that.

If the attacker can see what is printed, the attacker can mount several attacks:

• The attacker can learn the contents of the function’s stack frame. (Supplying the string
"%x:%x" reveals the first two words of stack memory.)

• The attacker can also learn the contents of any other part of memory, as well. (Sup-
plying the string "%s" treats the next word of stack memory as an address, and prints
the string found at that address. Supplying the string "%x:%s" treats the next word
of stack memory as an address, the word after that as an address, and prints what is
found at that string. To read the contents of memory starting at a particular address,
the attacker can find a nearby place on the stack where that address is stored, and
then supply just enough %x’s to walk to this place followed by a %s. Many clever tricks
are possible, and the details are not terribly important for our purposes.) Thus, an

3Imagine writing a malicious sequence of instructions, where every byte in the machine code has to be in
the range 0x61 to 0x7A (’a’ to ’z’). Yes, it’s been done.

Page 5

attacker can exploit a format string vulnerability to learn passwords, cryptographic
keys, or other secrets stored in the victim’s address space.

• The attacker can write any value to any address in the victim’s memory. (Use %n and
many tricks; the details are beyond the scope of this writeup.) You might want to
ponder how this could be used for malicious code injection.

The bottom line: If your program has a format string bug, assume that the attacker can

learn all secrets stored in memory, and assume that the attacker can take control of your

program.

Page 6

4 Integer conversion vulnerabilities

What’s wrong with this code?

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large: bad dog, no cookie for you!");

return;

}

memcpy(buf, p, len);

}

Here’s a hint. The prototype for memcpy() is:

void *memcpy(void *dest, const void *src, size_t n);

And the definition of size_t is:

typedef unsigned int size_t;

Do you see the bug now? If the attacker provides a negative value for len, the if statement
won’t notice anything wrong, and memcpy() will be executed with a negative third argument.
C will cast this negative value to an unsigned int and it will become a very large positive
integer. Thus memcpy() will copy a huge amount of memory into buf, overflowing the buffer.

Note that the C compiler won’t warn about the type mismatch between signed int and
unsigned int; it silently inserts an implicit cast. This kind of bug can be hard to spot. The
above example is particularly nasty, because on the surface it appears that the programmer
has applied the correct bounds checks, but they are flawed.

Here is another example. What’s wrong with this code?

void vulnerable() {

size_t len;

char *buf;

len = read_int_from_network();

buf = malloc(len+5);

read(fd, buf, len);

...

}

This code seems to avoid buffer overflow problems, (indeed, it allocates 5 more bytes than
necessary). But, there is a subtle problem: len+5 can wrap around if len is too large. For
instance, if len = 0xFFFFFFFF, then the value of len+5 is 4 (on 32-bit platforms). In this
case, the code allocates a 4-byte buffer and then writes a lot more than 4 bytes into it: a
classic buffer overflow. You have to know the semantics of your programming language very
well to avoid all the pitfalls.

Page 7

5 Memory safety

Buffer overflow, format string, and the other examples above are examples of memory safety

bugs: cases where an attacker can read or write beyond the valid range of memory regions.
Other examples of memory safety violations include using a dangling pointer (a pointer into
a memory region that has been freed and is no longer valid) and double-free bugs (where
a dynamically allocated object is explicitly freed multiple times). C and C++ rely upon
the programmer to preserve memory safety, but bugs in the code can lead to violations of
memory safety. History has taught us that memory safety violations often enable malicious
code injection and other kinds of attacks.

Some modern languages are designed to be intrinsically memory-safe, no matter what
the programmer does. Java is one example. Thus, memory-safe languages eliminate the
opportunity for one kind of programming mistake that has been known to cause serious
security problems.

6 Defending against memory-safety vulnerabilities

We’ve only scratched the surface of implementation vulnerabilities. If this makes you a
bit more cautious when you write code, then good! We’ll finish with a discussion of some
techniques to defend against memory-safety vulnerabilities. Here are five general classes of
defensive techniques::

• Secure coding practices. We can adopt a disciplined style of programming that
avoids these bugs.

• Better languages/libraries. We can adopt languages or libraries that make such
mistakes harder to commit.

• Runtime checking. We can have our compiler (or other tools) automatically inject
runtime checks everywhere they might be needed to detect and prevent exploitation of
memory-safety bugs, so that if our code does have a memory-safety bug, it won’t be
exploitable by attackers.

• Static analysis. We can use a compiler (or a special tool) to scan the source code
and identify potential memory-safety bugs in the code, and then task developers with
fixing those bugs.

• Testing. We can applying testing techniques to try to detect memory-safety bugs in
the code, so that we can fix them before the software ships to our customers.

Many of these techniques can be applied to all kinds of security bugs, but for concreteness,
let’s explore how they can be applied to protect against memory-safety vulnerabilities.

6.1 Secure Coding Practices

In general, before performing any potentially unsafe operation, we can write some code to
check (at runtime) whether the operation is safe to perform and abort if not. For instance,
instead of

Page 8

char digit_to_char(int i) { // BAD

char convert[] = "0123456789";

return convert[i];

}

we can write

char digit_to_char(int i) { // BETTER

char convert[] = "0123456789";

if (i < 0 || i > 9)

return "?"; // or, call exit()

return convert[i];

}

This code ensures that the array access will be within bounds. Similarly, when calling library
functions, we can use a library function that incorporates these kinds of checks, rather than
one that does not. Instead of

char buf[512];

strcpy(buf, src); // BAD

we can write

char buf[512];

strlcpy(buf, src, sizeof buf); // BETTER

The latter is better, because strlcpy(d,s,n) takes care to avoid writing more than n bytes
into the buffer d. As another example, instead of

char buf[512];

sprintf(buf, src); // BAD

we can write

char buf[512];

snprintf(buf, sizeof buf, src); // BETTER

Instead of using gets(), we can use fgets(). And so on.
In general, we can check (or otherwise ensure) that array indices are in-bounds before

using them, that pointers are non-null and in-bounds before dereferencing them, that integer
addition and multiplication won’t overflow or wrap around before performing the operation,
that integer subtraction won’t underflow before performing it, that objects haven’t already
been de-allocated before freeing them, and that memory is initialized before being used.

We can also follow defensive programming practices. Defensive programming is like
defensive driving: the idea is to avoid depending on anyone else around you, so that if
anyone else does something unexpected, you won’t crash. Defensive programming is about
surviving unexpected behavior by other code, rather than by other drivers, but otherwise
the principle is similar.

Page 9

Defensive programming means that each module takes responsibility for checking the
validity of all inputs sent to it. Even if you “know” that your callers will never send you
a NULL pointer, you check for NULL anyway, just in case, because sometimes what you
“know” isn’t actually true, and even if it is true today, it might not be true tomorrow as the
code evolves. Defensive programming is about minimizing trust in the other components
your code interacts with, so that the program fails gracefully if one of your assumptions
turns out to be incorrect. It’s usually better to throw an exception or even stop the program
than to allow a malicious code injection attack to succeed. Don’t write fragile code; strive
for robustness. Defensive programming might lead to duplicating some checks or introducing
some unnecessary checks, but this may be a price worth paying for reducing the likelihood
of catastrophic security vulnerabilities.

It can also be helpful to perform code reviews, where one programmer reviews the code
written by another programmer to ensure (among other things) that the code follows secure
code practices. For instance, some companies have a requirement that all code be reviewed
by another programmer before being checked in. To help code reviewers (and yourself), a
good principle is to organize your code so that it is obviously correct. If the correctness of
your code would not be obvious to a reviewer, rewrite it until its correctness is self-evident.
As the great programmer Brian Kernighan once wrote:

Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough
to debug it.

In the case of avoiding memory-safety bugs, code should be rewritten until it is self-evident
that it never performs any out-of-bounds memory access, for instance by introducing explicit
runtime checks before any questionable memory access.

One potential issue with relying solely upon secure coding practices is that we are still
relying upon programmers to never make a mistake. Programmers are human, and so errors
are inevitable. The hope is that secure coding practices can reduce the frequency of such
errors and can make them easier to spot in a code review or debugging session. Also, static
analysis tools (see below) may be able to help detect deviations from secure coding practices,
further reducing the incidence of such errors.

Many secure coding practices have a strong overlap with good software engineering prin-
ciples, but the demands of security arguably place a heavier burden on programmers. In
security applications, we must eliminate all security-relevant bugs, no matter how unlikely
they are to be triggered in normal execution, because we are facing an intelligent adversary
who will gladly interact with our code in abnormal ways if there is any profit in doing so.
Software reliability normally focuses primarily on those bugs that are most likely to happen;
bugs that only come up under obscure conditions might be ignored if reliability is the goal,
but they cannot be ignored when security is the goal. Dealing with malice is harder than
dealing with mischance.

6.2 Better Languages and Libraries

Languages and libraries can help avoid memory-safety vulnerabilities by eliminating the op-
portunity for programmer mistakes. For instance, Java performs automatic bounds-checking

Page 10

on every array access, so programmer error cannot lead to an array bounds violation. Also,
Java provides a String class with methods for many common string operations. Importantly,
every method on String is memory-safe: the method itself performs all necessary runtime
checks and resizes all buffers as needed to ensure there is enough space for strings. Simi-
larly, C++ provides a safe string class; using these libraries, instead of C’s standard library,
reduces the likelihood of buffer overflow bugs in string manipulation code.

6.3 Runtime Checks

Compilers and other tools can reduce the burden on programmers by automatically intro-
ducing runtime checks at every potentially unsafe operation, so that programmers do not
have to do so explicitly. For instance, there has been a great deal of research on augmenting
C compilers so they automatically emit a bounds check at every array or pointer access.

One challenge is that automatic bounds-checking for C/C++ has a non-trivial per-
formance overhead. Even after decades of research, the best techniques still slow down
computationally-intensive code by 10%-150% or so, though the good news is that for I/O-
bound code the overheads can be smaller.4 Because many security-critical network servers
are I/O-bound, automatic bounds-checking may be feasible for some C/C++ programs. The
reason that bounds-checking is expensive for C is that one must bounds-check every pointer
access, which adds several instructions for the check for each instruction that accesses a
pointer, and C programs use pointers frequently. Also, to enable such checks, pointers
have to carry information about their bounds, which adds overhead for the necessary book-
keeping.

Another potential issue with automatic bounds-checking compilers for C/C++ has to
do with legacy code. First, the source code of the program has to be available, so that the
program can be re-compiled using a bounds-checking compiler. Second, it can be difficult to
mix code compiled with bounds-checking enabled with libraries or legacy code not compiled
in that way. To check the bounds on a pointer p, we need some way to know the start and
end of the memory region that p points into, which requires either changing the memory
representation of pointers (so that they are an address, a base, and an upper bound) or
introducing extra data structures. Either way, this poses challenges when code compiled in
this way interacts with code compiled by an older compiler.

There are other techniques that attempt to make it harder to exploit any memory-safety
bugs that may existing the code. You might learn about some of them in discussion section.5

6.4 Static Analysis

Static analysis is a technique for scanning source code to try to automatically detect potential
bugs. You can think of static analysis as runtime checks, performed at compile time: the
static analysis tool attempts to predict whether there exists any program execution under
which a runtime check would fail, and if it finds any, it warns the programmer. Sophisticated
techniques are needed, and those techniques are beyond the scope of this class, but they build

4If you’re interested in learning more, you can read a recent research paper on this subject at
http://www.usenix.org/events/sec09/tech/full_papers/akritidis.pdf.

5For those interested in reading more, you can read about ASLR and the NX bit.

Page 11

http://www.usenix.org/events/sec09/tech/full_papers/akritidis.pdf

on ideas from the compilers and programming language literature for automatic program
analysis (e.g., ideas initially developed for compiler optimization).

The advantage of static analysis is that it can detect bugs proactively, at development
time, so that they can be fixed before the code has been shipped. Bugs in deployed code
are expensive, not only because customers don’t like it when they get hacked due to a bug
in your code, but also because fixes require extensive testing to ensure that the fix doesn’t
make things worse. Generally speaking, the earlier a bug is found, the cheaper it can be to
fix, which makes static analysis tools attractive.

One challenge with static analysis tools is that they make errors. This is fundamental:
detecting security bugs can be shown to be undecidable (like the Halting Problem), so it
follows that any static analysis tool will either miss some bugs (false negatives), or falsely
warn about code that is correct (false positives), or both. In practice, the effectiveness of a
static analysis tool is determined by its false negative rate and false positive rate; these two
can often be traded off against each other. At one extreme are verification tools, which are
guaranteed to be free of false negatives: if your code does not trigger any warnings, then
it is guaranteed to be free of bugs (at least, of the sort of bugs that the tool attempts to
detect). In practice, most developers accept a significant rate of false negatives in exchange
for finding some relevant bugs, without too many false positives.

6.5 Testing

Another way to find security bugs proactively is by testing your code. A challenge with
testing for security, as opposed for functionality, is that security is a negative property: for
security, we want to prove that nothing bad happens, even in unusual circumstances; whereas
standard testing focuses on ensuring that something good does happen, under normal cir-
cumstances. It is a lot easier to define test cases that reflect normal, expected inputs and
check that the desired behavior does occur, then to define test cases that represent the kinds
of unusual inputs an attacker might provide or to detect things that are not supposed to
happen.

Generally, testing for security has two aspect:

1. Test generation. We need to find a way to generate test cases, so that we can run the
program on those test cases.

2. Bug detection. We need a way to detect whether a particular test case revealed a bug
in the program.

Fuzz testing is one simple form of security testing. Fuzz testing involves testing the
program with random inputs and seeing if the program exhibits any sign of failure. Generally,
the bug detection strategy is to check whether the program crashes (or throws an unexpected
exception). For greater bug detection power, we can enable runtime checks (e.g., automatic
array bounds-checking) and see whether any of the test cases triggers a failure of some
runtime check. There are three different approaches to test generation that are commonly
taken, during fuzz testing:

Page 12

• Random inputs. Construct a random input file, and run the program on that input.
The file is constructed by choosing a totally random sequence of bytes, with no struc-
ture.

• Mutated inputs. Start with a valid input file, randomly modify a few bits in the file,
and run the program on the mutated input.

• Structure-driven input generation. Taking into account the intended format of the
input, devise a program to independently “fuzz” each field of the input file. For
instance, if we know that one part of the input is a string, generate random strings (of
random lengths, with random characters, some of them with % signs to try to trigger
format string bugs, some with funny Unicode characters, etc.). If another part of
the input is a length, try random integers, try a very small number, try a very large
number, try a negative number (or an integer whose binary representation has its high
bit set).

One shortcoming of purely random inputs is that, if the input has a structured format, then
it is likely that a random input file will not have the proper format and thus will be quickly
rejected by the program, leaving much of the code uncovered and untested. The other two
approaches address this problem. Generally speaking, mutating a corpus of valid files is
easier than writing a test generation suite customized to the particular input format under
consideration, but may be less effective.

Usually, fuzz testing involves generating many inputs: e.g., hundreds of thousands or
millions. What it sacrifices in sophistication, it makes up for in quantity. Fuzz testing is
popular in industry today because it is cheap, easy to apply, and somewhat effective at
finding some kinds of bugs (more effective than you would think it has any right to be).6

6For those interested in learning more, check out: http://toorcon.org/2007/talks/60/real_world_fuzzing.pdf.
If you like to try things out, you could check out zzuf, an easy-to-use mutation fuzzer for Linux:
http://caca.zoy.org/wiki/zzuf. For instance, on Linux you can have some fun with a command like
zzuf -v -s 1:1000 valgrind -q --leak-check=no --error-exitcode=1 unzip -o foo.zip; look for
error messages from Valgrind, prefixed with ==NNNNN==.

Page 13

http://toorcon.org/2007/talks/60/real_world_fuzzing.pdf
http://caca.zoy.org/wiki/zzuf

	Buffer overflow vulnerabilities
	Stack smashing
	Format string vulnerabilities
	Integer conversion vulnerabilities
	Memory safety
	Defending against memory-safety vulnerabilities
	Secure Coding Practices
	Better Languages and Libraries
	Runtime Checks
	Static Analysis
	Testing

