
Dawn Song

Fall 2012

CS 161

Computer Security

Due Date: Monday October 1, 2012 by 11:59pm

Lab 2

Program Verification & Vulnerability Discovery

Introduction

In this exercise, we will reason about the correctness of real-world programs by

applying manual and automated verification techniques. This lab is split into three

sections:

1. Program Verification (20 pts) - We will manually prove whether the Merge-

Sort program contains certain vulnerabilities by reasoning on its source code.

2. Constraint Solving (45 pts) - By invoking a constraint solver (Z3) to help us

reason about a program, we will gain hands-on insight into symbolic execu-

tion and constraint solving, the underlying techniques of whitebox fuzzing.

3. Whitebox Fuzzing and (Optionally) Blackbox Fuzzing (35 pts) - Using a white-

box fuzzing tool (FuzzBALL), we will learn how to automatically discover

vulnerabilities.

All files and detailed submission instructions for this lab are at the course site in

Bspace, under Assignments → Lab 2.

Files included in this exercise

You should use the Lab 2 VM iamge (lab2.vmx) for this exercise. The user is

”ubuntu” and the password is ”reverse”. It is a 32-bit Ubuntu 10.04 LTS VM aug-

mented with the following files:

• Z3, a constraint solver from Microsoft Research (Q2).

• example{1,2}.c, example source files (Q2).

• example{1,2}.smt the encoded forms of example{1,2}.c as logical

formulas in SMT-LIB format (Q2).

• elfhash.c, an algorithm to hash objects in the ELF format (Q2).

• elfhash.smt, to be completed and submitted (Q2).

• FuzzBALL, a dynamic symbolic execution tool distributed as a 32-bit x86

ELF binary (Q3), and run-fuzzball.sh, a bash srcipt to run it,

• testme, an executable extracted from BIND1 (Q3).

• testcase.init, an initial input test case for testme (Q3).

• submitWeb.py, a python script to submit your files (Q2 and Q3).

Should you wish to complete this exercise without the use of the VM, visit the

”Extra Notes” section at the bottom of this document.

1 Program Correctness (20 points)

Figure 1 shows an implementation of mergesort published in Wikibooks, retrieved

Jan 6, 2012. Notice that at line 31, its anonymous author assures us the program

has been tested. Are we sufficiently confident to use it? Let us verify its correctness

or otherwise by answering the following questions.

1. Consider line 29. Can a double-free occur?

2. Consider line 12. Can a null-pointer dereference occur?

3. Consider line 12. Can a read out-of-bounds occur?

4. Consider line 32. Can infinite recursion occur?

No programming nor testing is required for this question. Note that you are not

required to concern yourself with functional correctness, i.e., whether the array is

indeed sorted on termination. Also, we will assume that (1) the entry point (first

call to MergeSort at line 32) is valid, i.e., it starts off with an pre-allocated

int array tab of size count and count > 0; (2) line 6 calls a standard libc

implementation of malloc (lookup its man pages if it is not already familiar); and

(3) the program runs on a 32-bit x86 machine.

You are required to fill your answers into the assignment submission form for

Lab 2 in Bspace. For each question, if your answer is ‘yes’, provide the entry point

inputs (first call to MergeSort at line 32) that trigger the violation; if your

answer is ‘no’, provide the invariant(s) at the considered line number.

1http://www.isc.org/software/bind

Page 2

1 /∗ Mix two s o r t e d t a b l e s i n one and s p l i t t h e r e s u l t i n t o

t h e s e two t a b l e s . ∗ /

2 i n t ∗Mix (i n t ∗ tab1 , i n t ∗ tab2 , i n t count1 , i n t coun t2)

3 {
4 i n t i , i1 , i 2 ;

5 i = i 1 = i 2 = 0 ;

6 i n t ∗ temp = (i n t ∗) ma l loc (s i z e o f (i n t) ∗ (coun t1 + count2)) ;

7

8 w h i l e ((i1<coun t1) && (i2<coun t2))

9 {
10 w h i l e ((i1<coun t1) && (∗ (t a b 1 + i 1) <=∗(t a b 2 + i 2)))

11 {
12 ∗ (temp+ i ++) = ∗ (t a b 1 + i 1) ;

13 i 1 ++;

14 }
15 i f (i1<coun t1)

16 {
17 w h i l e ((i2<coun t2) && (∗ (t a b 2 + i 2) <=∗(t a b 1 + i 1)))

18 {
19 ∗ (temp+ i ++) = ∗ (t a b 2 + i 2) ;

20 i 2 ++;

21 }
22 }
23 }
24 memcpy (temp+i , t a b 1 +i1 , (count1−i 1) ∗ s i z e o f (i n t)) ;

25 memcpy (tab1 , temp , coun t1 ∗ s i z e o f (i n t)) ;

26

27 memcpy (temp+i , t a b 2 +i2 , (count2−i 2) ∗ s i z e o f (i n t)) ;

28 memcpy (tab2 , temp+ count1 , coun t2 ∗ s i z e o f (i n t)) ;

29 f r e e (temp) ;

30 }
31 /∗ MergeSor t a t a b l e of i n t e g e r of s i z e c o u n t . (Has been

t e s t e d .) ∗ /

32 vo id MergeSor t (i n t ∗ t ab , i n t c o u n t)

33 {
34 i f (c o u n t ==1) r e t u r n ;

35

36 MergeSor t (t ab , c o u n t / 2) ;

37 MergeSor t (t a b + c o u n t / 2 , (c o u n t +1) / 2) ;

38 Mix (tab , t a b + c o u n t / 2 , c o u n t / 2 , (c o u n t +1) / 2) ;

39 }

Figure 1: A mergesort implementation published in Wikibooks.

Page 3

2 Constraint Solving (45 points)

We now take the first step towards reasoning automatically about programs using

constraint solvers. The whitebox fuzzer that we will see in Q3 is a fully automated

tool that performs symbolic execution to model an execution path into a path con-

straints formula, and then invokes a constraint solver to solve that formula. In this

question, we will get to understand how symbolic execution works, and directly

apply constraint solving to an interesting problem.

The interesting problem that we explore here is to find collisions in hash func-

tions. Non-cryptographic hash functions are commonly used to support hash table

lookups or to speed up the comparison of data. For example, the ELFhash function,

shown in Figure 2, is used in Linux to compare objects in the ELF format. Given

two different inputs, a hash collision occurs when their hash outputs are identical.

Obviously, hash collisions are undesirable2. A good hash function minimizes the

likelihood of collisions by distributing inputs uniformly over its output space. De-

spite the simplicity of the concept, there are few universally-accepted ‘good’ hash

functions, and the design of ‘good’ hash functions remains an open problem.

One way to evaluate a hash function is to attempt to generate hash collisions.

The two most straightforward approaches are brute-force and random enumeration

of inputs (akin to blackbox fuzzing); in this exercise, we will attempt a different

approach — we will apply constraint solving to help us ‘solve’ for collisions (akin

to whitebox fuzzing).

Files included in this exercise:

You should find the following files in the lab2 directory:

• Z3, a constraint solver from Microsoft Research.

• example{1,2}.c, example source files.

• example{1,2}.smt the encoded forms of example{1,2}.c as logical

formulas in SMT-LIB format.

• elfhash.c, an algorithm to hash objects in the ELF format.

• elfhash.smt, to be completed and submitted.

How to do constraint solving:

Before we can use a constraint solver, we need to learn how symbolic execution

works, i.e., how it systematically constructs a constraint formula from code. The

2As you will learn later in this course, cryptographic hash functions are required to be collision

resistant, i.e., it is computationally hard to find two different inputs with identical hash outputs.

ELFhash is non-cryptographic.

Page 4

u n s i g n e d i n t ELFHash (c h a r ∗ s t r , u n s i g n e d i n t l e n)

{
u n s i g n e d i n t hash = 0 ;

u n s i g n e d i n t x = 0 ;

u n s i g n e d i n t i = 0 ;

f o r (i = 0 ; i < l e n ; s t r ++ , i ++)

{
hash = (hash << 4) + (∗ s t r) ;

x = hash & 0 xF0000000L ; /∗ h e x a d e c i m a l long d a t a t y p e

∗ /

i f (x != 0)

{
hash ˆ= (x >> 24) ;

}
hash &= ˜ x ;

}

r e t u r n hash ;

}

Figure 2: An ELFhash implementation

supplementary document (constraint solving.pdf) will guide you through this con-

struction. Be sure to thoroughly understand the material before you proceed.

Problem Instructions:

We are now ready to apply constraint solving to help us generate ELFhash col-

lisions. To reduce your work, let us fix all ELFhash inputs to be of length 3 in

this exercise (thus the for loop in Figure 2 is unrolled 3 times). Then perform the

following steps.

1. Let’s choose "sec" as a 3-letter input and ELFhash it (using elfhash.c).

What is its ELFhash output? Be sure to fill your answer into the assignment

submission form for lab 2 in Bspace.

2. Now construct an assertion at the end of the ELFhash function in elfhash.c

such that the solver would print out an input that collides with "sec". Com-

plete elfhash.smt by encoding the ELFhash function in SMT-LIB. Then

query the Z3 solver. What is the colliding input string that you found? You

might want to lookup the ASCII table to convert ASCII values to characters.

Be sure to fill your answer into the assignment submission form in Bspace.

Page 5

3. Feed the colliding input back into ELFhash as done in step 1. Does it indeed

colide with "sec"? If so, congratulations! You’re now ready to submit your

solution to Q2. Otherwise, you should debug your SMT-LIB encoding (say,

by repeating the process from step 1 with a single letter).

4. Now submit your Q2 solution in two steps. First, type "./submitWeb.py

-q2" in the lab directory at command-line and follow the instructions. This

should produce a submission file submit lab2 q2.txt. Then, upload

this file as attachment to the Bspace assignment submission system.

5. Now modify elfhash.smt to obtain another colliding input. Then fill

your answer into the assignment submission form in Bspace (if you do not

find any more colliding inputs, enter ”None”). You should not submit the

modifications in this part.

3 Whitebox and Blackbox Fuzzing (35 points)

Security fuzz testing (or fuzzing, in short) is a critical step in the software devel-

opment process for any program or system. It attempts to generate inputs that are

not expected under typical usage conditions, which tend to be overlooked or poorly

handled by programmers. Blackbox fuzzing is a common technique used by secu-

rity researchers to evaluate the security of programs and systems without access to

source code, and accounts for the vast majority of existing vulnerability disclosures.

In contrast, whitebox fuzzing is a relatively newer approach that applies symbolic

execution and constraint solving to systematically explore the program state space

and to generate invalid inputs. In this exercise, we will experiment with whitebox

followed (optionally) by blackbox fuzzing.

Potential Vulnerability : Callsite addr : Callee : Function

Write out-of-bounds : 0x08048f6c : 0x08049549 : memcpy

Write out-of-bounds : 0x080489ed : 0x08049549 : memcpy

Write out-of-bounds : 0x080488c1 : 0x08049549 : memcpy

Figure 3: Static analysis warnings

Figure 3 shows a subset of warnings generated from an initial static analysis on

testme. It contains the locations of potential vulnerabilities found by a static ana-

lyzer, which cannot be confirmed due to limited precision. For simplicity, Figure 3

shows a subset of warnings that are potential write out-of-bounds limited to calls

to the C library function memcpy. Simply treating all static analysis warnings as

bugs or vulnerabilities would result in high false positives, so one major application

Page 6

of symbolic execution is to check the validity of static analysis warnings to prune

false positives, and generate inputs that trigger the true vulnerabilities. This is how

we will use FuzzBALL in this exercise.

Files included in this exercise:

You should find the following files in the lab2 directory:

• FuzzBALL, an experimental research tool implementing dynamic symbolic

execution, which can be applied to whitebox fuzzing.3

• run-fuzzball.sh, a bash srcipt to run FuzzBALL.

• testme, an executable extracted from BIND4 and is the binary executable

we are trying to test. It is compiled using gcc from a subset of BIND source

code, without stripping its debug symbols (you might find this useful later).

• testcase.init, an initial input test case for testme.

Using FuzzBall:

To use FuzzBALL, we would have to construct ‘vulnerability conditions’5 from

these warnings, so that FuzzBALL checks them when it encounters these locations

during its systematic exploration of testme. Such vulnerability conditions can

be generated automatically, but we will construct them manually in this exercise to

gain a better understanding of how it works.

Example vulnerability condition Description

0x08048b41: Register EAX is not equal to 1 when

R EAX:reg32 t <> 0x01:reg32 t execution reaches (EIP is) 0x08048b41

0x080497dc: The value at memory location referenced by

mem[R EBX:reg32 t + 0x21:reg32 t] EBX+0x21 is equal to 0 when execution

:reg32 t == 0:reg32 t reaches 0x080497dc

0x08049f77: The value at memory location referenced by

mem[R EBP:reg32 t + 0x08:reg32 t] EBP+0x08 is less than or equal to EBX

:reg32 t <= R EBX:reg32 t when execution reaches 0x08049f77

Table 1: Example vulnerability conditions and descriptions.

Vulnerability conditions are specified to FuzzBALL in the Vine Intermediate

Language6. Table 1 provides some example vulnerability conditions and the de-

scriptions of what they mean. When a vulnerability condition is specified to FuzzBALL,

3FuzzBALL is a symbolic execution tool in the BitBlaze binary analysis platform

http://bitblaze.cs.berkeley.edu/.
4http://www.isc.org/software/bind
5A vulnerability condition is the negation of a verification condition.
6The full syntax is described at http://bitblaze.cs.berkeley.edu/release/vine-

1.0/howto.html#htoc19

Page 7

it checks the satisfiability of the given condition when it is encountered during pro-

gram exploration (the register EIP ‘hits’ the specified instruction address). It ter-

minates when the condition is satisfiable, i.e., there exists an input that satisfies this

condition in that execution path to trigger the vulnerability. Otherwise, it continues

exploration. It explores different execution paths up to a pre-configured bound. You

should first try running FuzzBALL with at least one of the conditions in Table 1 to

familiarize yourself with FuzzBALL and its vulnerability conditions. Be sure to

check your input syntax if you encounter exceptions. To run FuzzBALL, enter the

following in its local directory:

./run-fuzzball.sh -check-condition-at ’<condition>’

Do not modify the options within the script nor delete the fuzzball.log log

that it generates, as your submission score will depend on it.

Problem Instructions:

We are now ready to embark on our bug-finding quest by answering the follow-

ing questions.

1. Without knowing the precise upper bounds on the destination buffer sizes

in memcpy, can you establish a crude upper-bound value on the memcpy

length beyond which the call to memcpy must be an error? (Hint 1: testme

is a 32-bit program. Hint 2: programs commonly assign int variables to

size t.) Fill your answer into the assignment submission form in Bspace.

2. Hence or otherwise, construct a vulnerability condition for each of the 3

warnings in Figure 3. (Hint: you might find running a disassembler such

as "objdump -D testme" useful. Also lookup the cdecl calling con-

vention.)

3. Now run FuzzBALL to check each of your vulnerability conditions sepa-

rately. Which of the 3 warnings are true vulnerabilities? Fill your answer

into the assignment submission form in Bspace.

4. Now submit your Q3 solution in two steps. First, type "./submitWeb.py

-q3" in the lab directory at command-line and follow the instructions. This

should produce a submission file submit lab2 q3.txt. Then, upload

this file as attachment to the Bspace assignment submission system.

Optional. You are encouraged to try out the blackbox fuzzing approach to find

vulnerabilities in testme. Unlike whitebox fuzzing, the way it detects vulnera-

bilities is through crashing (e.g., on segmentation fault). We have left this as an

optional exercise because whether you find vulnerabilities at all depends on your

initial test cases and your fuzzing strategy (topped with a stroke of luck), so assign-

ing scores based on that would be subjective. Nevertheless, we believe this would

Page 8

be a fun exercise that does not take too much effort. For example, mutation-based

fuzzers can be written in as little as five lines of code7.

Submission and Grading

As you complete each question in this Lab, be sure to enter your answers into the

assignment submission form in Bspace and submit your work using the submission

script submitWeb.py. The following table describes the composition of scores

in this lab.

Question #. Bspace Form Submission Points

Entries to fill Data

Q1: Program Correctness 8 - 20 pts

Q2: Constraint Solving 3 elfhash.smt 45 pts

Q3: Whitebox & Blackbox Fuzzing 2 fuzzball.log 35 pts

Total 100 pts

You are allowed to submit your solutions multiple times, and we will take the

highest score into consideration.

Extra Notes

Installation for Other Platforms

Even if you choose not to use the provided VMWare virtual machine image, you

should still work on this lab on Linux. FuzzBALL, the dynamic symbolic execution

tool that you’ll use in Q3, is a 32-bit x86 ELF binary that runs only on Linux and

has been tested on 32-bit Ubuntu 10.04 LTS. If you prefer to use Virtual Box, you

may obtain a bare Ubuntu image8 and run that image as a virtual machine. Be sure

to use only 32-bit VM images. You may obtain a virtualbox image that works

at http://tinyurl.com/6my6tko (660 MB with guest username/password:

ubuntu/reverse).

On all platforms, you’ll also need the following programs to be installed.

• python, used to submit your work, it may already be installed by default on

Linux. Otherwise, it may be downloaded from http://python.org.

7Charlie Miller, ”Babysitting an Army of Monkeys”, CanSecWest 2010, available at

http://securityevaluators.com/files/slides/cmiller CSW 2010.ppt
8http://virtualboxes.org/images/ubuntu/

Page 9

• Z3, used in Q2, it is distributed as part of the lab archive as a Linux binary

(under the terms of Microsoft’s license) obtained from

http://research.microsoft.com/projects/z3.

Acknowledgments

This lab was prepared by Chia Yuan Cho. Thanks to Stephen McCamant for mak-

ing FuzzBALL available in this lab, and Kunal Agarwal and Dylan Jackson for

revisions.

Page 10

